go/src/cmd/compile/internal/noder/noder.go
Matthew Dempsky b29b123e07 cmd/compile: remove spurious ir.Dump
This ir.Dump call is a debugging artifact introduced in
golang.org/cl/274103, which should never be printed for valid,
non-generic code, but evidently can now sometimes appear due to how
the parser handles invalid syntax.

The parser should probably not recognize "x[2]" as a type expression
in non-generics mode, but also probably we shouldn't try noding after
reporting syntax errors. Either way, this diagnostic has outlived its
usefulness, and noder's days are numbered anyway, so we might as well
just remove it to save end users any confusion.

Updates #46558.

Change-Id: Ib68502ef834d610b883c2f2bb11d9b385bc66e37
Reviewed-on: https://go-review.googlesource.com/c/go/+/324991
Trust: Matthew Dempsky <mdempsky@google.com>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: Robert Griesemer <gri@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
2021-06-04 01:26:43 +00:00

1880 lines
48 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"fmt"
"go/constant"
"go/token"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"unicode"
"unicode/utf8"
"cmd/compile/internal/base"
"cmd/compile/internal/dwarfgen"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/objabi"
"cmd/internal/src"
)
func LoadPackage(filenames []string) {
base.Timer.Start("fe", "parse")
mode := syntax.CheckBranches
if base.Flag.G != 0 {
mode |= syntax.AllowGenerics
}
// Limit the number of simultaneously open files.
sem := make(chan struct{}, runtime.GOMAXPROCS(0)+10)
noders := make([]*noder, len(filenames))
for i, filename := range filenames {
p := noder{
err: make(chan syntax.Error),
trackScopes: base.Flag.Dwarf,
}
noders[i] = &p
filename := filename
go func() {
sem <- struct{}{}
defer func() { <-sem }()
defer close(p.err)
fbase := syntax.NewFileBase(filename)
f, err := os.Open(filename)
if err != nil {
p.error(syntax.Error{Msg: err.Error()})
return
}
defer f.Close()
p.file, _ = syntax.Parse(fbase, f, p.error, p.pragma, mode) // errors are tracked via p.error
}()
}
var lines uint
for _, p := range noders {
for e := range p.err {
p.errorAt(e.Pos, "%s", e.Msg)
}
if p.file == nil {
base.ErrorExit()
}
lines += p.file.EOF.Line()
}
base.Timer.AddEvent(int64(lines), "lines")
if base.Flag.G != 0 {
// Use types2 to type-check and possibly generate IR.
check2(noders)
return
}
for _, p := range noders {
p.node()
p.file = nil // release memory
}
if base.SyntaxErrors() != 0 {
base.ErrorExit()
}
types.CheckDclstack()
for _, p := range noders {
p.processPragmas()
}
// Typecheck.
types.LocalPkg.Height = myheight
typecheck.DeclareUniverse()
typecheck.TypecheckAllowed = true
// Process top-level declarations in phases.
// Phase 1: const, type, and names and types of funcs.
// This will gather all the information about types
// and methods but doesn't depend on any of it.
//
// We also defer type alias declarations until phase 2
// to avoid cycles like #18640.
// TODO(gri) Remove this again once we have a fix for #25838.
// Don't use range--typecheck can add closures to Target.Decls.
base.Timer.Start("fe", "typecheck", "top1")
for i := 0; i < len(typecheck.Target.Decls); i++ {
n := typecheck.Target.Decls[i]
if op := n.Op(); op != ir.ODCL && op != ir.OAS && op != ir.OAS2 && (op != ir.ODCLTYPE || !n.(*ir.Decl).X.Alias()) {
typecheck.Target.Decls[i] = typecheck.Stmt(n)
}
}
// Phase 2: Variable assignments.
// To check interface assignments, depends on phase 1.
// Don't use range--typecheck can add closures to Target.Decls.
base.Timer.Start("fe", "typecheck", "top2")
for i := 0; i < len(typecheck.Target.Decls); i++ {
n := typecheck.Target.Decls[i]
if op := n.Op(); op == ir.ODCL || op == ir.OAS || op == ir.OAS2 || op == ir.ODCLTYPE && n.(*ir.Decl).X.Alias() {
typecheck.Target.Decls[i] = typecheck.Stmt(n)
}
}
// Phase 3: Type check function bodies.
// Don't use range--typecheck can add closures to Target.Decls.
base.Timer.Start("fe", "typecheck", "func")
var fcount int64
for i := 0; i < len(typecheck.Target.Decls); i++ {
n := typecheck.Target.Decls[i]
if n.Op() == ir.ODCLFUNC {
if base.Flag.W > 1 {
s := fmt.Sprintf("\nbefore typecheck %v", n)
ir.Dump(s, n)
}
typecheck.FuncBody(n.(*ir.Func))
if base.Flag.W > 1 {
s := fmt.Sprintf("\nafter typecheck %v", n)
ir.Dump(s, n)
}
fcount++
}
}
// Phase 4: Check external declarations.
// TODO(mdempsky): This should be handled when type checking their
// corresponding ODCL nodes.
base.Timer.Start("fe", "typecheck", "externdcls")
for i, n := range typecheck.Target.Externs {
if n.Op() == ir.ONAME {
typecheck.Target.Externs[i] = typecheck.Expr(typecheck.Target.Externs[i])
}
}
// Phase 5: With all user code type-checked, it's now safe to verify map keys.
// With all user code typechecked, it's now safe to verify unused dot imports.
typecheck.CheckMapKeys()
CheckDotImports()
base.ExitIfErrors()
}
func (p *noder) errorAt(pos syntax.Pos, format string, args ...interface{}) {
base.ErrorfAt(p.makeXPos(pos), format, args...)
}
// TODO(gri) Can we eliminate fileh in favor of absFilename?
func fileh(name string) string {
return objabi.AbsFile("", name, base.Flag.TrimPath)
}
func absFilename(name string) string {
return objabi.AbsFile(base.Ctxt.Pathname, name, base.Flag.TrimPath)
}
// noder transforms package syntax's AST into a Node tree.
type noder struct {
posMap
file *syntax.File
linknames []linkname
pragcgobuf [][]string
err chan syntax.Error
importedUnsafe bool
importedEmbed bool
trackScopes bool
funcState *funcState
}
// funcState tracks all per-function state to make handling nested
// functions easier.
type funcState struct {
// scopeVars is a stack tracking the number of variables declared in
// the current function at the moment each open scope was opened.
scopeVars []int
marker dwarfgen.ScopeMarker
lastCloseScopePos syntax.Pos
}
func (p *noder) funcBody(fn *ir.Func, block *syntax.BlockStmt) {
outerFuncState := p.funcState
p.funcState = new(funcState)
typecheck.StartFuncBody(fn)
if block != nil {
body := p.stmts(block.List)
if body == nil {
body = []ir.Node{ir.NewBlockStmt(base.Pos, nil)}
}
fn.Body = body
base.Pos = p.makeXPos(block.Rbrace)
fn.Endlineno = base.Pos
}
typecheck.FinishFuncBody()
p.funcState.marker.WriteTo(fn)
p.funcState = outerFuncState
}
func (p *noder) openScope(pos syntax.Pos) {
fs := p.funcState
types.Markdcl()
if p.trackScopes {
fs.scopeVars = append(fs.scopeVars, len(ir.CurFunc.Dcl))
fs.marker.Push(p.makeXPos(pos))
}
}
func (p *noder) closeScope(pos syntax.Pos) {
fs := p.funcState
fs.lastCloseScopePos = pos
types.Popdcl()
if p.trackScopes {
scopeVars := fs.scopeVars[len(fs.scopeVars)-1]
fs.scopeVars = fs.scopeVars[:len(fs.scopeVars)-1]
if scopeVars == len(ir.CurFunc.Dcl) {
// no variables were declared in this scope, so we can retract it.
fs.marker.Unpush()
} else {
fs.marker.Pop(p.makeXPos(pos))
}
}
}
// closeAnotherScope is like closeScope, but it reuses the same mark
// position as the last closeScope call. This is useful for "for" and
// "if" statements, as their implicit blocks always end at the same
// position as an explicit block.
func (p *noder) closeAnotherScope() {
p.closeScope(p.funcState.lastCloseScopePos)
}
// linkname records a //go:linkname directive.
type linkname struct {
pos syntax.Pos
local string
remote string
}
func (p *noder) node() {
p.importedUnsafe = false
p.importedEmbed = false
p.setlineno(p.file.PkgName)
mkpackage(p.file.PkgName.Value)
if pragma, ok := p.file.Pragma.(*pragmas); ok {
pragma.Flag &^= ir.GoBuildPragma
p.checkUnused(pragma)
}
typecheck.Target.Decls = append(typecheck.Target.Decls, p.decls(p.file.DeclList)...)
base.Pos = src.NoXPos
clearImports()
}
func (p *noder) processPragmas() {
for _, l := range p.linknames {
if !p.importedUnsafe {
p.errorAt(l.pos, "//go:linkname only allowed in Go files that import \"unsafe\"")
continue
}
n := ir.AsNode(typecheck.Lookup(l.local).Def)
if n == nil || n.Op() != ir.ONAME {
// TODO(mdempsky): Change to p.errorAt before Go 1.17 release.
// base.WarnfAt(p.makeXPos(l.pos), "//go:linkname must refer to declared function or variable (will be an error in Go 1.17)")
continue
}
if n.Sym().Linkname != "" {
p.errorAt(l.pos, "duplicate //go:linkname for %s", l.local)
continue
}
n.Sym().Linkname = l.remote
}
typecheck.Target.CgoPragmas = append(typecheck.Target.CgoPragmas, p.pragcgobuf...)
}
func (p *noder) decls(decls []syntax.Decl) (l []ir.Node) {
var cs constState
for _, decl := range decls {
p.setlineno(decl)
switch decl := decl.(type) {
case *syntax.ImportDecl:
p.importDecl(decl)
case *syntax.VarDecl:
l = append(l, p.varDecl(decl)...)
case *syntax.ConstDecl:
l = append(l, p.constDecl(decl, &cs)...)
case *syntax.TypeDecl:
l = append(l, p.typeDecl(decl))
case *syntax.FuncDecl:
l = append(l, p.funcDecl(decl))
default:
panic("unhandled Decl")
}
}
return
}
func (p *noder) importDecl(imp *syntax.ImportDecl) {
if imp.Path == nil || imp.Path.Bad {
return // avoid follow-on errors if there was a syntax error
}
if pragma, ok := imp.Pragma.(*pragmas); ok {
p.checkUnused(pragma)
}
ipkg := importfile(imp)
if ipkg == nil {
if base.Errors() == 0 {
base.Fatalf("phase error in import")
}
return
}
if ipkg == ir.Pkgs.Unsafe {
p.importedUnsafe = true
}
if ipkg.Path == "embed" {
p.importedEmbed = true
}
var my *types.Sym
if imp.LocalPkgName != nil {
my = p.name(imp.LocalPkgName)
} else {
my = typecheck.Lookup(ipkg.Name)
}
pack := ir.NewPkgName(p.pos(imp), my, ipkg)
switch my.Name {
case ".":
importDot(pack)
return
case "init":
base.ErrorfAt(pack.Pos(), "cannot import package as init - init must be a func")
return
case "_":
return
}
if my.Def != nil {
typecheck.Redeclared(pack.Pos(), my, "as imported package name")
}
my.Def = pack
my.Lastlineno = pack.Pos()
my.Block = 1 // at top level
}
func (p *noder) varDecl(decl *syntax.VarDecl) []ir.Node {
names := p.declNames(ir.ONAME, decl.NameList)
typ := p.typeExprOrNil(decl.Type)
exprs := p.exprList(decl.Values)
if pragma, ok := decl.Pragma.(*pragmas); ok {
varEmbed(p.makeXPos, names[0], decl, pragma, p.importedEmbed)
p.checkUnused(pragma)
}
var init []ir.Node
p.setlineno(decl)
if len(names) > 1 && len(exprs) == 1 {
as2 := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, exprs)
for _, v := range names {
as2.Lhs.Append(v)
typecheck.Declare(v, typecheck.DeclContext)
v.Ntype = typ
v.Defn = as2
if ir.CurFunc != nil {
init = append(init, ir.NewDecl(base.Pos, ir.ODCL, v))
}
}
return append(init, as2)
}
for i, v := range names {
var e ir.Node
if i < len(exprs) {
e = exprs[i]
}
typecheck.Declare(v, typecheck.DeclContext)
v.Ntype = typ
if ir.CurFunc != nil {
init = append(init, ir.NewDecl(base.Pos, ir.ODCL, v))
}
as := ir.NewAssignStmt(base.Pos, v, e)
init = append(init, as)
if e != nil || ir.CurFunc == nil {
v.Defn = as
}
}
if len(exprs) != 0 && len(names) != len(exprs) {
base.Errorf("assignment mismatch: %d variables but %d values", len(names), len(exprs))
}
return init
}
// constState tracks state between constant specifiers within a
// declaration group. This state is kept separate from noder so nested
// constant declarations are handled correctly (e.g., issue 15550).
type constState struct {
group *syntax.Group
typ ir.Ntype
values []ir.Node
iota int64
}
func (p *noder) constDecl(decl *syntax.ConstDecl, cs *constState) []ir.Node {
if decl.Group == nil || decl.Group != cs.group {
*cs = constState{
group: decl.Group,
}
}
if pragma, ok := decl.Pragma.(*pragmas); ok {
p.checkUnused(pragma)
}
names := p.declNames(ir.OLITERAL, decl.NameList)
typ := p.typeExprOrNil(decl.Type)
var values []ir.Node
if decl.Values != nil {
values = p.exprList(decl.Values)
cs.typ, cs.values = typ, values
} else {
if typ != nil {
base.Errorf("const declaration cannot have type without expression")
}
typ, values = cs.typ, cs.values
}
nn := make([]ir.Node, 0, len(names))
for i, n := range names {
if i >= len(values) {
base.Errorf("missing value in const declaration")
break
}
v := values[i]
if decl.Values == nil {
v = ir.DeepCopy(n.Pos(), v)
}
typecheck.Declare(n, typecheck.DeclContext)
n.Ntype = typ
n.Defn = v
n.SetIota(cs.iota)
nn = append(nn, ir.NewDecl(p.pos(decl), ir.ODCLCONST, n))
}
if len(values) > len(names) {
base.Errorf("extra expression in const declaration")
}
cs.iota++
return nn
}
func (p *noder) typeDecl(decl *syntax.TypeDecl) ir.Node {
n := p.declName(ir.OTYPE, decl.Name)
typecheck.Declare(n, typecheck.DeclContext)
// decl.Type may be nil but in that case we got a syntax error during parsing
typ := p.typeExprOrNil(decl.Type)
n.Ntype = typ
n.SetAlias(decl.Alias)
if pragma, ok := decl.Pragma.(*pragmas); ok {
if !decl.Alias {
n.SetPragma(pragma.Flag & typePragmas)
pragma.Flag &^= typePragmas
}
p.checkUnused(pragma)
}
nod := ir.NewDecl(p.pos(decl), ir.ODCLTYPE, n)
if n.Alias() && !types.AllowsGoVersion(types.LocalPkg, 1, 9) {
base.ErrorfAt(nod.Pos(), "type aliases only supported as of -lang=go1.9")
}
return nod
}
func (p *noder) declNames(op ir.Op, names []*syntax.Name) []*ir.Name {
nodes := make([]*ir.Name, 0, len(names))
for _, name := range names {
nodes = append(nodes, p.declName(op, name))
}
return nodes
}
func (p *noder) declName(op ir.Op, name *syntax.Name) *ir.Name {
return ir.NewDeclNameAt(p.pos(name), op, p.name(name))
}
func (p *noder) funcDecl(fun *syntax.FuncDecl) ir.Node {
name := p.name(fun.Name)
t := p.signature(fun.Recv, fun.Type)
f := ir.NewFunc(p.pos(fun))
if fun.Recv == nil {
if name.Name == "init" {
name = renameinit()
if len(t.Params) > 0 || len(t.Results) > 0 {
base.ErrorfAt(f.Pos(), "func init must have no arguments and no return values")
}
typecheck.Target.Inits = append(typecheck.Target.Inits, f)
}
if types.LocalPkg.Name == "main" && name.Name == "main" {
if len(t.Params) > 0 || len(t.Results) > 0 {
base.ErrorfAt(f.Pos(), "func main must have no arguments and no return values")
}
}
} else {
f.Shortname = name
name = ir.BlankNode.Sym() // filled in by tcFunc
}
f.Nname = ir.NewNameAt(p.pos(fun.Name), name)
f.Nname.Func = f
f.Nname.Defn = f
f.Nname.Ntype = t
if pragma, ok := fun.Pragma.(*pragmas); ok {
f.Pragma = pragma.Flag & funcPragmas
if pragma.Flag&ir.Systemstack != 0 && pragma.Flag&ir.Nosplit != 0 {
base.ErrorfAt(f.Pos(), "go:nosplit and go:systemstack cannot be combined")
}
pragma.Flag &^= funcPragmas
p.checkUnused(pragma)
}
if fun.Recv == nil {
typecheck.Declare(f.Nname, ir.PFUNC)
}
p.funcBody(f, fun.Body)
if fun.Body != nil {
if f.Pragma&ir.Noescape != 0 {
base.ErrorfAt(f.Pos(), "can only use //go:noescape with external func implementations")
}
} else {
if base.Flag.Complete || strings.HasPrefix(ir.FuncName(f), "init.") {
// Linknamed functions are allowed to have no body. Hopefully
// the linkname target has a body. See issue 23311.
isLinknamed := false
for _, n := range p.linknames {
if ir.FuncName(f) == n.local {
isLinknamed = true
break
}
}
if !isLinknamed {
base.ErrorfAt(f.Pos(), "missing function body")
}
}
}
return f
}
func (p *noder) signature(recv *syntax.Field, typ *syntax.FuncType) *ir.FuncType {
var rcvr *ir.Field
if recv != nil {
rcvr = p.param(recv, false, false)
}
return ir.NewFuncType(p.pos(typ), rcvr,
p.params(typ.ParamList, true),
p.params(typ.ResultList, false))
}
func (p *noder) params(params []*syntax.Field, dddOk bool) []*ir.Field {
nodes := make([]*ir.Field, 0, len(params))
for i, param := range params {
p.setlineno(param)
nodes = append(nodes, p.param(param, dddOk, i+1 == len(params)))
}
return nodes
}
func (p *noder) param(param *syntax.Field, dddOk, final bool) *ir.Field {
var name *types.Sym
if param.Name != nil {
name = p.name(param.Name)
}
typ := p.typeExpr(param.Type)
n := ir.NewField(p.pos(param), name, typ, nil)
// rewrite ...T parameter
if typ, ok := typ.(*ir.SliceType); ok && typ.DDD {
if !dddOk {
// We mark these as syntax errors to get automatic elimination
// of multiple such errors per line (see ErrorfAt in subr.go).
base.Errorf("syntax error: cannot use ... in receiver or result parameter list")
} else if !final {
if param.Name == nil {
base.Errorf("syntax error: cannot use ... with non-final parameter")
} else {
p.errorAt(param.Name.Pos(), "syntax error: cannot use ... with non-final parameter %s", param.Name.Value)
}
}
typ.DDD = false
n.IsDDD = true
}
return n
}
func (p *noder) exprList(expr syntax.Expr) []ir.Node {
switch expr := expr.(type) {
case nil:
return nil
case *syntax.ListExpr:
return p.exprs(expr.ElemList)
default:
return []ir.Node{p.expr(expr)}
}
}
func (p *noder) exprs(exprs []syntax.Expr) []ir.Node {
nodes := make([]ir.Node, 0, len(exprs))
for _, expr := range exprs {
nodes = append(nodes, p.expr(expr))
}
return nodes
}
func (p *noder) expr(expr syntax.Expr) ir.Node {
p.setlineno(expr)
switch expr := expr.(type) {
case nil, *syntax.BadExpr:
return nil
case *syntax.Name:
return p.mkname(expr)
case *syntax.BasicLit:
n := ir.NewBasicLit(p.pos(expr), p.basicLit(expr))
if expr.Kind == syntax.RuneLit {
n.SetType(types.UntypedRune)
}
n.SetDiag(expr.Bad || n.Val().Kind() == constant.Unknown) // avoid follow-on errors if there was a syntax error
return n
case *syntax.CompositeLit:
n := ir.NewCompLitExpr(p.pos(expr), ir.OCOMPLIT, p.typeExpr(expr.Type), nil)
l := p.exprs(expr.ElemList)
for i, e := range l {
l[i] = p.wrapname(expr.ElemList[i], e)
}
n.List = l
base.Pos = p.makeXPos(expr.Rbrace)
return n
case *syntax.KeyValueExpr:
// use position of expr.Key rather than of expr (which has position of ':')
return ir.NewKeyExpr(p.pos(expr.Key), p.expr(expr.Key), p.wrapname(expr.Value, p.expr(expr.Value)))
case *syntax.FuncLit:
return p.funcLit(expr)
case *syntax.ParenExpr:
return ir.NewParenExpr(p.pos(expr), p.expr(expr.X))
case *syntax.SelectorExpr:
// parser.new_dotname
obj := p.expr(expr.X)
if obj.Op() == ir.OPACK {
pack := obj.(*ir.PkgName)
pack.Used = true
return importName(pack.Pkg.Lookup(expr.Sel.Value))
}
n := ir.NewSelectorExpr(base.Pos, ir.OXDOT, obj, p.name(expr.Sel))
n.SetPos(p.pos(expr)) // lineno may have been changed by p.expr(expr.X)
return n
case *syntax.IndexExpr:
return ir.NewIndexExpr(p.pos(expr), p.expr(expr.X), p.expr(expr.Index))
case *syntax.SliceExpr:
op := ir.OSLICE
if expr.Full {
op = ir.OSLICE3
}
x := p.expr(expr.X)
var index [3]ir.Node
for i, n := range &expr.Index {
if n != nil {
index[i] = p.expr(n)
}
}
return ir.NewSliceExpr(p.pos(expr), op, x, index[0], index[1], index[2])
case *syntax.AssertExpr:
return ir.NewTypeAssertExpr(p.pos(expr), p.expr(expr.X), p.typeExpr(expr.Type))
case *syntax.Operation:
if expr.Op == syntax.Add && expr.Y != nil {
return p.sum(expr)
}
x := p.expr(expr.X)
if expr.Y == nil {
pos, op := p.pos(expr), p.unOp(expr.Op)
switch op {
case ir.OADDR:
return typecheck.NodAddrAt(pos, x)
case ir.ODEREF:
return ir.NewStarExpr(pos, x)
}
return ir.NewUnaryExpr(pos, op, x)
}
pos, op, y := p.pos(expr), p.binOp(expr.Op), p.expr(expr.Y)
switch op {
case ir.OANDAND, ir.OOROR:
return ir.NewLogicalExpr(pos, op, x, y)
}
return ir.NewBinaryExpr(pos, op, x, y)
case *syntax.CallExpr:
n := ir.NewCallExpr(p.pos(expr), ir.OCALL, p.expr(expr.Fun), p.exprs(expr.ArgList))
n.IsDDD = expr.HasDots
return n
case *syntax.ArrayType:
var len ir.Node
if expr.Len != nil {
len = p.expr(expr.Len)
}
return ir.NewArrayType(p.pos(expr), len, p.typeExpr(expr.Elem))
case *syntax.SliceType:
return ir.NewSliceType(p.pos(expr), p.typeExpr(expr.Elem))
case *syntax.DotsType:
t := ir.NewSliceType(p.pos(expr), p.typeExpr(expr.Elem))
t.DDD = true
return t
case *syntax.StructType:
return p.structType(expr)
case *syntax.InterfaceType:
return p.interfaceType(expr)
case *syntax.FuncType:
return p.signature(nil, expr)
case *syntax.MapType:
return ir.NewMapType(p.pos(expr),
p.typeExpr(expr.Key), p.typeExpr(expr.Value))
case *syntax.ChanType:
return ir.NewChanType(p.pos(expr),
p.typeExpr(expr.Elem), p.chanDir(expr.Dir))
case *syntax.TypeSwitchGuard:
var tag *ir.Ident
if expr.Lhs != nil {
tag = ir.NewIdent(p.pos(expr.Lhs), p.name(expr.Lhs))
if ir.IsBlank(tag) {
base.Errorf("invalid variable name %v in type switch", tag)
}
}
return ir.NewTypeSwitchGuard(p.pos(expr), tag, p.expr(expr.X))
}
panic("unhandled Expr")
}
// sum efficiently handles very large summation expressions (such as
// in issue #16394). In particular, it avoids left recursion and
// collapses string literals.
func (p *noder) sum(x syntax.Expr) ir.Node {
// While we need to handle long sums with asymptotic
// efficiency, the vast majority of sums are very small: ~95%
// have only 2 or 3 operands, and ~99% of string literals are
// never concatenated.
adds := make([]*syntax.Operation, 0, 2)
for {
add, ok := x.(*syntax.Operation)
if !ok || add.Op != syntax.Add || add.Y == nil {
break
}
adds = append(adds, add)
x = add.X
}
// nstr is the current rightmost string literal in the
// summation (if any), and chunks holds its accumulated
// substrings.
//
// Consider the expression x + "a" + "b" + "c" + y. When we
// reach the string literal "a", we assign nstr to point to
// its corresponding Node and initialize chunks to {"a"}.
// Visiting the subsequent string literals "b" and "c", we
// simply append their values to chunks. Finally, when we
// reach the non-constant operand y, we'll join chunks to form
// "abc" and reassign the "a" string literal's value.
//
// N.B., we need to be careful about named string constants
// (indicated by Sym != nil) because 1) we can't modify their
// value, as doing so would affect other uses of the string
// constant, and 2) they may have types, which we need to
// handle correctly. For now, we avoid these problems by
// treating named string constants the same as non-constant
// operands.
var nstr ir.Node
chunks := make([]string, 0, 1)
n := p.expr(x)
if ir.IsConst(n, constant.String) && n.Sym() == nil {
nstr = n
chunks = append(chunks, ir.StringVal(nstr))
}
for i := len(adds) - 1; i >= 0; i-- {
add := adds[i]
r := p.expr(add.Y)
if ir.IsConst(r, constant.String) && r.Sym() == nil {
if nstr != nil {
// Collapse r into nstr instead of adding to n.
chunks = append(chunks, ir.StringVal(r))
continue
}
nstr = r
chunks = append(chunks, ir.StringVal(nstr))
} else {
if len(chunks) > 1 {
nstr.SetVal(constant.MakeString(strings.Join(chunks, "")))
}
nstr = nil
chunks = chunks[:0]
}
n = ir.NewBinaryExpr(p.pos(add), ir.OADD, n, r)
}
if len(chunks) > 1 {
nstr.SetVal(constant.MakeString(strings.Join(chunks, "")))
}
return n
}
func (p *noder) typeExpr(typ syntax.Expr) ir.Ntype {
// TODO(mdempsky): Be stricter? typecheck should handle errors anyway.
n := p.expr(typ)
if n == nil {
return nil
}
return n.(ir.Ntype)
}
func (p *noder) typeExprOrNil(typ syntax.Expr) ir.Ntype {
if typ != nil {
return p.typeExpr(typ)
}
return nil
}
func (p *noder) chanDir(dir syntax.ChanDir) types.ChanDir {
switch dir {
case 0:
return types.Cboth
case syntax.SendOnly:
return types.Csend
case syntax.RecvOnly:
return types.Crecv
}
panic("unhandled ChanDir")
}
func (p *noder) structType(expr *syntax.StructType) ir.Node {
l := make([]*ir.Field, 0, len(expr.FieldList))
for i, field := range expr.FieldList {
p.setlineno(field)
var n *ir.Field
if field.Name == nil {
n = p.embedded(field.Type)
} else {
n = ir.NewField(p.pos(field), p.name(field.Name), p.typeExpr(field.Type), nil)
}
if i < len(expr.TagList) && expr.TagList[i] != nil {
n.Note = constant.StringVal(p.basicLit(expr.TagList[i]))
}
l = append(l, n)
}
p.setlineno(expr)
return ir.NewStructType(p.pos(expr), l)
}
func (p *noder) interfaceType(expr *syntax.InterfaceType) ir.Node {
l := make([]*ir.Field, 0, len(expr.MethodList))
for _, method := range expr.MethodList {
p.setlineno(method)
var n *ir.Field
if method.Name == nil {
n = ir.NewField(p.pos(method), nil, importName(p.packname(method.Type)).(ir.Ntype), nil)
} else {
mname := p.name(method.Name)
if mname.IsBlank() {
base.Errorf("methods must have a unique non-blank name")
continue
}
sig := p.typeExpr(method.Type).(*ir.FuncType)
sig.Recv = fakeRecv()
n = ir.NewField(p.pos(method), mname, sig, nil)
}
l = append(l, n)
}
return ir.NewInterfaceType(p.pos(expr), l)
}
func (p *noder) packname(expr syntax.Expr) *types.Sym {
switch expr := expr.(type) {
case *syntax.Name:
name := p.name(expr)
if n := oldname(name); n.Name() != nil && n.Name().PkgName != nil {
n.Name().PkgName.Used = true
}
return name
case *syntax.SelectorExpr:
name := p.name(expr.X.(*syntax.Name))
def := ir.AsNode(name.Def)
if def == nil {
base.Errorf("undefined: %v", name)
return name
}
var pkg *types.Pkg
if def.Op() != ir.OPACK {
base.Errorf("%v is not a package", name)
pkg = types.LocalPkg
} else {
def := def.(*ir.PkgName)
def.Used = true
pkg = def.Pkg
}
return pkg.Lookup(expr.Sel.Value)
}
panic(fmt.Sprintf("unexpected packname: %#v", expr))
}
func (p *noder) embedded(typ syntax.Expr) *ir.Field {
op, isStar := typ.(*syntax.Operation)
if isStar {
if op.Op != syntax.Mul || op.Y != nil {
panic("unexpected Operation")
}
typ = op.X
}
sym := p.packname(typ)
n := ir.NewField(p.pos(typ), typecheck.Lookup(sym.Name), importName(sym).(ir.Ntype), nil)
n.Embedded = true
if isStar {
n.Ntype = ir.NewStarExpr(p.pos(op), n.Ntype)
}
return n
}
func (p *noder) stmts(stmts []syntax.Stmt) []ir.Node {
return p.stmtsFall(stmts, false)
}
func (p *noder) stmtsFall(stmts []syntax.Stmt, fallOK bool) []ir.Node {
var nodes []ir.Node
for i, stmt := range stmts {
s := p.stmtFall(stmt, fallOK && i+1 == len(stmts))
if s == nil {
} else if s.Op() == ir.OBLOCK && len(s.(*ir.BlockStmt).List) > 0 {
// Inline non-empty block.
// Empty blocks must be preserved for CheckReturn.
nodes = append(nodes, s.(*ir.BlockStmt).List...)
} else {
nodes = append(nodes, s)
}
}
return nodes
}
func (p *noder) stmt(stmt syntax.Stmt) ir.Node {
return p.stmtFall(stmt, false)
}
func (p *noder) stmtFall(stmt syntax.Stmt, fallOK bool) ir.Node {
p.setlineno(stmt)
switch stmt := stmt.(type) {
case nil, *syntax.EmptyStmt:
return nil
case *syntax.LabeledStmt:
return p.labeledStmt(stmt, fallOK)
case *syntax.BlockStmt:
l := p.blockStmt(stmt)
if len(l) == 0 {
// TODO(mdempsky): Line number?
return ir.NewBlockStmt(base.Pos, nil)
}
return ir.NewBlockStmt(src.NoXPos, l)
case *syntax.ExprStmt:
return p.wrapname(stmt, p.expr(stmt.X))
case *syntax.SendStmt:
return ir.NewSendStmt(p.pos(stmt), p.expr(stmt.Chan), p.expr(stmt.Value))
case *syntax.DeclStmt:
return ir.NewBlockStmt(src.NoXPos, p.decls(stmt.DeclList))
case *syntax.AssignStmt:
if stmt.Rhs == nil {
pos := p.pos(stmt)
n := ir.NewAssignOpStmt(pos, p.binOp(stmt.Op), p.expr(stmt.Lhs), ir.NewBasicLit(pos, one))
n.IncDec = true
return n
}
if stmt.Op != 0 && stmt.Op != syntax.Def {
n := ir.NewAssignOpStmt(p.pos(stmt), p.binOp(stmt.Op), p.expr(stmt.Lhs), p.expr(stmt.Rhs))
return n
}
rhs := p.exprList(stmt.Rhs)
if list, ok := stmt.Lhs.(*syntax.ListExpr); ok && len(list.ElemList) != 1 || len(rhs) != 1 {
n := ir.NewAssignListStmt(p.pos(stmt), ir.OAS2, nil, nil)
n.Def = stmt.Op == syntax.Def
n.Lhs = p.assignList(stmt.Lhs, n, n.Def)
n.Rhs = rhs
return n
}
n := ir.NewAssignStmt(p.pos(stmt), nil, nil)
n.Def = stmt.Op == syntax.Def
n.X = p.assignList(stmt.Lhs, n, n.Def)[0]
n.Y = rhs[0]
return n
case *syntax.BranchStmt:
var op ir.Op
switch stmt.Tok {
case syntax.Break:
op = ir.OBREAK
case syntax.Continue:
op = ir.OCONTINUE
case syntax.Fallthrough:
if !fallOK {
base.Errorf("fallthrough statement out of place")
}
op = ir.OFALL
case syntax.Goto:
op = ir.OGOTO
default:
panic("unhandled BranchStmt")
}
var sym *types.Sym
if stmt.Label != nil {
sym = p.name(stmt.Label)
}
return ir.NewBranchStmt(p.pos(stmt), op, sym)
case *syntax.CallStmt:
var op ir.Op
switch stmt.Tok {
case syntax.Defer:
op = ir.ODEFER
case syntax.Go:
op = ir.OGO
default:
panic("unhandled CallStmt")
}
return ir.NewGoDeferStmt(p.pos(stmt), op, p.expr(stmt.Call))
case *syntax.ReturnStmt:
n := ir.NewReturnStmt(p.pos(stmt), p.exprList(stmt.Results))
if len(n.Results) == 0 && ir.CurFunc != nil {
for _, ln := range ir.CurFunc.Dcl {
if ln.Class == ir.PPARAM {
continue
}
if ln.Class != ir.PPARAMOUT {
break
}
if ln.Sym().Def != ln {
base.Errorf("%s is shadowed during return", ln.Sym().Name)
}
}
}
return n
case *syntax.IfStmt:
return p.ifStmt(stmt)
case *syntax.ForStmt:
return p.forStmt(stmt)
case *syntax.SwitchStmt:
return p.switchStmt(stmt)
case *syntax.SelectStmt:
return p.selectStmt(stmt)
}
panic("unhandled Stmt")
}
func (p *noder) assignList(expr syntax.Expr, defn ir.InitNode, colas bool) []ir.Node {
if !colas {
return p.exprList(expr)
}
var exprs []syntax.Expr
if list, ok := expr.(*syntax.ListExpr); ok {
exprs = list.ElemList
} else {
exprs = []syntax.Expr{expr}
}
res := make([]ir.Node, len(exprs))
seen := make(map[*types.Sym]bool, len(exprs))
newOrErr := false
for i, expr := range exprs {
p.setlineno(expr)
res[i] = ir.BlankNode
name, ok := expr.(*syntax.Name)
if !ok {
p.errorAt(expr.Pos(), "non-name %v on left side of :=", p.expr(expr))
newOrErr = true
continue
}
sym := p.name(name)
if sym.IsBlank() {
continue
}
if seen[sym] {
p.errorAt(expr.Pos(), "%v repeated on left side of :=", sym)
newOrErr = true
continue
}
seen[sym] = true
if sym.Block == types.Block {
res[i] = oldname(sym)
continue
}
newOrErr = true
n := typecheck.NewName(sym)
typecheck.Declare(n, typecheck.DeclContext)
n.Defn = defn
defn.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, n))
res[i] = n
}
if !newOrErr {
base.ErrorfAt(defn.Pos(), "no new variables on left side of :=")
}
return res
}
func (p *noder) blockStmt(stmt *syntax.BlockStmt) []ir.Node {
p.openScope(stmt.Pos())
nodes := p.stmts(stmt.List)
p.closeScope(stmt.Rbrace)
return nodes
}
func (p *noder) ifStmt(stmt *syntax.IfStmt) ir.Node {
p.openScope(stmt.Pos())
init := p.stmt(stmt.Init)
n := ir.NewIfStmt(p.pos(stmt), p.expr(stmt.Cond), p.blockStmt(stmt.Then), nil)
if init != nil {
*n.PtrInit() = []ir.Node{init}
}
if stmt.Else != nil {
e := p.stmt(stmt.Else)
if e.Op() == ir.OBLOCK {
e := e.(*ir.BlockStmt)
n.Else = e.List
} else {
n.Else = []ir.Node{e}
}
}
p.closeAnotherScope()
return n
}
func (p *noder) forStmt(stmt *syntax.ForStmt) ir.Node {
p.openScope(stmt.Pos())
if r, ok := stmt.Init.(*syntax.RangeClause); ok {
if stmt.Cond != nil || stmt.Post != nil {
panic("unexpected RangeClause")
}
n := ir.NewRangeStmt(p.pos(r), nil, nil, p.expr(r.X), nil)
if r.Lhs != nil {
n.Def = r.Def
lhs := p.assignList(r.Lhs, n, n.Def)
n.Key = lhs[0]
if len(lhs) > 1 {
n.Value = lhs[1]
}
}
n.Body = p.blockStmt(stmt.Body)
p.closeAnotherScope()
return n
}
n := ir.NewForStmt(p.pos(stmt), p.stmt(stmt.Init), p.expr(stmt.Cond), p.stmt(stmt.Post), p.blockStmt(stmt.Body))
p.closeAnotherScope()
return n
}
func (p *noder) switchStmt(stmt *syntax.SwitchStmt) ir.Node {
p.openScope(stmt.Pos())
init := p.stmt(stmt.Init)
n := ir.NewSwitchStmt(p.pos(stmt), p.expr(stmt.Tag), nil)
if init != nil {
*n.PtrInit() = []ir.Node{init}
}
var tswitch *ir.TypeSwitchGuard
if l := n.Tag; l != nil && l.Op() == ir.OTYPESW {
tswitch = l.(*ir.TypeSwitchGuard)
}
n.Cases = p.caseClauses(stmt.Body, tswitch, stmt.Rbrace)
p.closeScope(stmt.Rbrace)
return n
}
func (p *noder) caseClauses(clauses []*syntax.CaseClause, tswitch *ir.TypeSwitchGuard, rbrace syntax.Pos) []*ir.CaseClause {
nodes := make([]*ir.CaseClause, 0, len(clauses))
for i, clause := range clauses {
p.setlineno(clause)
if i > 0 {
p.closeScope(clause.Pos())
}
p.openScope(clause.Pos())
n := ir.NewCaseStmt(p.pos(clause), p.exprList(clause.Cases), nil)
if tswitch != nil && tswitch.Tag != nil {
nn := typecheck.NewName(tswitch.Tag.Sym())
typecheck.Declare(nn, typecheck.DeclContext)
n.Var = nn
// keep track of the instances for reporting unused
nn.Defn = tswitch
}
// Trim trailing empty statements. We omit them from
// the Node AST anyway, and it's easier to identify
// out-of-place fallthrough statements without them.
body := clause.Body
for len(body) > 0 {
if _, ok := body[len(body)-1].(*syntax.EmptyStmt); !ok {
break
}
body = body[:len(body)-1]
}
n.Body = p.stmtsFall(body, true)
if l := len(n.Body); l > 0 && n.Body[l-1].Op() == ir.OFALL {
if tswitch != nil {
base.Errorf("cannot fallthrough in type switch")
}
if i+1 == len(clauses) {
base.Errorf("cannot fallthrough final case in switch")
}
}
nodes = append(nodes, n)
}
if len(clauses) > 0 {
p.closeScope(rbrace)
}
return nodes
}
func (p *noder) selectStmt(stmt *syntax.SelectStmt) ir.Node {
return ir.NewSelectStmt(p.pos(stmt), p.commClauses(stmt.Body, stmt.Rbrace))
}
func (p *noder) commClauses(clauses []*syntax.CommClause, rbrace syntax.Pos) []*ir.CommClause {
nodes := make([]*ir.CommClause, len(clauses))
for i, clause := range clauses {
p.setlineno(clause)
if i > 0 {
p.closeScope(clause.Pos())
}
p.openScope(clause.Pos())
nodes[i] = ir.NewCommStmt(p.pos(clause), p.stmt(clause.Comm), p.stmts(clause.Body))
}
if len(clauses) > 0 {
p.closeScope(rbrace)
}
return nodes
}
func (p *noder) labeledStmt(label *syntax.LabeledStmt, fallOK bool) ir.Node {
sym := p.name(label.Label)
lhs := ir.NewLabelStmt(p.pos(label), sym)
var ls ir.Node
if label.Stmt != nil { // TODO(mdempsky): Should always be present.
ls = p.stmtFall(label.Stmt, fallOK)
// Attach label directly to control statement too.
if ls != nil {
switch ls.Op() {
case ir.OFOR:
ls := ls.(*ir.ForStmt)
ls.Label = sym
case ir.ORANGE:
ls := ls.(*ir.RangeStmt)
ls.Label = sym
case ir.OSWITCH:
ls := ls.(*ir.SwitchStmt)
ls.Label = sym
case ir.OSELECT:
ls := ls.(*ir.SelectStmt)
ls.Label = sym
}
}
}
l := []ir.Node{lhs}
if ls != nil {
if ls.Op() == ir.OBLOCK {
ls := ls.(*ir.BlockStmt)
l = append(l, ls.List...)
} else {
l = append(l, ls)
}
}
return ir.NewBlockStmt(src.NoXPos, l)
}
var unOps = [...]ir.Op{
syntax.Recv: ir.ORECV,
syntax.Mul: ir.ODEREF,
syntax.And: ir.OADDR,
syntax.Not: ir.ONOT,
syntax.Xor: ir.OBITNOT,
syntax.Add: ir.OPLUS,
syntax.Sub: ir.ONEG,
}
func (p *noder) unOp(op syntax.Operator) ir.Op {
if uint64(op) >= uint64(len(unOps)) || unOps[op] == 0 {
panic("invalid Operator")
}
return unOps[op]
}
var binOps = [...]ir.Op{
syntax.OrOr: ir.OOROR,
syntax.AndAnd: ir.OANDAND,
syntax.Eql: ir.OEQ,
syntax.Neq: ir.ONE,
syntax.Lss: ir.OLT,
syntax.Leq: ir.OLE,
syntax.Gtr: ir.OGT,
syntax.Geq: ir.OGE,
syntax.Add: ir.OADD,
syntax.Sub: ir.OSUB,
syntax.Or: ir.OOR,
syntax.Xor: ir.OXOR,
syntax.Mul: ir.OMUL,
syntax.Div: ir.ODIV,
syntax.Rem: ir.OMOD,
syntax.And: ir.OAND,
syntax.AndNot: ir.OANDNOT,
syntax.Shl: ir.OLSH,
syntax.Shr: ir.ORSH,
}
func (p *noder) binOp(op syntax.Operator) ir.Op {
if uint64(op) >= uint64(len(binOps)) || binOps[op] == 0 {
panic("invalid Operator")
}
return binOps[op]
}
// checkLangCompat reports an error if the representation of a numeric
// literal is not compatible with the current language version.
func checkLangCompat(lit *syntax.BasicLit) {
s := lit.Value
if len(s) <= 2 || types.AllowsGoVersion(types.LocalPkg, 1, 13) {
return
}
// len(s) > 2
if strings.Contains(s, "_") {
base.ErrorfVers("go1.13", "underscores in numeric literals")
return
}
if s[0] != '0' {
return
}
radix := s[1]
if radix == 'b' || radix == 'B' {
base.ErrorfVers("go1.13", "binary literals")
return
}
if radix == 'o' || radix == 'O' {
base.ErrorfVers("go1.13", "0o/0O-style octal literals")
return
}
if lit.Kind != syntax.IntLit && (radix == 'x' || radix == 'X') {
base.ErrorfVers("go1.13", "hexadecimal floating-point literals")
}
}
func (p *noder) basicLit(lit *syntax.BasicLit) constant.Value {
// We don't use the errors of the conversion routines to determine
// if a literal string is valid because the conversion routines may
// accept a wider syntax than the language permits. Rely on lit.Bad
// instead.
if lit.Bad {
return constant.MakeUnknown()
}
switch lit.Kind {
case syntax.IntLit, syntax.FloatLit, syntax.ImagLit:
checkLangCompat(lit)
// The max. mantissa precision for untyped numeric values
// is 512 bits, or 4048 bits for each of the two integer
// parts of a fraction for floating-point numbers that are
// represented accurately in the go/constant package.
// Constant literals that are longer than this many bits
// are not meaningful; and excessively long constants may
// consume a lot of space and time for a useless conversion.
// Cap constant length with a generous upper limit that also
// allows for separators between all digits.
const limit = 10000
if len(lit.Value) > limit {
p.errorAt(lit.Pos(), "excessively long constant: %s... (%d chars)", lit.Value[:10], len(lit.Value))
return constant.MakeUnknown()
}
}
v := constant.MakeFromLiteral(lit.Value, tokenForLitKind[lit.Kind], 0)
if v.Kind() == constant.Unknown {
// TODO(mdempsky): Better error message?
p.errorAt(lit.Pos(), "malformed constant: %s", lit.Value)
}
return v
}
var tokenForLitKind = [...]token.Token{
syntax.IntLit: token.INT,
syntax.RuneLit: token.CHAR,
syntax.FloatLit: token.FLOAT,
syntax.ImagLit: token.IMAG,
syntax.StringLit: token.STRING,
}
func (p *noder) name(name *syntax.Name) *types.Sym {
return typecheck.Lookup(name.Value)
}
func (p *noder) mkname(name *syntax.Name) ir.Node {
// TODO(mdempsky): Set line number?
return mkname(p.name(name))
}
func (p *noder) wrapname(n syntax.Node, x ir.Node) ir.Node {
// These nodes do not carry line numbers.
// Introduce a wrapper node to give them the correct line.
switch x.Op() {
case ir.OTYPE, ir.OLITERAL:
if x.Sym() == nil {
break
}
fallthrough
case ir.ONAME, ir.ONONAME, ir.OPACK:
p := ir.NewParenExpr(p.pos(n), x)
p.SetImplicit(true)
return p
}
return x
}
func (p *noder) setlineno(n syntax.Node) {
if n != nil {
base.Pos = p.pos(n)
}
}
// error is called concurrently if files are parsed concurrently.
func (p *noder) error(err error) {
p.err <- err.(syntax.Error)
}
// pragmas that are allowed in the std lib, but don't have
// a syntax.Pragma value (see lex.go) associated with them.
var allowedStdPragmas = map[string]bool{
"go:cgo_export_static": true,
"go:cgo_export_dynamic": true,
"go:cgo_import_static": true,
"go:cgo_import_dynamic": true,
"go:cgo_ldflag": true,
"go:cgo_dynamic_linker": true,
"go:embed": true,
"go:generate": true,
}
// *pragmas is the value stored in a syntax.pragmas during parsing.
type pragmas struct {
Flag ir.PragmaFlag // collected bits
Pos []pragmaPos // position of each individual flag
Embeds []pragmaEmbed
}
type pragmaPos struct {
Flag ir.PragmaFlag
Pos syntax.Pos
}
type pragmaEmbed struct {
Pos syntax.Pos
Patterns []string
}
func (p *noder) checkUnused(pragma *pragmas) {
for _, pos := range pragma.Pos {
if pos.Flag&pragma.Flag != 0 {
p.errorAt(pos.Pos, "misplaced compiler directive")
}
}
if len(pragma.Embeds) > 0 {
for _, e := range pragma.Embeds {
p.errorAt(e.Pos, "misplaced go:embed directive")
}
}
}
func (p *noder) checkUnusedDuringParse(pragma *pragmas) {
for _, pos := range pragma.Pos {
if pos.Flag&pragma.Flag != 0 {
p.error(syntax.Error{Pos: pos.Pos, Msg: "misplaced compiler directive"})
}
}
if len(pragma.Embeds) > 0 {
for _, e := range pragma.Embeds {
p.error(syntax.Error{Pos: e.Pos, Msg: "misplaced go:embed directive"})
}
}
}
// pragma is called concurrently if files are parsed concurrently.
func (p *noder) pragma(pos syntax.Pos, blankLine bool, text string, old syntax.Pragma) syntax.Pragma {
pragma, _ := old.(*pragmas)
if pragma == nil {
pragma = new(pragmas)
}
if text == "" {
// unused pragma; only called with old != nil.
p.checkUnusedDuringParse(pragma)
return nil
}
if strings.HasPrefix(text, "line ") {
// line directives are handled by syntax package
panic("unreachable")
}
if !blankLine {
// directive must be on line by itself
p.error(syntax.Error{Pos: pos, Msg: "misplaced compiler directive"})
return pragma
}
switch {
case strings.HasPrefix(text, "go:linkname "):
f := strings.Fields(text)
if !(2 <= len(f) && len(f) <= 3) {
p.error(syntax.Error{Pos: pos, Msg: "usage: //go:linkname localname [linkname]"})
break
}
// The second argument is optional. If omitted, we use
// the default object symbol name for this and
// linkname only serves to mark this symbol as
// something that may be referenced via the object
// symbol name from another package.
var target string
if len(f) == 3 {
target = f[2]
} else if base.Ctxt.Pkgpath != "" {
// Use the default object symbol name if the
// user didn't provide one.
target = objabi.PathToPrefix(base.Ctxt.Pkgpath) + "." + f[1]
} else {
p.error(syntax.Error{Pos: pos, Msg: "//go:linkname requires linkname argument or -p compiler flag"})
break
}
p.linknames = append(p.linknames, linkname{pos, f[1], target})
case text == "go:embed", strings.HasPrefix(text, "go:embed "):
args, err := parseGoEmbed(text[len("go:embed"):])
if err != nil {
p.error(syntax.Error{Pos: pos, Msg: err.Error()})
}
if len(args) == 0 {
p.error(syntax.Error{Pos: pos, Msg: "usage: //go:embed pattern..."})
break
}
pragma.Embeds = append(pragma.Embeds, pragmaEmbed{pos, args})
case strings.HasPrefix(text, "go:cgo_import_dynamic "):
// This is permitted for general use because Solaris
// code relies on it in golang.org/x/sys/unix and others.
fields := pragmaFields(text)
if len(fields) >= 4 {
lib := strings.Trim(fields[3], `"`)
if lib != "" && !safeArg(lib) && !isCgoGeneratedFile(pos) {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("invalid library name %q in cgo_import_dynamic directive", lib)})
}
p.pragcgo(pos, text)
pragma.Flag |= pragmaFlag("go:cgo_import_dynamic")
break
}
fallthrough
case strings.HasPrefix(text, "go:cgo_"):
// For security, we disallow //go:cgo_* directives other
// than cgo_import_dynamic outside cgo-generated files.
// Exception: they are allowed in the standard library, for runtime and syscall.
if !isCgoGeneratedFile(pos) && !base.Flag.Std {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in cgo-generated code", text)})
}
p.pragcgo(pos, text)
fallthrough // because of //go:cgo_unsafe_args
default:
verb := text
if i := strings.Index(text, " "); i >= 0 {
verb = verb[:i]
}
flag := pragmaFlag(verb)
const runtimePragmas = ir.Systemstack | ir.Nowritebarrier | ir.Nowritebarrierrec | ir.Yeswritebarrierrec
if !base.Flag.CompilingRuntime && flag&runtimePragmas != 0 {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in runtime", verb)})
}
if flag == 0 && !allowedStdPragmas[verb] && base.Flag.Std {
p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s is not allowed in the standard library", verb)})
}
pragma.Flag |= flag
pragma.Pos = append(pragma.Pos, pragmaPos{flag, pos})
}
return pragma
}
// isCgoGeneratedFile reports whether pos is in a file
// generated by cgo, which is to say a file with name
// beginning with "_cgo_". Such files are allowed to
// contain cgo directives, and for security reasons
// (primarily misuse of linker flags), other files are not.
// See golang.org/issue/23672.
func isCgoGeneratedFile(pos syntax.Pos) bool {
return strings.HasPrefix(filepath.Base(filepath.Clean(fileh(pos.Base().Filename()))), "_cgo_")
}
// safeArg reports whether arg is a "safe" command-line argument,
// meaning that when it appears in a command-line, it probably
// doesn't have some special meaning other than its own name.
// This is copied from SafeArg in cmd/go/internal/load/pkg.go.
func safeArg(name string) bool {
if name == "" {
return false
}
c := name[0]
return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' || c == '.' || c == '_' || c == '/' || c >= utf8.RuneSelf
}
func mkname(sym *types.Sym) ir.Node {
n := oldname(sym)
if n.Name() != nil && n.Name().PkgName != nil {
n.Name().PkgName.Used = true
}
return n
}
// parseGoEmbed parses the text following "//go:embed" to extract the glob patterns.
// It accepts unquoted space-separated patterns as well as double-quoted and back-quoted Go strings.
// go/build/read.go also processes these strings and contains similar logic.
func parseGoEmbed(args string) ([]string, error) {
var list []string
for args = strings.TrimSpace(args); args != ""; args = strings.TrimSpace(args) {
var path string
Switch:
switch args[0] {
default:
i := len(args)
for j, c := range args {
if unicode.IsSpace(c) {
i = j
break
}
}
path = args[:i]
args = args[i:]
case '`':
i := strings.Index(args[1:], "`")
if i < 0 {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args)
}
path = args[1 : 1+i]
args = args[1+i+1:]
case '"':
i := 1
for ; i < len(args); i++ {
if args[i] == '\\' {
i++
continue
}
if args[i] == '"' {
q, err := strconv.Unquote(args[:i+1])
if err != nil {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args[:i+1])
}
path = q
args = args[i+1:]
break Switch
}
}
if i >= len(args) {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args)
}
}
if args != "" {
r, _ := utf8.DecodeRuneInString(args)
if !unicode.IsSpace(r) {
return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args)
}
}
list = append(list, path)
}
return list, nil
}
func fakeRecv() *ir.Field {
return ir.NewField(base.Pos, nil, nil, types.FakeRecvType())
}
func (p *noder) funcLit(expr *syntax.FuncLit) ir.Node {
xtype := p.typeExpr(expr.Type)
fn := ir.NewFunc(p.pos(expr))
fn.SetIsHiddenClosure(ir.CurFunc != nil)
fn.Nname = ir.NewNameAt(p.pos(expr), ir.BlankNode.Sym()) // filled in by tcClosure
fn.Nname.Func = fn
fn.Nname.Ntype = xtype
fn.Nname.Defn = fn
clo := ir.NewClosureExpr(p.pos(expr), fn)
fn.OClosure = clo
p.funcBody(fn, expr.Body)
ir.FinishCaptureNames(base.Pos, ir.CurFunc, fn)
return clo
}
// A function named init is a special case.
// It is called by the initialization before main is run.
// To make it unique within a package and also uncallable,
// the name, normally "pkg.init", is altered to "pkg.init.0".
var renameinitgen int
func renameinit() *types.Sym {
s := typecheck.LookupNum("init.", renameinitgen)
renameinitgen++
return s
}
// oldname returns the Node that declares symbol s in the current scope.
// If no such Node currently exists, an ONONAME Node is returned instead.
// Automatically creates a new closure variable if the referenced symbol was
// declared in a different (containing) function.
func oldname(s *types.Sym) ir.Node {
if s.Pkg != types.LocalPkg {
return ir.NewIdent(base.Pos, s)
}
n := ir.AsNode(s.Def)
if n == nil {
// Maybe a top-level declaration will come along later to
// define s. resolve will check s.Def again once all input
// source has been processed.
return ir.NewIdent(base.Pos, s)
}
if n, ok := n.(*ir.Name); ok {
// TODO(rsc): If there is an outer variable x and we
// are parsing x := 5 inside the closure, until we get to
// the := it looks like a reference to the outer x so we'll
// make x a closure variable unnecessarily.
return ir.CaptureName(base.Pos, ir.CurFunc, n)
}
return n
}
func varEmbed(makeXPos func(syntax.Pos) src.XPos, name *ir.Name, decl *syntax.VarDecl, pragma *pragmas, haveEmbed bool) {
if pragma.Embeds == nil {
return
}
pragmaEmbeds := pragma.Embeds
pragma.Embeds = nil
pos := makeXPos(pragmaEmbeds[0].Pos)
if !haveEmbed {
base.ErrorfAt(pos, "go:embed only allowed in Go files that import \"embed\"")
return
}
if len(decl.NameList) > 1 {
base.ErrorfAt(pos, "go:embed cannot apply to multiple vars")
return
}
if decl.Values != nil {
base.ErrorfAt(pos, "go:embed cannot apply to var with initializer")
return
}
if decl.Type == nil {
// Should not happen, since Values == nil now.
base.ErrorfAt(pos, "go:embed cannot apply to var without type")
return
}
if typecheck.DeclContext != ir.PEXTERN {
base.ErrorfAt(pos, "go:embed cannot apply to var inside func")
return
}
var embeds []ir.Embed
for _, e := range pragmaEmbeds {
embeds = append(embeds, ir.Embed{Pos: makeXPos(e.Pos), Patterns: e.Patterns})
}
typecheck.Target.Embeds = append(typecheck.Target.Embeds, name)
name.Embed = &embeds
}