go/src/cmd/compile/internal/noder/helpers.go
Dan Scales 70d54df4f6 cmd/compile: getting more built-ins to work with generics
For Builtin ops, we currently stay with using the old
typechecker to transform the call to a more specific expression
and possibly use more specific ops. However, for a bunch of the
ops, we delay calling the old typechecker if any of the args have
type params, for a variety of reasons.

In the near future, we will start creating separate functions that do
the same transformations as the old typechecker for calls, builtins,
indexing, comparisons, etc. These functions can then be called at noder
time for nodes with no type params, and at stenciling time for nodes
with type params.

Remove unnecessary calls to types1 typechecker for most kinds of
statements (still need it for SendStmt, AssignStmt, ReturnStmt, and
SelectStmt). In particular, we don't need it for RangeStmt, and this
avoids some complaints by the types1 typechecker on generic code.

Other small changes:
 - Fix check on whether to delay calling types1-typechecker on type
   conversions. Should check if HasTParam is true, rather than if the
   type is directly a TYPEPARAM.

 - Don't call types1-typechecker on an indexing operation if the left
   operand has a typeparam in its type and is not obviously a TMAP,
   TSLICE, or TARRAY. As above, we will eventually have to create a new
   function that can do the required transformations (for complicated
   cases) at noder time or stenciling time.

 - Copy n.BuiltinOp in subster.node()

 - The complex arithmetic example in absdiff.go now works.

 - Added new tests double.go and append.go

 - Added new example with a new() call in settable.go

Change-Id: I8f377afb6126cab1826bd3c2732aa8cdf1f7e0b4
Reviewed-on: https://go-review.googlesource.com/c/go/+/301951
Run-TryBot: Dan Scales <danscales@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Trust: Dan Scales <danscales@google.com>
Trust: Robert Griesemer <gri@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-17 16:53:00 +00:00

301 lines
8.6 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// Helpers for constructing typed IR nodes.
//
// TODO(mdempsky): Move into their own package so they can be easily
// reused by iimport and frontend optimizations.
//
// TODO(mdempsky): Update to consistently return already typechecked
// results, rather than leaving the caller responsible for using
// typecheck.Expr or typecheck.Stmt.
type ImplicitNode interface {
ir.Node
SetImplicit(x bool)
}
// Implicit returns n after marking it as Implicit.
func Implicit(n ImplicitNode) ImplicitNode {
n.SetImplicit(true)
return n
}
// typed returns n after setting its type to typ.
func typed(typ *types.Type, n ir.Node) ir.Node {
n.SetType(typ)
n.SetTypecheck(1)
return n
}
// Values
func Const(pos src.XPos, typ *types.Type, val constant.Value) ir.Node {
return typed(typ, ir.NewBasicLit(pos, val))
}
func Nil(pos src.XPos, typ *types.Type) ir.Node {
return typed(typ, ir.NewNilExpr(pos))
}
// Expressions
func Addr(pos src.XPos, x ir.Node) *ir.AddrExpr {
n := typecheck.NodAddrAt(pos, x)
switch x.Op() {
case ir.OARRAYLIT, ir.OMAPLIT, ir.OSLICELIT, ir.OSTRUCTLIT:
n.SetOp(ir.OPTRLIT)
}
typed(types.NewPtr(x.Type()), n)
return n
}
func Assert(pos src.XPos, x ir.Node, typ *types.Type) ir.Node {
return typed(typ, ir.NewTypeAssertExpr(pos, x, nil))
}
func Binary(pos src.XPos, op ir.Op, x, y ir.Node) ir.Node {
switch op {
case ir.OANDAND, ir.OOROR:
return typed(x.Type(), ir.NewLogicalExpr(pos, op, x, y))
case ir.OADD:
if x.Type().IsString() {
// TODO(mdempsky): Construct OADDSTR directly.
return typecheck.Expr(ir.NewBinaryExpr(pos, op, x, y))
}
fallthrough
default:
return typed(x.Type(), ir.NewBinaryExpr(pos, op, x, y))
}
}
func Call(pos src.XPos, typ *types.Type, fun ir.Node, args []ir.Node, dots bool) ir.Node {
n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
n.IsDDD = dots
if fun.Op() == ir.OTYPE {
// Actually a type conversion, not a function call.
if fun.Type().HasTParam() || args[0].Type().HasTParam() {
// For type params, don't typecheck until we actually know
// the type.
return typed(typ, n)
}
return typecheck.Expr(n)
}
if fun, ok := fun.(*ir.Name); ok && fun.BuiltinOp != 0 {
// For Builtin ops, we currently stay with using the old
// typechecker to transform the call to a more specific expression
// and possibly use more specific ops. However, for a bunch of the
// ops, we delay doing the old typechecker if any of the args have
// type params, for a variety of reasons:
//
// OMAKE: hard to choose specific ops OMAKESLICE, etc. until arg type is known
// OREAL/OIMAG: can't determine type float32/float64 until arg type know
// OLEN/OCAP: old typechecker will complain if arg is not obviously a slice/array.
// OAPPEND: old typechecker will complain if arg is not obviously slice, etc.
//
// We will eventually break out the transforming functionality
// needed for builtin's, and call it here or during stenciling, as
// appropriate.
switch fun.BuiltinOp {
case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OLEN, ir.OCAP, ir.OAPPEND:
hasTParam := false
for _, arg := range args {
if arg.Type().HasTParam() {
hasTParam = true
break
}
}
if hasTParam {
return typed(typ, n)
}
}
switch fun.BuiltinOp {
case ir.OCLOSE, ir.ODELETE, ir.OPANIC, ir.OPRINT, ir.OPRINTN:
return typecheck.Stmt(n)
default:
return typecheck.Expr(n)
}
}
// Add information, now that we know that fun is actually being called.
switch fun := fun.(type) {
case *ir.ClosureExpr:
fun.Func.SetClosureCalled(true)
case *ir.SelectorExpr:
if fun.Op() == ir.OCALLPART {
op := ir.ODOTMETH
if fun.X.Type().IsInterface() {
op = ir.ODOTINTER
}
fun.SetOp(op)
// Set the type to include the receiver, since that's what
// later parts of the compiler expect
fun.SetType(fun.Selection.Type)
}
}
if fun.Op() == ir.OXDOT {
if !fun.(*ir.SelectorExpr).X.Type().HasTParam() {
base.FatalfAt(pos, "Expecting type param receiver in %v", fun)
}
// For methods called in a generic function, don't do any extra
// transformations. We will do those later when we create the
// instantiated function and have the correct receiver type.
typed(typ, n)
return n
}
if fun.Op() != ir.OFUNCINST {
// If no type params, do normal typechecking, since we're
// still missing some things done by tcCall (mainly
// typecheckaste/assignconvfn - implementing assignability of args
// to params). This will convert OCALL to OCALLFUNC.
typecheck.Call(n)
return n
}
// Leave the op as OCALL, which indicates the call still needs typechecking.
n.Use = ir.CallUseExpr
if fun.Type().NumResults() == 0 {
n.Use = ir.CallUseStmt
}
typed(typ, n)
return n
}
func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) ir.Node {
n := ir.NewBinaryExpr(pos, op, x, y)
if !types.Identical(x.Type(), y.Type()) {
// TODO(mdempsky): Handle subtleties of constructing mixed-typed comparisons.
n = typecheck.Expr(n).(*ir.BinaryExpr)
}
return typed(typ, n)
}
func Deref(pos src.XPos, x ir.Node) *ir.StarExpr {
n := ir.NewStarExpr(pos, x)
typed(x.Type().Elem(), n)
return n
}
func DotField(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
op, typ := ir.ODOT, x.Type()
if typ.IsPtr() {
op, typ = ir.ODOTPTR, typ.Elem()
}
if !typ.IsStruct() {
base.FatalfAt(pos, "DotField of non-struct: %L", x)
}
// TODO(mdempsky): This is the backend's responsibility.
types.CalcSize(typ)
field := typ.Field(index)
return dot(pos, field.Type, op, x, field)
}
func DotMethod(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
method := method(x.Type(), index)
// Method value.
typ := typecheck.NewMethodType(method.Type, nil)
return dot(pos, typ, ir.OCALLPART, x, method)
}
// MethodExpr returns a OMETHEXPR node with the indicated index into the methods
// of typ. The receiver type is set from recv, which is different from typ if the
// method was accessed via embedded fields. Similarly, the X value of the
// ir.SelectorExpr is recv, the original OTYPE node before passing through the
// embedded fields.
func MethodExpr(pos src.XPos, recv ir.Node, embed *types.Type, index int) *ir.SelectorExpr {
method := method(embed, index)
typ := typecheck.NewMethodType(method.Type, recv.Type())
// The method expression T.m requires a wrapper when T
// is different from m's declared receiver type. We
// normally generate these wrappers while writing out
// runtime type descriptors, which is always done for
// types declared at package scope. However, we need
// to make sure to generate wrappers for anonymous
// receiver types too.
if recv.Sym() == nil {
typecheck.NeedRuntimeType(recv.Type())
}
return dot(pos, typ, ir.OMETHEXPR, recv, method)
}
func dot(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node, selection *types.Field) *ir.SelectorExpr {
n := ir.NewSelectorExpr(pos, op, x, selection.Sym)
n.Selection = selection
typed(typ, n)
return n
}
// TODO(mdempsky): Move to package types.
func method(typ *types.Type, index int) *types.Field {
if typ.IsInterface() {
return typ.Field(index)
}
return types.ReceiverBaseType(typ).Methods().Index(index)
}
func Index(pos src.XPos, typ *types.Type, x, index ir.Node) ir.Node {
n := ir.NewIndexExpr(pos, x, index)
// TODO(danscales): Temporary fix. Need to separate out the
// transformations done by the old typechecker (in tcIndex()), to be
// called here or after stenciling.
if x.Type().HasTParam() && x.Type().Kind() != types.TMAP &&
x.Type().Kind() != types.TSLICE && x.Type().Kind() != types.TARRAY {
// Old typechecker will complain if arg is not obviously a slice/array/map.
typed(typ, n)
return n
}
return typecheck.Expr(n)
}
func Slice(pos src.XPos, x, low, high, max ir.Node) ir.Node {
op := ir.OSLICE
if max != nil {
op = ir.OSLICE3
}
// TODO(mdempsky): Avoid typecheck.Expr.
return typecheck.Expr(ir.NewSliceExpr(pos, op, x, low, high, max))
}
func Unary(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
switch op {
case ir.OADDR:
return Addr(pos, x)
case ir.ODEREF:
return Deref(pos, x)
}
typ := x.Type()
if op == ir.ORECV {
typ = typ.Elem()
}
return typed(typ, ir.NewUnaryExpr(pos, op, x))
}
// Statements
var one = constant.MakeInt64(1)
func IncDec(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
x = typecheck.AssignExpr(x)
return ir.NewAssignOpStmt(pos, op, x, typecheck.DefaultLit(ir.NewBasicLit(pos, one), x.Type()))
}