go/src/cmd/compile/internal/gc/esc.go
Matthew Dempsky bba1ac4fd9 cmd/compile: stop adding implicit OKEY nodes
Keys are uncommon in array and slice literals, and normalizing
OARRAYLIT and OSLICELIT nodes to always use OKEY ends up not reducing
complexity much. Instead, only create OKEY nodes to represent explicit
keys, and recalculate implicit keys when/where necessary.

Fixes #15350.

name       old time/op     new time/op     delta
Template       299ms ± 9%      299ms ±12%    ~           (p=0.694 n=28+30)
Unicode        165ms ± 7%      162ms ± 9%    ~           (p=0.084 n=27+27)
GoTypes        950ms ± 9%      963ms ± 5%    ~           (p=0.301 n=30+29)
Compiler       4.23s ± 7%      4.17s ± 7%    ~           (p=0.057 n=29+27)

name       old user-ns/op  new user-ns/op  delta
Template        389M ±15%       400M ±12%    ~           (p=0.202 n=30+29)
Unicode         246M ±21%       232M ±22%  -5.76%        (p=0.006 n=28+29)
GoTypes        1.34G ± 8%      1.34G ± 7%    ~           (p=0.775 n=28+30)
Compiler       5.91G ± 6%      5.87G ± 7%    ~           (p=0.298 n=28+29)

name       old alloc/op    new alloc/op    delta
Template      41.2MB ± 0%     41.2MB ± 0%    ~           (p=0.085 n=30+30)
Unicode       34.0MB ± 0%     31.5MB ± 0%  -7.28%        (p=0.000 n=30+29)
GoTypes        121MB ± 0%      121MB ± 0%    ~           (p=0.657 n=30+30)
Compiler       511MB ± 0%      511MB ± 0%  -0.01%        (p=0.001 n=29+29)

name       old allocs/op   new allocs/op   delta
Template        390k ± 0%       390k ± 0%    ~           (p=0.225 n=30+29)
Unicode         318k ± 0%       293k ± 0%  -8.03%        (p=0.000 n=30+29)
GoTypes        1.16M ± 0%      1.16M ± 0%    ~           (p=0.745 n=30+30)
Compiler       4.35M ± 0%      4.35M ± 0%    ~           (p=0.105 n=30+30)

Change-Id: I6310739a0bfdb54f1ab8a460b2c03615ad1ff5bc
Reviewed-on: https://go-review.googlesource.com/32221
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2016-10-27 22:55:30 +00:00

2114 lines
60 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"fmt"
"strconv"
"strings"
)
// Run analysis on minimal sets of mutually recursive functions
// or single non-recursive functions, bottom up.
//
// Finding these sets is finding strongly connected components
// by reverse topological order in the static call graph.
// The algorithm (known as Tarjan's algorithm) for doing that is taken from
// Sedgewick, Algorithms, Second Edition, p. 482, with two adaptations.
//
// First, a hidden closure function (n.Func.IsHiddenClosure) cannot be the
// root of a connected component. Refusing to use it as a root
// forces it into the component of the function in which it appears.
// This is more convenient for escape analysis.
//
// Second, each function becomes two virtual nodes in the graph,
// with numbers n and n+1. We record the function's node number as n
// but search from node n+1. If the search tells us that the component
// number (min) is n+1, we know that this is a trivial component: one function
// plus its closures. If the search tells us that the component number is
// n, then there was a path from node n+1 back to node n, meaning that
// the function set is mutually recursive. The escape analysis can be
// more precise when analyzing a single non-recursive function than
// when analyzing a set of mutually recursive functions.
type bottomUpVisitor struct {
analyze func([]*Node, bool)
visitgen uint32
nodeID map[*Node]uint32
stack []*Node
}
// visitBottomUp invokes analyze on the ODCLFUNC nodes listed in list.
// It calls analyze with successive groups of functions, working from
// the bottom of the call graph upward. Each time analyze is called with
// a list of functions, every function on that list only calls other functions
// on the list or functions that have been passed in previous invocations of
// analyze. Closures appear in the same list as their outer functions.
// The lists are as short as possible while preserving those requirements.
// (In a typical program, many invocations of analyze will be passed just
// a single function.) The boolean argument 'recursive' passed to analyze
// specifies whether the functions on the list are mutually recursive.
// If recursive is false, the list consists of only a single function and its closures.
// If recursive is true, the list may still contain only a single function,
// if that function is itself recursive.
func visitBottomUp(list []*Node, analyze func(list []*Node, recursive bool)) {
var v bottomUpVisitor
v.analyze = analyze
v.nodeID = make(map[*Node]uint32)
for _, n := range list {
if n.Op == ODCLFUNC && !n.Func.IsHiddenClosure {
v.visit(n)
}
}
}
func (v *bottomUpVisitor) visit(n *Node) uint32 {
if id := v.nodeID[n]; id > 0 {
// already visited
return id
}
v.visitgen++
id := v.visitgen
v.nodeID[n] = id
v.visitgen++
min := v.visitgen
v.stack = append(v.stack, n)
min = v.visitcodelist(n.Nbody, min)
if (min == id || min == id+1) && !n.Func.IsHiddenClosure {
// This node is the root of a strongly connected component.
// The original min passed to visitcodelist was v.nodeID[n]+1.
// If visitcodelist found its way back to v.nodeID[n], then this
// block is a set of mutually recursive functions.
// Otherwise it's just a lone function that does not recurse.
recursive := min == id
// Remove connected component from stack.
// Mark walkgen so that future visits return a large number
// so as not to affect the caller's min.
var i int
for i = len(v.stack) - 1; i >= 0; i-- {
x := v.stack[i]
if x == n {
break
}
v.nodeID[x] = ^uint32(0)
}
v.nodeID[n] = ^uint32(0)
block := v.stack[i:]
// Run escape analysis on this set of functions.
v.stack = v.stack[:i]
v.analyze(block, recursive)
}
return min
}
func (v *bottomUpVisitor) visitcodelist(l Nodes, min uint32) uint32 {
for _, n := range l.Slice() {
min = v.visitcode(n, min)
}
return min
}
func (v *bottomUpVisitor) visitcode(n *Node, min uint32) uint32 {
if n == nil {
return min
}
min = v.visitcodelist(n.Ninit, min)
min = v.visitcode(n.Left, min)
min = v.visitcode(n.Right, min)
min = v.visitcodelist(n.List, min)
min = v.visitcodelist(n.Nbody, min)
min = v.visitcodelist(n.Rlist, min)
if n.Op == OCALLFUNC || n.Op == OCALLMETH {
fn := n.Left
if n.Op == OCALLMETH {
fn = n.Left.Sym.Def
}
if fn != nil && fn.Op == ONAME && fn.Class == PFUNC && fn.Name.Defn != nil {
m := v.visit(fn.Name.Defn)
if m < min {
min = m
}
}
}
if n.Op == OCLOSURE {
m := v.visit(n.Func.Closure)
if m < min {
min = m
}
}
return min
}
// Escape analysis.
// An escape analysis pass for a set of functions.
// The analysis assumes that closures and the functions in which they
// appear are analyzed together, so that the aliasing between their
// variables can be modeled more precisely.
//
// First escfunc, esc and escassign recurse over the ast of each
// function to dig out flow(dst,src) edges between any
// pointer-containing nodes and store them in e.nodeEscState(dst).Flowsrc. For
// variables assigned to a variable in an outer scope or used as a
// return value, they store a flow(theSink, src) edge to a fake node
// 'the Sink'. For variables referenced in closures, an edge
// flow(closure, &var) is recorded and the flow of a closure itself to
// an outer scope is tracked the same way as other variables.
//
// Then escflood walks the graph starting at theSink and tags all
// variables of it can reach an & node as escaping and all function
// parameters it can reach as leaking.
//
// If a value's address is taken but the address does not escape,
// then the value can stay on the stack. If the value new(T) does
// not escape, then new(T) can be rewritten into a stack allocation.
// The same is true of slice literals.
//
// If optimizations are disabled (-N), this code is not used.
// Instead, the compiler assumes that any value whose address
// is taken without being immediately dereferenced
// needs to be moved to the heap, and new(T) and slice
// literals are always real allocations.
func escapes(all []*Node) {
visitBottomUp(all, escAnalyze)
}
const (
EscFuncUnknown = 0 + iota
EscFuncPlanned
EscFuncStarted
EscFuncTagged
)
// There appear to be some loops in the escape graph, causing
// arbitrary recursion into deeper and deeper levels.
// Cut this off safely by making minLevel sticky: once you
// get that deep, you cannot go down any further but you also
// cannot go up any further. This is a conservative fix.
// Making minLevel smaller (more negative) would handle more
// complex chains of indirections followed by address-of operations,
// at the cost of repeating the traversal once for each additional
// allowed level when a loop is encountered. Using -2 suffices to
// pass all the tests we have written so far, which we assume matches
// the level of complexity we want the escape analysis code to handle.
const (
MinLevel = -2
)
// A Level encodes the reference state and context applied to
// (stack, heap) allocated memory.
//
// value is the overall sum of *(1) and &(-1) operations encountered
// along a path from a destination (sink, return value) to a source
// (allocation, parameter).
//
// suffixValue is the maximum-copy-started-suffix-level applied to a sink.
// For example:
// sink = x.left.left --> level=2, x is dereferenced twice and does not escape to sink.
// sink = &Node{x} --> level=-1, x is accessible from sink via one "address of"
// sink = &Node{&Node{x}} --> level=-2, x is accessible from sink via two "address of"
// sink = &Node{&Node{x.left}} --> level=-1, but x is NOT accessible from sink because it was indirected and then copied.
// (The copy operations are sometimes implicit in the source code; in this case,
// value of x.left was copied into a field of a newly allocated Node)
//
// There's one of these for each Node, and the integer values
// rarely exceed even what can be stored in 4 bits, never mind 8.
type Level struct {
value, suffixValue int8
}
func (l Level) int() int {
return int(l.value)
}
func levelFrom(i int) Level {
if i <= MinLevel {
return Level{value: MinLevel}
}
return Level{value: int8(i)}
}
func satInc8(x int8) int8 {
if x == 127 {
return 127
}
return x + 1
}
func min8(a, b int8) int8 {
if a < b {
return a
}
return b
}
func max8(a, b int8) int8 {
if a > b {
return a
}
return b
}
// inc returns the level l + 1, representing the effect of an indirect (*) operation.
func (l Level) inc() Level {
if l.value <= MinLevel {
return Level{value: MinLevel}
}
return Level{value: satInc8(l.value), suffixValue: satInc8(l.suffixValue)}
}
// dec returns the level l - 1, representing the effect of an address-of (&) operation.
func (l Level) dec() Level {
if l.value <= MinLevel {
return Level{value: MinLevel}
}
return Level{value: l.value - 1, suffixValue: l.suffixValue - 1}
}
// copy returns the level for a copy of a value with level l.
func (l Level) copy() Level {
return Level{value: l.value, suffixValue: max8(l.suffixValue, 0)}
}
func (l1 Level) min(l2 Level) Level {
return Level{
value: min8(l1.value, l2.value),
suffixValue: min8(l1.suffixValue, l2.suffixValue)}
}
// guaranteedDereference returns the number of dereferences
// applied to a pointer before addresses are taken/generated.
// This is the maximum level computed from path suffixes starting
// with copies where paths flow from destination to source.
func (l Level) guaranteedDereference() int {
return int(l.suffixValue)
}
// An EscStep documents one step in the path from memory
// that is heap allocated to the (alleged) reason for the
// heap allocation.
type EscStep struct {
src, dst *Node // the endpoints of this edge in the escape-to-heap chain.
where *Node // sometimes the endpoints don't match source locations; set 'where' to make that right
parent *EscStep // used in flood to record path
why string // explanation for this step in the escape-to-heap chain
busy bool // used in prevent to snip cycles.
}
type NodeEscState struct {
Curfn *Node
Flowsrc []EscStep // flow(this, src)
Retval Nodes // on OCALLxxx, list of dummy return values
Loopdepth int32 // -1: global, 0: return variables, 1:function top level, increased inside function for every loop or label to mark scopes
Level Level
Walkgen uint32
Maxextraloopdepth int32
}
func (e *EscState) nodeEscState(n *Node) *NodeEscState {
if nE, ok := n.Opt().(*NodeEscState); ok {
return nE
}
if n.Opt() != nil {
Fatalf("nodeEscState: opt in use (%T)", n.Opt())
}
nE := &NodeEscState{
Curfn: Curfn,
}
n.SetOpt(nE)
e.opts = append(e.opts, n)
return nE
}
func (e *EscState) track(n *Node) {
if Curfn == nil {
Fatalf("EscState.track: Curfn nil")
}
n.Esc = EscNone // until proven otherwise
nE := e.nodeEscState(n)
nE.Loopdepth = e.loopdepth
e.noesc = append(e.noesc, n)
}
// Escape constants are numbered in order of increasing "escapiness"
// to help make inferences be monotonic. With the exception of
// EscNever which is sticky, eX < eY means that eY is more exposed
// than eX, and hence replaces it in a conservative analysis.
const (
EscUnknown = iota
EscNone // Does not escape to heap, result, or parameters.
EscReturn // Is returned or reachable from returned.
EscHeap // Reachable from the heap
EscNever // By construction will not escape.
EscBits = 3
EscMask = (1 << EscBits) - 1
EscContentEscapes = 1 << EscBits // value obtained by indirect of parameter escapes to heap
EscReturnBits = EscBits + 1
// Node.esc encoding = | escapeReturnEncoding:(width-4) | contentEscapes:1 | escEnum:3
)
// escMax returns the maximum of an existing escape value
// (and its additional parameter flow flags) and a new escape type.
func escMax(e, etype uint16) uint16 {
if e&EscMask >= EscHeap {
// normalize
if e&^EscMask != 0 {
Fatalf("Escape information had unexpected return encoding bits (w/ EscHeap, EscNever), e&EscMask=%v", e&EscMask)
}
}
if e&EscMask > etype {
return e
}
if etype == EscNone || etype == EscReturn {
return (e &^ EscMask) | etype
}
return etype
}
// For each input parameter to a function, the escapeReturnEncoding describes
// how the parameter may leak to the function's outputs. This is currently the
// "level" of the leak where level is 0 or larger (negative level means stored into
// something whose address is returned -- but that implies stored into the heap,
// hence EscHeap, which means that the details are not currently relevant. )
const (
bitsPerOutputInTag = 3 // For each output, the number of bits for a tag
bitsMaskForTag = uint16(1<<bitsPerOutputInTag) - 1 // The bit mask to extract a single tag.
maxEncodedLevel = int(bitsMaskForTag - 1) // The largest level that can be stored in a tag.
)
type EscState struct {
// Fake node that all
// - return values and output variables
// - parameters on imported functions not marked 'safe'
// - assignments to global variables
// flow to.
theSink Node
dsts []*Node // all dst nodes
loopdepth int32 // for detecting nested loop scopes
pdepth int // for debug printing in recursions.
dstcount int // diagnostic
edgecount int // diagnostic
noesc []*Node // list of possible non-escaping nodes, for printing
recursive bool // recursive function or group of mutually recursive functions.
opts []*Node // nodes with .Opt initialized
walkgen uint32
}
func newEscState(recursive bool) *EscState {
e := new(EscState)
e.theSink.Op = ONAME
e.theSink.Orig = &e.theSink
e.theSink.Class = PEXTERN
e.theSink.Sym = lookup(".sink")
e.nodeEscState(&e.theSink).Loopdepth = -1
e.recursive = recursive
return e
}
func (e *EscState) stepWalk(dst, src *Node, why string, parent *EscStep) *EscStep {
// TODO: keep a cache of these, mark entry/exit in escwalk to avoid allocation
// Or perhaps never mind, since it is disabled unless printing is on.
// We may want to revisit this, since the EscStep nodes would make
// an excellent replacement for the poorly-separated graph-build/graph-flood
// stages.
if Debug['m'] == 0 {
return nil
}
return &EscStep{src: src, dst: dst, why: why, parent: parent}
}
func (e *EscState) stepAssign(step *EscStep, dst, src *Node, why string) *EscStep {
if Debug['m'] == 0 {
return nil
}
if step != nil { // Caller may have known better.
if step.why == "" {
step.why = why
}
if step.dst == nil {
step.dst = dst
}
if step.src == nil {
step.src = src
}
return step
}
return &EscStep{src: src, dst: dst, why: why}
}
func (e *EscState) stepAssignWhere(dst, src *Node, why string, where *Node) *EscStep {
if Debug['m'] == 0 {
return nil
}
return &EscStep{src: src, dst: dst, why: why, where: where}
}
// funcSym returns fn.Func.Nname.Sym if no nils are encountered along the way.
func funcSym(fn *Node) *Sym {
if fn == nil || fn.Func.Nname == nil {
return nil
}
return fn.Func.Nname.Sym
}
// curfnSym returns n.Curfn.Nname.Sym if no nils are encountered along the way.
func (e *EscState) curfnSym(n *Node) *Sym {
nE := e.nodeEscState(n)
return funcSym(nE.Curfn)
}
func escAnalyze(all []*Node, recursive bool) {
e := newEscState(recursive)
for _, n := range all {
if n.Op == ODCLFUNC {
n.Esc = EscFuncPlanned
}
}
// flow-analyze functions
for _, n := range all {
if n.Op == ODCLFUNC {
e.escfunc(n)
}
}
// print("escapes: %d e.dsts, %d edges\n", e.dstcount, e.edgecount);
// visit the upstream of each dst, mark address nodes with
// addrescapes, mark parameters unsafe
escapes := make([]uint16, len(e.dsts))
for i, n := range e.dsts {
escapes[i] = n.Esc
}
for _, n := range e.dsts {
e.escflood(n)
}
for {
done := true
for i, n := range e.dsts {
if n.Esc != escapes[i] {
done = false
if Debug['m'] > 2 {
Warnl(n.Lineno, "Reflooding %v %S", e.curfnSym(n), n)
}
escapes[i] = n.Esc
e.escflood(n)
}
}
if done {
break
}
}
// for all top level functions, tag the typenodes corresponding to the param nodes
for _, n := range all {
if n.Op == ODCLFUNC {
e.esctag(n)
}
}
if Debug['m'] != 0 {
for _, n := range e.noesc {
if n.Esc == EscNone {
Warnl(n.Lineno, "%v %S does not escape", e.curfnSym(n), n)
}
}
}
for _, x := range e.opts {
x.SetOpt(nil)
}
}
func (e *EscState) escfunc(fn *Node) {
// print("escfunc %N %s\n", fn.Func.Nname, e.recursive?"(recursive)":"");
if fn.Esc != EscFuncPlanned {
Fatalf("repeat escfunc %v", fn.Func.Nname)
}
fn.Esc = EscFuncStarted
saveld := e.loopdepth
e.loopdepth = 1
savefn := Curfn
Curfn = fn
for _, ln := range Curfn.Func.Dcl {
if ln.Op != ONAME {
continue
}
lnE := e.nodeEscState(ln)
switch ln.Class {
// out params are in a loopdepth between the sink and all local variables
case PPARAMOUT:
lnE.Loopdepth = 0
case PPARAM:
lnE.Loopdepth = 1
if ln.Type != nil && !haspointers(ln.Type) {
break
}
if Curfn.Nbody.Len() == 0 && !Curfn.Noescape {
ln.Esc = EscHeap
} else {
ln.Esc = EscNone // prime for escflood later
}
e.noesc = append(e.noesc, ln)
}
}
// in a mutually recursive group we lose track of the return values
if e.recursive {
for _, ln := range Curfn.Func.Dcl {
if ln.Op == ONAME && ln.Class == PPARAMOUT {
e.escflows(&e.theSink, ln, e.stepAssign(nil, ln, ln, "returned from recursive function"))
}
}
}
e.escloopdepthlist(Curfn.Nbody)
e.esclist(Curfn.Nbody, Curfn)
Curfn = savefn
e.loopdepth = saveld
}
// Mark labels that have no backjumps to them as not increasing e.loopdepth.
// Walk hasn't generated (goto|label).Left.Sym.Label yet, so we'll cheat
// and set it to one of the following two. Then in esc we'll clear it again.
var (
looping Node
nonlooping Node
)
func (e *EscState) escloopdepthlist(l Nodes) {
for _, n := range l.Slice() {
e.escloopdepth(n)
}
}
func (e *EscState) escloopdepth(n *Node) {
if n == nil {
return
}
e.escloopdepthlist(n.Ninit)
switch n.Op {
case OLABEL:
if n.Left == nil || n.Left.Sym == nil {
Fatalf("esc:label without label: %+v", n)
}
// Walk will complain about this label being already defined, but that's not until
// after escape analysis. in the future, maybe pull label & goto analysis out of walk and put before esc
// if(n.Left.Sym.Label != nil)
// fatal("escape analysis messed up analyzing label: %+N", n);
n.Left.Sym.Label = &nonlooping
case OGOTO:
if n.Left == nil || n.Left.Sym == nil {
Fatalf("esc:goto without label: %+v", n)
}
// If we come past one that's uninitialized, this must be a (harmless) forward jump
// but if it's set to nonlooping the label must have preceded this goto.
if n.Left.Sym.Label == &nonlooping {
n.Left.Sym.Label = &looping
}
}
e.escloopdepth(n.Left)
e.escloopdepth(n.Right)
e.escloopdepthlist(n.List)
e.escloopdepthlist(n.Nbody)
e.escloopdepthlist(n.Rlist)
}
func (e *EscState) esclist(l Nodes, parent *Node) {
for _, n := range l.Slice() {
e.esc(n, parent)
}
}
func (e *EscState) esc(n *Node, parent *Node) {
if n == nil {
return
}
lno := setlineno(n)
// ninit logically runs at a different loopdepth than the rest of the for loop.
e.esclist(n.Ninit, n)
if n.Op == OFOR || n.Op == ORANGE {
e.loopdepth++
}
// type switch variables have no ODCL.
// process type switch as declaration.
// must happen before processing of switch body,
// so before recursion.
if n.Op == OSWITCH && n.Left != nil && n.Left.Op == OTYPESW {
for _, n1 := range n.List.Slice() { // cases
// it.N().Rlist is the variable per case
if n1.Rlist.Len() != 0 {
e.nodeEscState(n1.Rlist.First()).Loopdepth = e.loopdepth
}
}
}
// Big stuff escapes unconditionally
// "Big" conditions that were scattered around in walk have been gathered here
if n.Esc != EscHeap && n.Type != nil &&
(n.Type.Width > MaxStackVarSize ||
(n.Op == ONEW || n.Op == OPTRLIT) && n.Type.Elem().Width >= 1<<16 ||
n.Op == OMAKESLICE && !isSmallMakeSlice(n)) {
if Debug['m'] > 2 {
Warnl(n.Lineno, "%v is too large for stack", n)
}
n.Esc = EscHeap
addrescapes(n)
e.escassignSinkWhy(n, n, "too large for stack") // TODO category: tooLarge
}
e.esc(n.Left, n)
e.esc(n.Right, n)
e.esclist(n.Nbody, n)
e.esclist(n.List, n)
e.esclist(n.Rlist, n)
if n.Op == OFOR || n.Op == ORANGE {
e.loopdepth--
}
if Debug['m'] > 2 {
fmt.Printf("%v:[%d] %v esc: %v\n", linestr(lineno), e.loopdepth, funcSym(Curfn), n)
}
switch n.Op {
// Record loop depth at declaration.
case ODCL:
if n.Left != nil {
e.nodeEscState(n.Left).Loopdepth = e.loopdepth
}
case OLABEL:
if n.Left.Sym.Label == &nonlooping {
if Debug['m'] > 2 {
fmt.Printf("%v:%v non-looping label\n", linestr(lineno), n)
}
} else if n.Left.Sym.Label == &looping {
if Debug['m'] > 2 {
fmt.Printf("%v: %v looping label\n", linestr(lineno), n)
}
e.loopdepth++
}
// See case OLABEL in escloopdepth above
// else if(n.Left.Sym.Label == nil)
// fatal("escape analysis missed or messed up a label: %+N", n);
n.Left.Sym.Label = nil
case ORANGE:
if n.List.Len() >= 2 {
// Everything but fixed array is a dereference.
// If fixed array is really the address of fixed array,
// it is also a dereference, because it is implicitly
// dereferenced (see #12588)
if n.Type.IsArray() &&
!(n.Right.Type.IsPtr() && eqtype(n.Right.Type.Elem(), n.Type)) {
e.escassignWhyWhere(n.List.Second(), n.Right, "range", n)
} else {
e.escassignDereference(n.List.Second(), n.Right, e.stepAssignWhere(n.List.Second(), n.Right, "range-deref", n))
}
}
case OSWITCH:
if n.Left != nil && n.Left.Op == OTYPESW {
for _, n2 := range n.List.Slice() {
// cases
// n.Left.Right is the argument of the .(type),
// it.N().Rlist is the variable per case
if n2.Rlist.Len() != 0 {
e.escassignWhyWhere(n2.Rlist.First(), n.Left.Right, "switch case", n)
}
}
}
// Filter out the following special case.
//
// func (b *Buffer) Foo() {
// n, m := ...
// b.buf = b.buf[n:m]
// }
//
// This assignment is a no-op for escape analysis,
// it does not store any new pointers into b that were not already there.
// However, without this special case b will escape, because we assign to OIND/ODOTPTR.
case OAS, OASOP, OASWB:
if (n.Left.Op == OIND || n.Left.Op == ODOTPTR) && n.Left.Left.Op == ONAME && // dst is ONAME dereference
(n.Right.Op == OSLICE || n.Right.Op == OSLICE3 || n.Right.Op == OSLICESTR) && // src is slice operation
(n.Right.Left.Op == OIND || n.Right.Left.Op == ODOTPTR) && n.Right.Left.Left.Op == ONAME && // slice is applied to ONAME dereference
n.Left.Left == n.Right.Left.Left { // dst and src reference the same base ONAME
// Here we also assume that the statement will not contain calls,
// that is, that order will move any calls to init.
// Otherwise base ONAME value could change between the moments
// when we evaluate it for dst and for src.
//
// Note, this optimization does not apply to OSLICEARR,
// because it does introduce a new pointer into b that was not already there
// (pointer to b itself). After such assignment, if b contents escape,
// b escapes as well. If we ignore such OSLICEARR, we will conclude
// that b does not escape when b contents do.
if Debug['m'] != 0 {
Warnl(n.Lineno, "%v ignoring self-assignment to %S", e.curfnSym(n), n.Left)
}
break
}
e.escassign(n.Left, n.Right, e.stepAssignWhere(nil, nil, "", n))
case OAS2: // x,y = a,b
if n.List.Len() == n.Rlist.Len() {
rs := n.Rlist.Slice()
for i, n := range n.List.Slice() {
e.escassignWhyWhere(n, rs[i], "assign-pair", n)
}
}
case OAS2RECV: // v, ok = <-ch
e.escassignWhyWhere(n.List.First(), n.Rlist.First(), "assign-pair-receive", n)
case OAS2MAPR: // v, ok = m[k]
e.escassignWhyWhere(n.List.First(), n.Rlist.First(), "assign-pair-mapr", n)
case OAS2DOTTYPE: // v, ok = x.(type)
e.escassignWhyWhere(n.List.First(), n.Rlist.First(), "assign-pair-dot-type", n)
case OSEND: // ch <- x
e.escassignSinkWhy(n, n.Right, "send")
case ODEFER:
if e.loopdepth == 1 { // top level
break
}
// arguments leak out of scope
// TODO: leak to a dummy node instead
// defer f(x) - f and x escape
e.escassignSinkWhy(n, n.Left.Left, "defer func")
e.escassignSinkWhy(n, n.Left.Right, "defer func ...") // ODDDARG for call
for _, n4 := range n.Left.List.Slice() {
e.escassignSinkWhy(n, n4, "defer func arg")
}
case OPROC:
// go f(x) - f and x escape
e.escassignSinkWhy(n, n.Left.Left, "go func")
e.escassignSinkWhy(n, n.Left.Right, "go func ...") // ODDDARG for call
for _, n4 := range n.Left.List.Slice() {
e.escassignSinkWhy(n, n4, "go func arg")
}
case OCALLMETH, OCALLFUNC, OCALLINTER:
e.esccall(n, parent)
// esccall already done on n.Rlist.First(). tie it's Retval to n.List
case OAS2FUNC: // x,y = f()
rs := e.nodeEscState(n.Rlist.First()).Retval.Slice()
for i, n := range n.List.Slice() {
if i >= len(rs) {
break
}
e.escassignWhyWhere(n, rs[i], "assign-pair-func-call", n)
}
if n.List.Len() != len(rs) {
Fatalf("esc oas2func")
}
case ORETURN:
retList := n.List
if retList.Len() == 1 && Curfn.Type.Results().NumFields() > 1 {
// OAS2FUNC in disguise
// esccall already done on n.List.First()
// tie e.nodeEscState(n.List.First()).Retval to Curfn.Func.Dcl PPARAMOUT's
retList = e.nodeEscState(n.List.First()).Retval
}
i := 0
for _, lrn := range Curfn.Func.Dcl {
if i >= retList.Len() {
break
}
if lrn.Op != ONAME || lrn.Class != PPARAMOUT {
continue
}
e.escassignWhyWhere(lrn, retList.Index(i), "return", n)
i++
}
if i < retList.Len() {
Fatalf("esc return list")
}
// Argument could leak through recover.
case OPANIC:
e.escassignSinkWhy(n, n.Left, "panic")
case OAPPEND:
if !n.Isddd {
for _, nn := range n.List.Slice()[1:] {
e.escassignSinkWhy(n, nn, "appended to slice") // lose track of assign to dereference
}
} else {
// append(slice1, slice2...) -- slice2 itself does not escape, but contents do.
slice2 := n.List.Second()
e.escassignDereference(&e.theSink, slice2, e.stepAssignWhere(n, slice2, "appended slice...", n)) // lose track of assign of dereference
if Debug['m'] > 3 {
Warnl(n.Lineno, "%v special treatment of append(slice1, slice2...) %S", e.curfnSym(n), n)
}
}
e.escassignDereference(&e.theSink, n.List.First(), e.stepAssignWhere(n, n.List.First(), "appendee slice", n)) // The original elements are now leaked, too
case OCOPY:
e.escassignDereference(&e.theSink, n.Right, e.stepAssignWhere(n, n.Right, "copied slice", n)) // lose track of assign of dereference
case OCONV, OCONVNOP:
e.escassignWhyWhere(n, n.Left, "converted", n)
case OCONVIFACE:
e.track(n)
e.escassignWhyWhere(n, n.Left, "interface-converted", n)
case OARRAYLIT:
// Link values to array
for _, n2 := range n.List.Slice() {
if n2.Op == OKEY {
n2 = n2.Right
}
e.escassign(n, n2, e.stepAssignWhere(n, n2, "array literal element", n))
}
case OSLICELIT:
// Slice is not leaked until proven otherwise
e.track(n)
// Link values to slice
for _, n2 := range n.List.Slice() {
if n2.Op == OKEY {
n2 = n2.Right
}
e.escassign(n, n2, e.stepAssignWhere(n, n2, "slice literal element", n))
}
// Link values to struct.
case OSTRUCTLIT:
for _, n6 := range n.List.Slice() {
e.escassignWhyWhere(n, n6.Left, "struct literal element", n)
}
case OPTRLIT:
e.track(n)
// Link OSTRUCTLIT to OPTRLIT; if OPTRLIT escapes, OSTRUCTLIT elements do too.
e.escassignWhyWhere(n, n.Left, "pointer literal [assign]", n)
case OCALLPART:
e.track(n)
// Contents make it to memory, lose track.
e.escassignSinkWhy(n, n.Left, "call part")
case OMAPLIT:
e.track(n)
// Keys and values make it to memory, lose track.
for _, n7 := range n.List.Slice() {
e.escassignSinkWhy(n, n7.Left, "map literal key")
e.escassignSinkWhy(n, n7.Right, "map literal value")
}
case OCLOSURE:
// Link addresses of captured variables to closure.
for _, v := range n.Func.Cvars.Slice() {
if v.Op == OXXX { // unnamed out argument; see dcl.go:/^funcargs
continue
}
a := v.Name.Defn
if !v.Name.Byval {
a = nod(OADDR, a, nil)
a.Lineno = v.Lineno
e.nodeEscState(a).Loopdepth = e.loopdepth
a = typecheck(a, Erv)
}
e.escassignWhyWhere(n, a, "captured by a closure", n)
}
fallthrough
case OMAKECHAN,
OMAKEMAP,
OMAKESLICE,
ONEW,
OARRAYRUNESTR,
OARRAYBYTESTR,
OSTRARRAYRUNE,
OSTRARRAYBYTE,
ORUNESTR:
e.track(n)
case OADDSTR:
e.track(n)
// Arguments of OADDSTR do not escape.
case OADDR:
// current loop depth is an upper bound on actual loop depth
// of addressed value.
e.track(n)
// for &x, use loop depth of x if known.
// it should always be known, but if not, be conservative
// and keep the current loop depth.
if n.Left.Op == ONAME {
switch n.Left.Class {
case PAUTO:
nE := e.nodeEscState(n)
leftE := e.nodeEscState(n.Left)
if leftE.Loopdepth != 0 {
nE.Loopdepth = leftE.Loopdepth
}
// PPARAM is loop depth 1 always.
// PPARAMOUT is loop depth 0 for writes
// but considered loop depth 1 for address-of,
// so that writing the address of one result
// to another (or the same) result makes the
// first result move to the heap.
case PPARAM, PPARAMOUT:
nE := e.nodeEscState(n)
nE.Loopdepth = 1
}
}
}
lineno = lno
}
// escassignWhyWhere bundles a common case of
// escassign(e, dst, src, e.stepAssignWhere(dst, src, reason, where))
func (e *EscState) escassignWhyWhere(dst, src *Node, reason string, where *Node) {
var step *EscStep
if Debug['m'] != 0 {
step = e.stepAssignWhere(dst, src, reason, where)
}
e.escassign(dst, src, step)
}
// escassignSinkWhy bundles a common case of
// escassign(e, &e.theSink, src, e.stepAssign(nil, dst, src, reason))
func (e *EscState) escassignSinkWhy(dst, src *Node, reason string) {
var step *EscStep
if Debug['m'] != 0 {
step = e.stepAssign(nil, dst, src, reason)
}
e.escassign(&e.theSink, src, step)
}
// escassignSinkWhyWhere is escassignSinkWhy but includes a call site
// for accurate location reporting.
func (e *EscState) escassignSinkWhyWhere(dst, src *Node, reason string, call *Node) {
var step *EscStep
if Debug['m'] != 0 {
step = e.stepAssignWhere(dst, src, reason, call)
}
e.escassign(&e.theSink, src, step)
}
// Assert that expr somehow gets assigned to dst, if non nil. for
// dst==nil, any name node expr still must be marked as being
// evaluated in curfn. For expr==nil, dst must still be examined for
// evaluations inside it (e.g *f(x) = y)
func (e *EscState) escassign(dst, src *Node, step *EscStep) {
if isblank(dst) || dst == nil || src == nil || src.Op == ONONAME || src.Op == OXXX {
return
}
if Debug['m'] > 2 {
fmt.Printf("%v:[%d] %v escassign: %S(%0j)[%v] = %S(%0j)[%v]\n",
linestr(lineno), e.loopdepth, funcSym(Curfn),
dst, dst, dst.Op,
src, src, src.Op)
}
setlineno(dst)
originalDst := dst
dstwhy := "assigned"
// Analyze lhs of assignment.
// Replace dst with &e.theSink if we can't track it.
switch dst.Op {
default:
Dump("dst", dst)
Fatalf("escassign: unexpected dst")
case OARRAYLIT,
OSLICELIT,
OCLOSURE,
OCONV,
OCONVIFACE,
OCONVNOP,
OMAPLIT,
OSTRUCTLIT,
OPTRLIT,
ODDDARG,
OCALLPART:
case ONAME:
if dst.Class == PEXTERN {
dstwhy = "assigned to top level variable"
dst = &e.theSink
}
case ODOT: // treat "dst.x = src" as "dst = src"
e.escassign(dst.Left, src, e.stepAssign(step, originalDst, src, "dot-equals"))
return
case OINDEX:
if dst.Left.Type.IsArray() {
e.escassign(dst.Left, src, e.stepAssign(step, originalDst, src, "array-element-equals"))
return
}
dstwhy = "slice-element-equals"
dst = &e.theSink // lose track of dereference
case OIND:
dstwhy = "star-equals"
dst = &e.theSink // lose track of dereference
case ODOTPTR:
dstwhy = "star-dot-equals"
dst = &e.theSink // lose track of dereference
// lose track of key and value
case OINDEXMAP:
e.escassign(&e.theSink, dst.Right, e.stepAssign(nil, originalDst, src, "key of map put"))
dstwhy = "value of map put"
dst = &e.theSink
}
lno := setlineno(src)
e.pdepth++
switch src.Op {
case OADDR, // dst = &x
OIND, // dst = *x
ODOTPTR, // dst = (*x).f
ONAME,
ODDDARG,
OPTRLIT,
OARRAYLIT,
OSLICELIT,
OMAPLIT,
OSTRUCTLIT,
OMAKECHAN,
OMAKEMAP,
OMAKESLICE,
OARRAYRUNESTR,
OARRAYBYTESTR,
OSTRARRAYRUNE,
OSTRARRAYBYTE,
OADDSTR,
ONEW,
OCALLPART,
ORUNESTR,
OCONVIFACE:
e.escflows(dst, src, e.stepAssign(step, originalDst, src, dstwhy))
case OCLOSURE:
// OCLOSURE is lowered to OPTRLIT,
// insert OADDR to account for the additional indirection.
a := nod(OADDR, src, nil)
a.Lineno = src.Lineno
e.nodeEscState(a).Loopdepth = e.nodeEscState(src).Loopdepth
a.Type = ptrto(src.Type)
e.escflows(dst, a, e.stepAssign(nil, originalDst, src, dstwhy))
// Flowing multiple returns to a single dst happens when
// analyzing "go f(g())": here g() flows to sink (issue 4529).
case OCALLMETH, OCALLFUNC, OCALLINTER:
for _, n := range e.nodeEscState(src).Retval.Slice() {
e.escflows(dst, n, e.stepAssign(nil, originalDst, n, dstwhy))
}
// A non-pointer escaping from a struct does not concern us.
case ODOT:
if src.Type != nil && !haspointers(src.Type) {
break
}
fallthrough
// Conversions, field access, slice all preserve the input value.
case OCONV,
OCONVNOP,
ODOTMETH,
// treat recv.meth as a value with recv in it, only happens in ODEFER and OPROC
// iface.method already leaks iface in esccall, no need to put in extra ODOTINTER edge here
OSLICE,
OSLICE3,
OSLICEARR,
OSLICE3ARR,
OSLICESTR:
// Conversions, field access, slice all preserve the input value.
e.escassign(dst, src.Left, e.stepAssign(step, originalDst, src, dstwhy))
case ODOTTYPE,
ODOTTYPE2:
if src.Type != nil && !haspointers(src.Type) {
break
}
e.escassign(dst, src.Left, e.stepAssign(step, originalDst, src, dstwhy))
case OAPPEND:
// Append returns first argument.
// Subsequent arguments are already leaked because they are operands to append.
e.escassign(dst, src.List.First(), e.stepAssign(step, dst, src.List.First(), dstwhy))
case OINDEX:
// Index of array preserves input value.
if src.Left.Type.IsArray() {
e.escassign(dst, src.Left, e.stepAssign(step, originalDst, src, dstwhy))
} else {
e.escflows(dst, src, e.stepAssign(step, originalDst, src, dstwhy))
}
// Might be pointer arithmetic, in which case
// the operands flow into the result.
// TODO(rsc): Decide what the story is here. This is unsettling.
case OADD,
OSUB,
OOR,
OXOR,
OMUL,
ODIV,
OMOD,
OLSH,
ORSH,
OAND,
OANDNOT,
OPLUS,
OMINUS,
OCOM:
e.escassign(dst, src.Left, e.stepAssign(step, originalDst, src, dstwhy))
e.escassign(dst, src.Right, e.stepAssign(step, originalDst, src, dstwhy))
}
e.pdepth--
lineno = lno
}
// Common case for escapes is 16 bits 000000000xxxEEEE
// where commonest cases for xxx encoding in-to-out pointer
// flow are 000, 001, 010, 011 and EEEE is computed Esc bits.
// Note width of xxx depends on value of constant
// bitsPerOutputInTag -- expect 2 or 3, so in practice the
// tag cache array is 64 or 128 long. Some entries will
// never be populated.
var tags [1 << (bitsPerOutputInTag + EscReturnBits)]string
// mktag returns the string representation for an escape analysis tag.
func mktag(mask int) string {
switch mask & EscMask {
case EscNone, EscReturn:
default:
Fatalf("escape mktag")
}
if mask < len(tags) && tags[mask] != "" {
return tags[mask]
}
s := fmt.Sprintf("esc:0x%x", mask)
if mask < len(tags) {
tags[mask] = s
}
return s
}
// parsetag decodes an escape analysis tag and returns the esc value.
func parsetag(note string) uint16 {
if !strings.HasPrefix(note, "esc:") {
return EscUnknown
}
n, _ := strconv.ParseInt(note[4:], 0, 0)
em := uint16(n)
if em == 0 {
return EscNone
}
return em
}
// describeEscape returns a string describing the escape tag.
// The result is either one of {EscUnknown, EscNone, EscHeap} which all have no further annotation
// or a description of parameter flow, which takes the form of an optional "contentToHeap"
// indicating that the content of this parameter is leaked to the heap, followed by a sequence
// of level encodings separated by spaces, one for each parameter, where _ means no flow,
// = means direct flow, and N asterisks (*) encodes content (obtained by indirection) flow.
// e.g., "contentToHeap _ =" means that a parameter's content (one or more dereferences)
// escapes to the heap, the parameter does not leak to the first output, but does leak directly
// to the second output (and if there are more than two outputs, there is no flow to those.)
func describeEscape(em uint16) string {
var s string
if em&EscMask == EscUnknown {
s = "EscUnknown"
}
if em&EscMask == EscNone {
s = "EscNone"
}
if em&EscMask == EscHeap {
s = "EscHeap"
}
if em&EscMask == EscReturn {
s = "EscReturn"
}
if em&EscContentEscapes != 0 {
if s != "" {
s += " "
}
s += "contentToHeap"
}
for em >>= EscReturnBits; em != 0; em = em >> bitsPerOutputInTag {
// See encoding description above
if s != "" {
s += " "
}
switch embits := em & bitsMaskForTag; embits {
case 0:
s += "_"
case 1:
s += "="
default:
for i := uint16(0); i < embits-1; i++ {
s += "*"
}
}
}
return s
}
// escassignfromtag models the input-to-output assignment flow of one of a function
// calls arguments, where the flow is encoded in "note".
func (e *EscState) escassignfromtag(note string, dsts Nodes, src, call *Node) uint16 {
em := parsetag(note)
if src.Op == OLITERAL {
return em
}
if Debug['m'] > 3 {
fmt.Printf("%v::assignfromtag:: src=%S, em=%s\n",
linestr(lineno), src, describeEscape(em))
}
if em == EscUnknown {
e.escassignSinkWhyWhere(src, src, "passed to call[argument escapes]", call)
return em
}
if em == EscNone {
return em
}
// If content inside parameter (reached via indirection)
// escapes to heap, mark as such.
if em&EscContentEscapes != 0 {
e.escassign(&e.theSink, e.addDereference(src), e.stepAssignWhere(src, src, "passed to call[argument content escapes]", call))
}
em0 := em
dstsi := 0
for em >>= EscReturnBits; em != 0 && dstsi < dsts.Len(); em = em >> bitsPerOutputInTag {
// Prefer the lowest-level path to the reference (for escape purposes).
// Two-bit encoding (for example. 1, 3, and 4 bits are other options)
// 01 = 0-level
// 10 = 1-level, (content escapes),
// 11 = 2-level, (content of content escapes),
embits := em & bitsMaskForTag
if embits > 0 {
n := src
for i := uint16(0); i < embits-1; i++ {
n = e.addDereference(n) // encode level>0 as indirections
}
e.escassign(dsts.Index(dstsi), n, e.stepAssignWhere(dsts.Index(dstsi), src, "passed-to-and-returned-from-call", call))
}
dstsi++
}
// If there are too many outputs to fit in the tag,
// that is handled at the encoding end as EscHeap,
// so there is no need to check here.
if em != 0 && dstsi >= dsts.Len() {
Fatalf("corrupt esc tag %q or messed up escretval list\n", note)
}
return em0
}
func (e *EscState) escassignDereference(dst *Node, src *Node, step *EscStep) {
if src.Op == OLITERAL {
return
}
e.escassign(dst, e.addDereference(src), step)
}
// addDereference constructs a suitable OIND note applied to src.
// Because this is for purposes of escape accounting, not execution,
// some semantically dubious node combinations are (currently) possible.
func (e *EscState) addDereference(n *Node) *Node {
ind := nod(OIND, n, nil)
e.nodeEscState(ind).Loopdepth = e.nodeEscState(n).Loopdepth
ind.Lineno = n.Lineno
t := n.Type
if t.IsKind(Tptr) {
// This should model our own sloppy use of OIND to encode
// decreasing levels of indirection; i.e., "indirecting" an array
// might yield the type of an element. To be enhanced...
t = t.Elem()
}
ind.Type = t
return ind
}
// escNoteOutputParamFlow encodes maxEncodedLevel/.../1/0-level flow to the vargen'th parameter.
// Levels greater than maxEncodedLevel are replaced with maxEncodedLevel.
// If the encoding cannot describe the modified input level and output number, then EscHeap is returned.
func escNoteOutputParamFlow(e uint16, vargen int32, level Level) uint16 {
// Flow+level is encoded in two bits.
// 00 = not flow, xx = level+1 for 0 <= level <= maxEncodedLevel
// 16 bits for Esc allows 6x2bits or 4x3bits or 3x4bits if additional information would be useful.
if level.int() <= 0 && level.guaranteedDereference() > 0 {
return escMax(e|EscContentEscapes, EscNone) // At least one deref, thus only content.
}
if level.int() < 0 {
return EscHeap
}
if level.int() > maxEncodedLevel {
// Cannot encode larger values than maxEncodedLevel.
level = levelFrom(maxEncodedLevel)
}
encoded := uint16(level.int() + 1)
shift := uint(bitsPerOutputInTag*(vargen-1) + EscReturnBits)
old := (e >> shift) & bitsMaskForTag
if old == 0 || encoded != 0 && encoded < old {
old = encoded
}
encodedFlow := old << shift
if (encodedFlow>>shift)&bitsMaskForTag != old {
// Encoding failure defaults to heap.
return EscHeap
}
return (e &^ (bitsMaskForTag << shift)) | encodedFlow
}
func (e *EscState) initEscRetval(call *Node, fntype *Type) {
cE := e.nodeEscState(call)
cE.Retval.Set(nil) // Suspect this is not nil for indirect calls.
for i, f := range fntype.Results().Fields().Slice() {
ret := nod(ONAME, nil, nil)
buf := fmt.Sprintf(".out%d", i)
ret.Sym = lookup(buf)
ret.Type = f.Type
ret.Class = PAUTO
ret.Name.Curfn = Curfn
e.nodeEscState(ret).Loopdepth = e.loopdepth
ret.Used = true
ret.Lineno = call.Lineno
cE.Retval.Append(ret)
}
}
// This is a bit messier than fortunate, pulled out of esc's big
// switch for clarity. We either have the paramnodes, which may be
// connected to other things through flows or we have the parameter type
// nodes, which may be marked "noescape". Navigating the ast is slightly
// different for methods vs plain functions and for imported vs
// this-package
func (e *EscState) esccall(call *Node, parent *Node) {
var fntype *Type
var indirect bool
var fn *Node
switch call.Op {
default:
Fatalf("esccall")
case OCALLFUNC:
fn = call.Left
fntype = fn.Type
indirect = fn.Op != ONAME || fn.Class != PFUNC
case OCALLMETH:
fn = call.Left.Sym.Def
if fn != nil {
fntype = fn.Type
} else {
fntype = call.Left.Type
}
case OCALLINTER:
fntype = call.Left.Type
indirect = true
}
argList := call.List
if argList.Len() == 1 {
arg := argList.First()
if arg.Type.IsFuncArgStruct() { // f(g())
argList = e.nodeEscState(arg).Retval
}
}
args := argList.Slice()
if indirect {
// We know nothing!
// Leak all the parameters
for _, arg := range args {
e.escassignSinkWhy(call, arg, "parameter to indirect call")
if Debug['m'] > 3 {
fmt.Printf("%v::esccall:: indirect call <- %S, untracked\n", linestr(lineno), arg)
}
}
// Set up bogus outputs
e.initEscRetval(call, fntype)
// If there is a receiver, it also leaks to heap.
if call.Op != OCALLFUNC {
rf := fntype.Recv()
r := call.Left.Left
if haspointers(rf.Type) {
e.escassignSinkWhy(call, r, "receiver in indirect call")
}
} else { // indirect and OCALLFUNC = could be captured variables, too. (#14409)
rets := e.nodeEscState(call).Retval.Slice()
for _, ret := range rets {
e.escassignDereference(ret, fn, e.stepAssignWhere(ret, fn, "captured by called closure", call))
}
}
return
}
cE := e.nodeEscState(call)
if fn != nil && fn.Op == ONAME && fn.Class == PFUNC &&
fn.Name.Defn != nil && fn.Name.Defn.Nbody.Len() != 0 && fn.Name.Param.Ntype != nil && fn.Name.Defn.Esc < EscFuncTagged {
if Debug['m'] > 3 {
fmt.Printf("%v::esccall:: %S in recursive group\n", linestr(lineno), call)
}
// function in same mutually recursive group. Incorporate into flow graph.
// print("esc local fn: %N\n", fn.Func.Ntype);
if fn.Name.Defn.Esc == EscFuncUnknown || cE.Retval.Len() != 0 {
Fatalf("graph inconsistency")
}
sawRcvr := false
for _, n := range fn.Name.Defn.Func.Dcl {
switch n.Class {
case PPARAM:
if call.Op != OCALLFUNC && !sawRcvr {
e.escassignWhyWhere(n, call.Left.Left, "call receiver", call)
sawRcvr = true
continue
}
if len(args) == 0 {
continue
}
arg := args[0]
if n.Isddd && !call.Isddd {
// Introduce ODDDARG node to represent ... allocation.
arg = nod(ODDDARG, nil, nil)
arr := typArray(n.Type.Elem(), int64(len(args)))
arg.Type = ptrto(arr) // make pointer so it will be tracked
arg.Lineno = call.Lineno
e.track(arg)
call.Right = arg
}
e.escassignWhyWhere(n, arg, "arg to recursive call", call) // TODO this message needs help.
if arg != args[0] {
// "..." arguments are untracked
for _, a := range args {
if Debug['m'] > 3 {
fmt.Printf("%v::esccall:: ... <- %S, untracked\n", linestr(lineno), a)
}
e.escassignSinkWhyWhere(arg, a, "... arg to recursive call", call)
}
// No more PPARAM processing, but keep
// going for PPARAMOUT.
args = nil
continue
}
args = args[1:]
case PPARAMOUT:
cE.Retval.Append(n)
}
}
return
}
// Imported or completely analyzed function. Use the escape tags.
if cE.Retval.Len() != 0 {
Fatalf("esc already decorated call %+v\n", call)
}
if Debug['m'] > 3 {
fmt.Printf("%v::esccall:: %S not recursive\n", linestr(lineno), call)
}
// set up out list on this call node with dummy auto ONAMES in the current (calling) function.
e.initEscRetval(call, fntype)
// print("esc analyzed fn: %#N (%+T) returning (%+H)\n", fn, fntype, e.nodeEscState(call).Retval);
// Receiver.
if call.Op != OCALLFUNC {
rf := fntype.Recv()
r := call.Left.Left
if haspointers(rf.Type) {
e.escassignfromtag(rf.Note, cE.Retval, r, call)
}
}
var arg *Node
var note string
param, it := iterFields(fntype.Params())
i := 0
for ; i < len(args); i++ {
arg = args[i]
note = param.Note
if param.Isddd && !call.Isddd {
// Introduce ODDDARG node to represent ... allocation.
arg = nod(ODDDARG, nil, nil)
arg.Lineno = call.Lineno
arr := typArray(param.Type.Elem(), int64(len(args)-i))
arg.Type = ptrto(arr) // make pointer so it will be tracked
e.track(arg)
call.Right = arg
}
if haspointers(param.Type) {
if e.escassignfromtag(note, cE.Retval, arg, call)&EscMask == EscNone && parent.Op != ODEFER && parent.Op != OPROC {
a := arg
for a.Op == OCONVNOP {
a = a.Left
}
switch a.Op {
// The callee has already been analyzed, so its arguments have esc tags.
// The argument is marked as not escaping at all.
// Record that fact so that any temporary used for
// synthesizing this expression can be reclaimed when
// the function returns.
// This 'noescape' is even stronger than the usual esc == EscNone.
// arg.Esc == EscNone means that arg does not escape the current function.
// arg.Noescape = true here means that arg does not escape this statement
// in the current function.
case OCALLPART,
OCLOSURE,
ODDDARG,
OARRAYLIT,
OSLICELIT,
OPTRLIT,
OSTRUCTLIT:
a.Noescape = true
}
}
}
if arg != args[i] {
// This occurs when function parameter field Isddd and call not Isddd
break
}
if note == uintptrEscapesTag {
e.escassignSinkWhy(arg, arg, "escaping uintptr")
}
param = it.Next()
}
// Store arguments into slice for ... arg.
for ; i < len(args); i++ {
if Debug['m'] > 3 {
fmt.Printf("%v::esccall:: ... <- %S\n", linestr(lineno), args[i])
}
if note == uintptrEscapesTag {
e.escassignSinkWhyWhere(arg, args[i], "arg to uintptrescapes ...", call)
} else {
e.escassignWhyWhere(arg, args[i], "arg to ...", call)
}
}
}
// escflows records the link src->dst in dst, throwing out some quick wins,
// and also ensuring that dst is noted as a flow destination.
func (e *EscState) escflows(dst, src *Node, why *EscStep) {
if dst == nil || src == nil || dst == src {
return
}
// Don't bother building a graph for scalars.
if src.Type != nil && !haspointers(src.Type) {
return
}
if Debug['m'] > 3 {
fmt.Printf("%v::flows:: %S <- %S\n", linestr(lineno), dst, src)
}
dstE := e.nodeEscState(dst)
if len(dstE.Flowsrc) == 0 {
e.dsts = append(e.dsts, dst)
e.dstcount++
}
e.edgecount++
if why == nil {
dstE.Flowsrc = append(dstE.Flowsrc, EscStep{src: src})
} else {
starwhy := *why
starwhy.src = src // TODO: need to reconcile this w/ needs of explanations.
dstE.Flowsrc = append(dstE.Flowsrc, starwhy)
}
}
// Whenever we hit a reference node, the level goes up by one, and whenever
// we hit an OADDR, the level goes down by one. as long as we're on a level > 0
// finding an OADDR just means we're following the upstream of a dereference,
// so this address doesn't leak (yet).
// If level == 0, it means the /value/ of this node can reach the root of this flood.
// so if this node is an OADDR, its argument should be marked as escaping iff
// its currfn/e.loopdepth are different from the flood's root.
// Once an object has been moved to the heap, all of its upstream should be considered
// escaping to the global scope.
func (e *EscState) escflood(dst *Node) {
switch dst.Op {
case ONAME, OCLOSURE:
default:
return
}
dstE := e.nodeEscState(dst)
if Debug['m'] > 2 {
fmt.Printf("\nescflood:%d: dst %S scope:%v[%d]\n", e.walkgen, dst, e.curfnSym(dst), dstE.Loopdepth)
}
for i := range dstE.Flowsrc {
e.walkgen++
s := &dstE.Flowsrc[i]
s.parent = nil
e.escwalk(levelFrom(0), dst, s.src, s)
}
}
// funcOutputAndInput reports whether dst and src correspond to output and input parameters of the same function.
func funcOutputAndInput(dst, src *Node) bool {
// Note if dst is marked as escaping, then "returned" is too weak.
return dst.Op == ONAME && dst.Class == PPARAMOUT &&
src.Op == ONAME && src.Class == PPARAM && src.Name.Curfn == dst.Name.Curfn
}
func (es *EscStep) describe(src *Node) {
if Debug['m'] < 2 {
return
}
step0 := es
for step := step0; step != nil && !step.busy; step = step.parent {
// TODO: We get cycles. Trigger is i = &i (where var i interface{})
step.busy = true
// The trail is a little odd because of how the
// graph is constructed. The link to the current
// Node is parent.src unless parent is nil in which
// case it is step.dst.
nextDest := step.parent
dst := step.dst
where := step.where
if nextDest != nil {
dst = nextDest.src
}
if where == nil {
where = dst
}
Warnl(src.Lineno, "\tfrom %v (%s) at %s", dst, step.why, where.Line())
}
for step := step0; step != nil && step.busy; step = step.parent {
step.busy = false
}
}
const NOTALOOPDEPTH = -1
func (e *EscState) escwalk(level Level, dst *Node, src *Node, step *EscStep) {
e.escwalkBody(level, dst, src, step, NOTALOOPDEPTH)
}
func (e *EscState) escwalkBody(level Level, dst *Node, src *Node, step *EscStep, extraloopdepth int32) {
if src.Op == OLITERAL {
return
}
srcE := e.nodeEscState(src)
if srcE.Walkgen == e.walkgen {
// Esclevels are vectors, do not compare as integers,
// and must use "min" of old and new to guarantee
// convergence.
level = level.min(srcE.Level)
if level == srcE.Level {
// Have we been here already with an extraloopdepth,
// or is the extraloopdepth provided no improvement on
// what's already been seen?
if srcE.Maxextraloopdepth >= extraloopdepth || srcE.Loopdepth >= extraloopdepth {
return
}
srcE.Maxextraloopdepth = extraloopdepth
}
} else { // srcE.Walkgen < e.walkgen -- first time, reset this.
srcE.Maxextraloopdepth = NOTALOOPDEPTH
}
srcE.Walkgen = e.walkgen
srcE.Level = level
modSrcLoopdepth := srcE.Loopdepth
if extraloopdepth > modSrcLoopdepth {
modSrcLoopdepth = extraloopdepth
}
if Debug['m'] > 2 {
fmt.Printf("escwalk: level:%d depth:%d %.*s op=%v %S(%0j) scope:%v[%d] extraloopdepth=%v\n",
level, e.pdepth, e.pdepth, "\t\t\t\t\t\t\t\t\t\t", src.Op, src, src, e.curfnSym(src), srcE.Loopdepth, extraloopdepth)
}
e.pdepth++
// Input parameter flowing to output parameter?
var leaks bool
var osrcesc uint16 // used to prevent duplicate error messages
dstE := e.nodeEscState(dst)
if funcOutputAndInput(dst, src) && src.Esc&EscMask < EscHeap && dst.Esc != EscHeap {
// This case handles:
// 1. return in
// 2. return &in
// 3. tmp := in; return &tmp
// 4. return *in
if Debug['m'] != 0 {
if Debug['m'] <= 2 {
Warnl(src.Lineno, "leaking param: %S to result %v level=%v", src, dst.Sym, level.int())
step.describe(src)
} else {
Warnl(src.Lineno, "leaking param: %S to result %v level=%v", src, dst.Sym, level)
}
}
if src.Esc&EscMask != EscReturn {
src.Esc = EscReturn | src.Esc&EscContentEscapes
}
src.Esc = escNoteOutputParamFlow(src.Esc, dst.Name.Vargen, level)
goto recurse
}
// If parameter content escapes to heap, set EscContentEscapes
// Note minor confusion around escape from pointer-to-struct vs escape from struct
if dst.Esc == EscHeap &&
src.Op == ONAME && src.Class == PPARAM && src.Esc&EscMask < EscHeap &&
level.int() > 0 {
src.Esc = escMax(EscContentEscapes|src.Esc, EscNone)
if Debug['m'] != 0 {
Warnl(src.Lineno, "mark escaped content: %S", src)
step.describe(src)
}
}
leaks = level.int() <= 0 && level.guaranteedDereference() <= 0 && dstE.Loopdepth < modSrcLoopdepth
leaks = leaks || level.int() <= 0 && dst.Esc&EscMask == EscHeap
osrcesc = src.Esc
switch src.Op {
case ONAME:
if src.Class == PPARAM && (leaks || dstE.Loopdepth < 0) && src.Esc&EscMask < EscHeap {
if level.guaranteedDereference() > 0 {
src.Esc = escMax(EscContentEscapes|src.Esc, EscNone)
if Debug['m'] != 0 {
if Debug['m'] <= 2 {
if osrcesc != src.Esc {
Warnl(src.Lineno, "leaking param content: %S", src)
step.describe(src)
}
} else {
Warnl(src.Lineno, "leaking param content: %S level=%v dst.eld=%v src.eld=%v dst=%S",
src, level, dstE.Loopdepth, modSrcLoopdepth, dst)
}
}
} else {
src.Esc = EscHeap
if Debug['m'] != 0 {
if Debug['m'] <= 2 {
Warnl(src.Lineno, "leaking param: %S", src)
step.describe(src)
} else {
Warnl(src.Lineno, "leaking param: %S level=%v dst.eld=%v src.eld=%v dst=%S",
src, level, dstE.Loopdepth, modSrcLoopdepth, dst)
}
}
}
}
// Treat a captured closure variable as equivalent to the
// original variable.
if src.isClosureVar() {
if leaks && Debug['m'] != 0 {
Warnl(src.Lineno, "leaking closure reference %S", src)
step.describe(src)
}
e.escwalk(level, dst, src.Name.Defn, e.stepWalk(dst, src.Name.Defn, "closure-var", step))
}
case OPTRLIT, OADDR:
why := "pointer literal"
if src.Op == OADDR {
why = "address-of"
}
if leaks {
src.Esc = EscHeap
if Debug['m'] != 0 && osrcesc != src.Esc {
p := src
if p.Left.Op == OCLOSURE {
p = p.Left // merely to satisfy error messages in tests
}
if Debug['m'] > 2 {
Warnl(src.Lineno, "%S escapes to heap, level=%v, dst=%v dst.eld=%v, src.eld=%v",
p, level, dst, dstE.Loopdepth, modSrcLoopdepth)
} else {
Warnl(src.Lineno, "%S escapes to heap", p)
step.describe(src)
}
}
addrescapes(src.Left)
e.escwalkBody(level.dec(), dst, src.Left, e.stepWalk(dst, src.Left, why, step), modSrcLoopdepth)
extraloopdepth = modSrcLoopdepth // passes to recursive case, seems likely a no-op
} else {
e.escwalk(level.dec(), dst, src.Left, e.stepWalk(dst, src.Left, why, step))
}
case OAPPEND:
e.escwalk(level, dst, src.List.First(), e.stepWalk(dst, src.List.First(), "append-first-arg", step))
case ODDDARG:
if leaks {
src.Esc = EscHeap
if Debug['m'] != 0 && osrcesc != src.Esc {
Warnl(src.Lineno, "%S escapes to heap", src)
step.describe(src)
}
extraloopdepth = modSrcLoopdepth
}
// similar to a slice arraylit and its args.
level = level.dec()
case OSLICELIT:
for _, n1 := range src.List.Slice() {
if n1.Op == OKEY {
n1 = n1.Right
}
e.escwalk(level.dec(), dst, n1, e.stepWalk(dst, n1, "slice-literal-element", step))
}
fallthrough
case OMAKECHAN,
OMAKEMAP,
OMAKESLICE,
OARRAYRUNESTR,
OARRAYBYTESTR,
OSTRARRAYRUNE,
OSTRARRAYBYTE,
OADDSTR,
OMAPLIT,
ONEW,
OCLOSURE,
OCALLPART,
ORUNESTR,
OCONVIFACE:
if leaks {
src.Esc = EscHeap
if Debug['m'] != 0 && osrcesc != src.Esc {
Warnl(src.Lineno, "%S escapes to heap", src)
step.describe(src)
}
extraloopdepth = modSrcLoopdepth
}
case ODOT,
ODOTTYPE:
e.escwalk(level, dst, src.Left, e.stepWalk(dst, src.Left, "dot", step))
case
OSLICE,
OSLICEARR,
OSLICE3,
OSLICE3ARR,
OSLICESTR:
e.escwalk(level, dst, src.Left, e.stepWalk(dst, src.Left, "slice", step))
case OINDEX:
if src.Left.Type.IsArray() {
e.escwalk(level, dst, src.Left, e.stepWalk(dst, src.Left, "fixed-array-index-of", step))
break
}
fallthrough
case ODOTPTR:
e.escwalk(level.inc(), dst, src.Left, e.stepWalk(dst, src.Left, "dot of pointer", step))
case OINDEXMAP:
e.escwalk(level.inc(), dst, src.Left, e.stepWalk(dst, src.Left, "map index", step))
case OIND:
e.escwalk(level.inc(), dst, src.Left, e.stepWalk(dst, src.Left, "indirection", step))
// In this case a link went directly to a call, but should really go
// to the dummy .outN outputs that were created for the call that
// themselves link to the inputs with levels adjusted.
// See e.g. #10466
// This can only happen with functions returning a single result.
case OCALLMETH, OCALLFUNC, OCALLINTER:
if srcE.Retval.Len() != 0 {
if Debug['m'] > 2 {
fmt.Printf("%v:[%d] dst %S escwalk replace src: %S with %S\n",
linestr(lineno), e.loopdepth,
dst, src, srcE.Retval.First())
}
src = srcE.Retval.First()
srcE = e.nodeEscState(src)
}
}
recurse:
level = level.copy()
for i := range srcE.Flowsrc {
s := &srcE.Flowsrc[i]
s.parent = step
e.escwalkBody(level, dst, s.src, s, extraloopdepth)
s.parent = nil
}
e.pdepth--
}
// This special tag is applied to uintptr variables
// that we believe may hold unsafe.Pointers for
// calls into assembly functions.
// It is logically a constant, but using a var
// lets us take the address below to get a *string.
var unsafeUintptrTag = "unsafe-uintptr"
// This special tag is applied to uintptr parameters of functions
// marked go:uintptrescapes.
const uintptrEscapesTag = "uintptr-escapes"
func (e *EscState) esctag(fn *Node) {
fn.Esc = EscFuncTagged
name := func(s *Sym, narg int) string {
if s != nil {
return s.Name
}
return fmt.Sprintf("arg#%d", narg)
}
// External functions are assumed unsafe,
// unless //go:noescape is given before the declaration.
if fn.Nbody.Len() == 0 {
if fn.Noescape {
for _, f := range fn.Type.Params().Fields().Slice() {
if haspointers(f.Type) {
f.Note = mktag(EscNone)
}
}
}
// Assume that uintptr arguments must be held live across the call.
// This is most important for syscall.Syscall.
// See golang.org/issue/13372.
// This really doesn't have much to do with escape analysis per se,
// but we are reusing the ability to annotate an individual function
// argument and pass those annotations along to importing code.
narg := 0
for _, f := range fn.Type.Params().Fields().Slice() {
narg++
if f.Type.Etype == TUINTPTR {
if Debug['m'] != 0 {
Warnl(fn.Lineno, "%v assuming %v is unsafe uintptr", funcSym(fn), name(f.Sym, narg))
}
f.Note = unsafeUintptrTag
}
}
return
}
if fn.Func.Pragma&UintptrEscapes != 0 {
narg := 0
for _, f := range fn.Type.Params().Fields().Slice() {
narg++
if f.Type.Etype == TUINTPTR {
if Debug['m'] != 0 {
Warnl(fn.Lineno, "%v marking %v as escaping uintptr", funcSym(fn), name(f.Sym, narg))
}
f.Note = uintptrEscapesTag
}
if f.Isddd && f.Type.Elem().Etype == TUINTPTR {
// final argument is ...uintptr.
if Debug['m'] != 0 {
Warnl(fn.Lineno, "%v marking %v as escaping ...uintptr", funcSym(fn), name(f.Sym, narg))
}
f.Note = uintptrEscapesTag
}
}
}
for _, ln := range fn.Func.Dcl {
if ln.Op != ONAME {
continue
}
switch ln.Esc & EscMask {
case EscNone, // not touched by escflood
EscReturn:
if haspointers(ln.Type) { // don't bother tagging for scalars
if ln.Name.Param.Field.Note != uintptrEscapesTag {
ln.Name.Param.Field.Note = mktag(int(ln.Esc))
}
}
case EscHeap: // touched by escflood, moved to heap
}
}
}