go/src/cmd/compile/internal/ssa/cse.go
Todd Neal bc07922843 [dev.ssa] cmd/compile: speed up cse
Examine both Aux and AuxInt to form more precise initial partitions.
Restructure loop to avoid repeated type.Equal() call.  Speeds up
compilation of testdata/gen/arithConst_ssa by 25%.

Change-Id: I3cfb1d254adf0601ee69239e1885b0cf2a23575b
Reviewed-on: https://go-review.googlesource.com/19313
Run-TryBot: Todd Neal <todd@tneal.org>
Reviewed-by: Keith Randall <khr@golang.org>
2016-02-08 02:43:19 +00:00

345 lines
8.7 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import "sort"
// cse does common-subexpression elimination on the Function.
// Values are just relinked, nothing is deleted. A subsequent deadcode
// pass is required to actually remove duplicate expressions.
func cse(f *Func) {
if !f.Config.optimize {
// Don't do CSE in this case. But we need to do
// just a little bit, to combine multiple OpSB ops.
// Regalloc gets very confused otherwise.
var sb *Value
outer:
for _, b := range f.Blocks {
for _, v := range b.Values {
if v.Op == OpSB {
sb = v
break outer
}
}
}
if sb == nil {
return
}
for _, b := range f.Blocks {
for _, v := range b.Values {
for i, a := range v.Args {
if a.Op == OpSB {
v.Args[i] = sb
}
}
}
}
return
}
// Two values are equivalent if they satisfy the following definition:
// equivalent(v, w):
// v.op == w.op
// v.type == w.type
// v.aux == w.aux
// v.auxint == w.auxint
// len(v.args) == len(w.args)
// v.block == w.block if v.op == OpPhi
// equivalent(v.args[i], w.args[i]) for i in 0..len(v.args)-1
// The algorithm searches for a partition of f's values into
// equivalence classes using the above definition.
// It starts with a coarse partition and iteratively refines it
// until it reaches a fixed point.
// Make initial coarse partitions by using a subset of the conditions above.
a := make([]*Value, 0, f.NumValues())
for _, b := range f.Blocks {
for _, v := range b.Values {
if v.Type.IsMemory() {
continue // memory values can never cse
}
a = append(a, v)
}
}
partition := partitionValues(a)
// map from value id back to eqclass id
valueEqClass := make([]ID, f.NumValues())
for _, b := range f.Blocks {
for _, v := range b.Values {
// Use negative equivalence class #s for unique values.
valueEqClass[v.ID] = -v.ID
}
}
for i, e := range partition {
for _, v := range e {
valueEqClass[v.ID] = ID(i)
}
}
// Find an equivalence class where some members of the class have
// non-equivalent arguments. Split the equivalence class appropriately.
// Repeat until we can't find any more splits.
for {
changed := false
// partition can grow in the loop. By not using a range loop here,
// we process new additions as they arrive, avoiding O(n^2) behavior.
for i := 0; i < len(partition); i++ {
e := partition[i]
v := e[0]
// all values in this equiv class that are not equivalent to v get moved
// into another equiv class.
// To avoid allocating while building that equivalence class,
// move the values equivalent to v to the beginning of e
// and other values to the end of e.
allvals := e
eqloop:
for j := 1; j < len(e); {
w := e[j]
equivalent := true
for i := 0; i < len(v.Args); i++ {
if valueEqClass[v.Args[i].ID] != valueEqClass[w.Args[i].ID] {
equivalent = false
break
}
}
if !equivalent || !v.Type.Equal(w.Type) {
// w is not equivalent to v.
// move it to the end and shrink e.
e[j], e[len(e)-1] = e[len(e)-1], e[j]
e = e[:len(e)-1]
valueEqClass[w.ID] = ID(len(partition))
changed = true
continue eqloop
}
// v and w are equivalent. Keep w in e.
j++
}
partition[i] = e
if len(e) < len(allvals) {
partition = append(partition, allvals[len(e):])
}
}
if !changed {
break
}
}
// Compute dominator tree
idom := dominators(f)
sdom := newSparseTree(f, idom)
// Compute substitutions we would like to do. We substitute v for w
// if v and w are in the same equivalence class and v dominates w.
rewrite := make([]*Value, f.NumValues())
for _, e := range partition {
for len(e) > 1 {
// Find a maximal dominant element in e
v := e[0]
for _, w := range e[1:] {
if sdom.isAncestorEq(w.Block, v.Block) {
v = w
}
}
// Replace all elements of e which v dominates
for i := 0; i < len(e); {
w := e[i]
if w == v {
e, e[i] = e[:len(e)-1], e[len(e)-1]
} else if sdom.isAncestorEq(v.Block, w.Block) {
rewrite[w.ID] = v
e, e[i] = e[:len(e)-1], e[len(e)-1]
} else {
i++
}
}
}
}
// Apply substitutions
for _, b := range f.Blocks {
for _, v := range b.Values {
for i, w := range v.Args {
if x := rewrite[w.ID]; x != nil {
v.SetArg(i, x)
}
}
}
if v := b.Control; v != nil {
if x := rewrite[v.ID]; x != nil {
if v.Op == OpNilCheck {
// nilcheck pass will remove the nil checks and log
// them appropriately, so don't mess with them here.
continue
}
b.Control = x
}
}
}
}
// An eqclass approximates an equivalence class. During the
// algorithm it may represent the union of several of the
// final equivalence classes.
type eqclass []*Value
// partitionValues partitions the values into equivalence classes
// based on having all the following features match:
// - opcode
// - type
// - auxint
// - aux
// - nargs
// - block # if a phi op
// - first two arg's opcodes
// partitionValues returns a list of equivalence classes, each
// being a sorted by ID list of *Values. The eqclass slices are
// backed by the same storage as the input slice.
// Equivalence classes of size 1 are ignored.
func partitionValues(a []*Value) []eqclass {
typNames := map[Type]string{}
auxIDs := map[interface{}]int32{}
sort.Sort(sortvalues{a, typNames, auxIDs})
var partition []eqclass
for len(a) > 0 {
v := a[0]
j := 1
for ; j < len(a); j++ {
w := a[j]
if v.Op != w.Op ||
v.AuxInt != w.AuxInt ||
len(v.Args) != len(w.Args) ||
v.Op == OpPhi && v.Block != w.Block ||
v.Aux != w.Aux ||
len(v.Args) >= 1 && (v.Args[0].Op != w.Args[0].Op ||
v.Args[0].Aux != w.Args[0].Aux ||
v.Args[0].AuxInt != w.Args[0].AuxInt) ||
len(v.Args) >= 2 && (v.Args[1].Op != w.Args[1].Op ||
v.Args[1].Aux != w.Args[1].Aux ||
v.Args[1].AuxInt != w.Args[1].AuxInt) ||
typNames[v.Type] != typNames[w.Type] {
break
}
}
if j > 1 {
partition = append(partition, a[:j])
}
a = a[j:]
}
return partition
}
// Sort values to make the initial partition.
type sortvalues struct {
a []*Value // array of values
typNames map[Type]string // type -> type ID map
auxIDs map[interface{}]int32 // aux -> aux ID map
}
func (sv sortvalues) Len() int { return len(sv.a) }
func (sv sortvalues) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
func (sv sortvalues) Less(i, j int) bool {
v := sv.a[i]
w := sv.a[j]
if v.Op != w.Op {
return v.Op < w.Op
}
if v.AuxInt != w.AuxInt {
return v.AuxInt < w.AuxInt
}
if v.Aux == nil && w.Aux != nil { // cheap aux check - expensive one below.
return true
}
if v.Aux != nil && w.Aux == nil {
return false
}
if len(v.Args) != len(w.Args) {
return len(v.Args) < len(w.Args)
}
if v.Op == OpPhi && v.Block.ID != w.Block.ID {
return v.Block.ID < w.Block.ID
}
if len(v.Args) >= 1 {
vOp := v.Args[0].Op
wOp := w.Args[0].Op
if vOp != wOp {
return vOp < wOp
}
vAuxInt := v.Args[0].AuxInt
wAuxInt := w.Args[0].AuxInt
if vAuxInt != wAuxInt {
return vAuxInt < wAuxInt
}
if len(v.Args) >= 2 {
vOp = v.Args[1].Op
wOp = w.Args[1].Op
if vOp != wOp {
return vOp < wOp
}
vAuxInt = v.Args[1].AuxInt
wAuxInt = w.Args[1].AuxInt
if vAuxInt != wAuxInt {
return vAuxInt < wAuxInt
}
}
}
// Sort by type. Types are just interfaces, so we can't compare
// them with < directly. Instead, map types to their names and
// sort on that.
if v.Type != w.Type {
x := sv.typNames[v.Type]
if x == "" {
x = v.Type.String()
sv.typNames[v.Type] = x
}
y := sv.typNames[w.Type]
if y == "" {
y = w.Type.String()
sv.typNames[w.Type] = y
}
if x != y {
return x < y
}
}
// Same deal for aux fields.
if v.Aux != w.Aux {
x := sv.auxIDs[v.Aux]
if x == 0 {
x = int32(len(sv.auxIDs)) + 1
sv.auxIDs[v.Aux] = x
}
y := sv.auxIDs[w.Aux]
if y == 0 {
y = int32(len(sv.auxIDs)) + 1
sv.auxIDs[w.Aux] = y
}
if x != y {
return x < y
}
}
// TODO(khr): is the above really ok to do? We're building
// the aux->auxID map online as sort is asking about it. If
// sort has some internal randomness, then the numbering might
// change from run to run. That will make the ordering of
// partitions random. It won't break the compiler but may
// make it nondeterministic. We could fix this by computing
// the aux->auxID map ahead of time, but the hope is here that
// we won't need to compute the mapping for many aux fields
// because the values they are in are otherwise unique.
// Sort by value ID last to keep the sort result deterministic.
return v.ID < w.ID
}