mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
We should be putting a newly instantiated imported type in Instantiate/doInst onto the instTypeList, so its methods/dictionaries are instantiated. To do this, we needed a more general way to add a type to instTypeList, so add NeedInstType(), analogous to NeedRuntimeType(). This has the extra advantage that now all types created by the type substituter are added to instTypeList without any extra code, which was easy to forget. doInst() now correctly calls NeedInstType(). This is a bit aggressive, since a fully instantiated type in a generic function/method may never be used, if the generic method is never instantiated in the local package. But it should be fairly uncommon for a generic method to mention a fully instantiated type (but it does happen in this bug). Fixes both cases mentioned in the bug. Fixed #48185 Change-Id: I19b5012dfac17e306c8005f8595a648b0ab280d0 Reviewed-on: https://go-review.googlesource.com/c/go/+/347909 Trust: Dan Scales <danscales@google.com> Trust: Cuong Manh Le <cuong.manhle.vn@gmail.com> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Keith Randall <khr@golang.org>
523 lines
16 KiB
Go
523 lines
16 KiB
Go
// Copyright 2021 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package noder
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/syntax"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/compile/internal/types2"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
func (g *irgen) expr(expr syntax.Expr) ir.Node {
|
|
expr = unparen(expr) // skip parens; unneeded after parse+typecheck
|
|
|
|
if expr == nil {
|
|
return nil
|
|
}
|
|
|
|
if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
|
|
return ir.BlankNode
|
|
}
|
|
|
|
tv, ok := g.info.Types[expr]
|
|
if !ok {
|
|
base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
|
|
}
|
|
switch {
|
|
case tv.IsBuiltin():
|
|
// Qualified builtins, such as unsafe.Add and unsafe.Slice.
|
|
if expr, ok := expr.(*syntax.SelectorExpr); ok {
|
|
if name, ok := expr.X.(*syntax.Name); ok {
|
|
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
|
|
return g.use(expr.Sel)
|
|
}
|
|
}
|
|
}
|
|
return g.use(expr.(*syntax.Name))
|
|
case tv.IsType():
|
|
return ir.TypeNode(g.typ(tv.Type))
|
|
case tv.IsValue(), tv.IsVoid():
|
|
// ok
|
|
default:
|
|
base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
|
|
}
|
|
|
|
base.Assert(g.exprStmtOK)
|
|
|
|
// The gc backend expects all expressions to have a concrete type, and
|
|
// types2 mostly satisfies this expectation already. But there are a few
|
|
// cases where the Go spec doesn't require converting to concrete type,
|
|
// and so types2 leaves them untyped. So we need to fix those up here.
|
|
typ := tv.Type
|
|
if basic, ok := typ.(*types2.Basic); ok && basic.Info()&types2.IsUntyped != 0 {
|
|
switch basic.Kind() {
|
|
case types2.UntypedNil:
|
|
// ok; can appear in type switch case clauses
|
|
// TODO(mdempsky): Handle as part of type switches instead?
|
|
case types2.UntypedBool:
|
|
typ = types2.Typ[types2.Bool] // expression in "if" or "for" condition
|
|
case types2.UntypedString:
|
|
typ = types2.Typ[types2.String] // argument to "append" or "copy" calls
|
|
default:
|
|
base.FatalfAt(g.pos(expr), "unexpected untyped type: %v", basic)
|
|
}
|
|
}
|
|
|
|
// Constant expression.
|
|
if tv.Value != nil {
|
|
typ := g.typ(typ)
|
|
value := FixValue(typ, tv.Value)
|
|
return OrigConst(g.pos(expr), typ, value, constExprOp(expr), syntax.String(expr))
|
|
}
|
|
|
|
n := g.expr0(typ, expr)
|
|
if n.Typecheck() != 1 && n.Typecheck() != 3 {
|
|
base.FatalfAt(g.pos(expr), "missed typecheck: %+v", n)
|
|
}
|
|
if n.Op() != ir.OFUNCINST && !g.match(n.Type(), typ, tv.HasOk()) {
|
|
base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, typ)
|
|
}
|
|
return n
|
|
}
|
|
|
|
func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
|
|
pos := g.pos(expr)
|
|
assert(pos.IsKnown())
|
|
|
|
// Set base.Pos for transformation code that still uses base.Pos, rather than
|
|
// the pos of the node being converted.
|
|
base.Pos = pos
|
|
|
|
switch expr := expr.(type) {
|
|
case *syntax.Name:
|
|
if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
|
|
return Nil(pos, g.typ(typ))
|
|
}
|
|
return g.use(expr)
|
|
|
|
case *syntax.CompositeLit:
|
|
return g.compLit(typ, expr)
|
|
|
|
case *syntax.FuncLit:
|
|
return g.funcLit(typ, expr)
|
|
|
|
case *syntax.AssertExpr:
|
|
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
|
|
|
|
case *syntax.CallExpr:
|
|
fun := g.expr(expr.Fun)
|
|
|
|
// The key for the Inferred map is the CallExpr (if inferring
|
|
// types required the function arguments) or the IndexExpr below
|
|
// (if types could be inferred without the function arguments).
|
|
if inferred, ok := g.info.Inferred[expr]; ok && inferred.TArgs.Len() > 0 {
|
|
// This is the case where inferring types required the
|
|
// types of the function arguments.
|
|
targs := make([]ir.Node, inferred.TArgs.Len())
|
|
for i := range targs {
|
|
targs[i] = ir.TypeNode(g.typ(inferred.TArgs.At(i)))
|
|
}
|
|
if fun.Op() == ir.OFUNCINST {
|
|
if len(fun.(*ir.InstExpr).Targs) < len(targs) {
|
|
// Replace explicit type args with the full list that
|
|
// includes the additional inferred type args.
|
|
// Substitute the type args for the type params in
|
|
// the generic function's type.
|
|
fun.(*ir.InstExpr).Targs = targs
|
|
newt := g.substType(fun.(*ir.InstExpr).X.Type(), fun.(*ir.InstExpr).X.Type().TParams(), targs)
|
|
typed(newt, fun)
|
|
}
|
|
} else {
|
|
// Create a function instantiation here, given there
|
|
// are only inferred type args (e.g. min(5,6), where
|
|
// min is a generic function). Substitute the type
|
|
// args for the type params in the generic function's
|
|
// type.
|
|
inst := ir.NewInstExpr(pos, ir.OFUNCINST, fun, targs)
|
|
newt := g.substType(fun.Type(), fun.Type().TParams(), targs)
|
|
typed(newt, inst)
|
|
fun = inst
|
|
}
|
|
|
|
}
|
|
return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)
|
|
|
|
case *syntax.IndexExpr:
|
|
var targs []ir.Node
|
|
|
|
if inferred, ok := g.info.Inferred[expr]; ok && inferred.TArgs.Len() > 0 {
|
|
// This is the partial type inference case where the types
|
|
// can be inferred from other type arguments without using
|
|
// the types of the function arguments.
|
|
targs = make([]ir.Node, inferred.TArgs.Len())
|
|
for i := range targs {
|
|
targs[i] = ir.TypeNode(g.typ(inferred.TArgs.At(i)))
|
|
}
|
|
} else if _, ok := expr.Index.(*syntax.ListExpr); ok {
|
|
targs = g.exprList(expr.Index)
|
|
} else {
|
|
index := g.expr(expr.Index)
|
|
if index.Op() != ir.OTYPE {
|
|
// This is just a normal index expression
|
|
return Index(pos, g.typ(typ), g.expr(expr.X), index)
|
|
}
|
|
// This is generic function instantiation with a single type
|
|
targs = []ir.Node{index}
|
|
}
|
|
// This is a generic function instantiation (e.g. min[int]).
|
|
// Generic type instantiation is handled in the type
|
|
// section of expr() above (using g.typ).
|
|
x := g.expr(expr.X)
|
|
if x.Op() != ir.ONAME || x.Type().Kind() != types.TFUNC {
|
|
panic("Incorrect argument for generic func instantiation")
|
|
}
|
|
n := ir.NewInstExpr(pos, ir.OFUNCINST, x, targs)
|
|
newt := g.typ(typ)
|
|
// Substitute the type args for the type params in the uninstantiated
|
|
// function's type. If there aren't enough type args, then the rest
|
|
// will be inferred at the call node, so don't try the substitution yet.
|
|
if x.Type().TParams().NumFields() == len(targs) {
|
|
newt = g.substType(g.typ(typ), x.Type().TParams(), targs)
|
|
}
|
|
typed(newt, n)
|
|
return n
|
|
|
|
case *syntax.SelectorExpr:
|
|
// Qualified identifier.
|
|
if name, ok := expr.X.(*syntax.Name); ok {
|
|
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
|
|
return g.use(expr.Sel)
|
|
}
|
|
}
|
|
return g.selectorExpr(pos, typ, expr)
|
|
|
|
case *syntax.SliceExpr:
|
|
return Slice(pos, g.typ(typ), g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
|
|
|
|
case *syntax.Operation:
|
|
if expr.Y == nil {
|
|
return Unary(pos, g.typ(typ), g.op(expr.Op, unOps[:]), g.expr(expr.X))
|
|
}
|
|
switch op := g.op(expr.Op, binOps[:]); op {
|
|
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
|
|
return Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
|
|
default:
|
|
return Binary(pos, op, g.typ(typ), g.expr(expr.X), g.expr(expr.Y))
|
|
}
|
|
|
|
default:
|
|
g.unhandled("expression", expr)
|
|
panic("unreachable")
|
|
}
|
|
}
|
|
|
|
// substType does a normal type substition, but tparams is in the form of a field
|
|
// list, and targs is in terms of a slice of type nodes. substType records any newly
|
|
// instantiated types into g.instTypeList.
|
|
func (g *irgen) substType(typ *types.Type, tparams *types.Type, targs []ir.Node) *types.Type {
|
|
fields := tparams.FieldSlice()
|
|
tparams1 := make([]*types.Type, len(fields))
|
|
for i, f := range fields {
|
|
tparams1[i] = f.Type
|
|
}
|
|
targs1 := make([]*types.Type, len(targs))
|
|
for i, n := range targs {
|
|
targs1[i] = n.Type()
|
|
}
|
|
ts := typecheck.Tsubster{
|
|
Tparams: tparams1,
|
|
Targs: targs1,
|
|
}
|
|
newt := ts.Typ(typ)
|
|
return newt
|
|
}
|
|
|
|
// selectorExpr resolves the choice of ODOT, ODOTPTR, OMETHVALUE (eventually
|
|
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
|
|
// than in typecheck.go.
|
|
func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
|
|
x := g.expr(expr.X)
|
|
if x.Type().HasTParam() {
|
|
// Leave a method call on a type param as an OXDOT, since it can
|
|
// only be fully transformed once it has an instantiated type.
|
|
n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
|
|
typed(g.typ(typ), n)
|
|
|
|
// Fill in n.Selection for a generic method reference or a bound
|
|
// interface method, even though we won't use it directly, since it
|
|
// is useful for analysis. Specifically do not fill in for fields or
|
|
// other interfaces methods (method call on an interface value), so
|
|
// n.Selection being non-nil means a method reference for a generic
|
|
// type or a method reference due to a bound.
|
|
obj2 := g.info.Selections[expr].Obj()
|
|
sig := types2.AsSignature(obj2.Type())
|
|
if sig == nil || sig.Recv() == nil {
|
|
return n
|
|
}
|
|
index := g.info.Selections[expr].Index()
|
|
last := index[len(index)-1]
|
|
// recvType is the receiver of the method being called. Because of the
|
|
// way methods are imported, g.obj(obj2) doesn't work across
|
|
// packages, so we have to lookup the method via the receiver type.
|
|
recvType := deref2(sig.Recv().Type())
|
|
if types2.AsInterface(recvType.Underlying()) != nil {
|
|
fieldType := n.X.Type()
|
|
for _, ix := range index[:len(index)-1] {
|
|
fieldType = deref(fieldType).Field(ix).Type
|
|
}
|
|
if fieldType.Kind() == types.TTYPEPARAM {
|
|
n.Selection = fieldType.Bound().AllMethods().Index(last)
|
|
//fmt.Printf(">>>>> %v: Bound call %v\n", base.FmtPos(pos), n.Sel)
|
|
} else {
|
|
assert(fieldType.Kind() == types.TINTER)
|
|
//fmt.Printf(">>>>> %v: Interface call %v\n", base.FmtPos(pos), n.Sel)
|
|
}
|
|
return n
|
|
}
|
|
|
|
recvObj := types2.AsNamed(recvType).Obj()
|
|
recv := g.pkg(recvObj.Pkg()).Lookup(recvObj.Name()).Def
|
|
n.Selection = recv.Type().Methods().Index(last)
|
|
//fmt.Printf(">>>>> %v: Method call %v\n", base.FmtPos(pos), n.Sel)
|
|
|
|
return n
|
|
}
|
|
|
|
selinfo := g.info.Selections[expr]
|
|
// Everything up to the last selection is an implicit embedded field access,
|
|
// and the last selection is determined by selinfo.Kind().
|
|
index := selinfo.Index()
|
|
embeds, last := index[:len(index)-1], index[len(index)-1]
|
|
|
|
origx := x
|
|
for _, ix := range embeds {
|
|
x = Implicit(DotField(pos, x, ix))
|
|
}
|
|
|
|
kind := selinfo.Kind()
|
|
if kind == types2.FieldVal {
|
|
return DotField(pos, x, last)
|
|
}
|
|
|
|
// TODO(danscales,mdempsky): Interface method sets are not sorted the
|
|
// same between types and types2. In particular, using "last" here
|
|
// without conversion will likely fail if an interface contains
|
|
// unexported methods from two different packages (due to cross-package
|
|
// interface embedding).
|
|
|
|
var n ir.Node
|
|
method2 := selinfo.Obj().(*types2.Func)
|
|
|
|
if kind == types2.MethodExpr {
|
|
// OMETHEXPR is unusual in using directly the node and type of the
|
|
// original OTYPE node (origx) before passing through embedded
|
|
// fields, even though the method is selected from the type
|
|
// (x.Type()) reached after following the embedded fields. We will
|
|
// actually drop any ODOT nodes we created due to the embedded
|
|
// fields.
|
|
n = MethodExpr(pos, origx, x.Type(), last)
|
|
} else {
|
|
// Add implicit addr/deref for method values, if needed.
|
|
if x.Type().IsInterface() {
|
|
n = DotMethod(pos, x, last)
|
|
} else {
|
|
recvType2 := method2.Type().(*types2.Signature).Recv().Type()
|
|
_, wantPtr := recvType2.(*types2.Pointer)
|
|
havePtr := x.Type().IsPtr()
|
|
|
|
if havePtr != wantPtr {
|
|
if havePtr {
|
|
x = Implicit(Deref(pos, x.Type().Elem(), x))
|
|
} else {
|
|
x = Implicit(Addr(pos, x))
|
|
}
|
|
}
|
|
recvType2Base := recvType2
|
|
if wantPtr {
|
|
recvType2Base = types2.AsPointer(recvType2).Elem()
|
|
}
|
|
if types2.AsNamed(recvType2Base).TParams().Len() > 0 {
|
|
// recvType2 is the original generic type that is
|
|
// instantiated for this method call.
|
|
// selinfo.Recv() is the instantiated type
|
|
recvType2 = recvType2Base
|
|
recvTypeSym := g.pkg(method2.Pkg()).Lookup(recvType2.(*types2.Named).Obj().Name())
|
|
recvType := recvTypeSym.Def.(*ir.Name).Type()
|
|
// method is the generic method associated with
|
|
// the base generic type. The instantiated type may not
|
|
// have method bodies filled in, if it was imported.
|
|
method := recvType.Methods().Index(last).Nname.(*ir.Name)
|
|
n = ir.NewSelectorExpr(pos, ir.OMETHVALUE, x, typecheck.Lookup(expr.Sel.Value))
|
|
n.(*ir.SelectorExpr).Selection = types.NewField(pos, method.Sym(), method.Type())
|
|
n.(*ir.SelectorExpr).Selection.Nname = method
|
|
typed(method.Type(), n)
|
|
|
|
// selinfo.Targs() are the types used to
|
|
// instantiate the type of receiver
|
|
targs2 := getTargs(selinfo)
|
|
targs := make([]ir.Node, targs2.Len())
|
|
for i := range targs {
|
|
targs[i] = ir.TypeNode(g.typ(targs2.At(i)))
|
|
}
|
|
|
|
// Create function instantiation with the type
|
|
// args for the receiver type for the method call.
|
|
n = ir.NewInstExpr(pos, ir.OFUNCINST, n, targs)
|
|
typed(g.typ(typ), n)
|
|
return n
|
|
}
|
|
|
|
if !g.match(x.Type(), recvType2, false) {
|
|
base.FatalfAt(pos, "expected %L to have type %v", x, recvType2)
|
|
} else {
|
|
n = DotMethod(pos, x, last)
|
|
}
|
|
}
|
|
}
|
|
if have, want := n.Sym(), g.selector(method2); have != want {
|
|
base.FatalfAt(pos, "bad Sym: have %v, want %v", have, want)
|
|
}
|
|
return n
|
|
}
|
|
|
|
// getTargs gets the targs associated with the receiver of a selected method
|
|
func getTargs(selinfo *types2.Selection) *types2.TypeList {
|
|
r := deref2(selinfo.Recv())
|
|
n := types2.AsNamed(r)
|
|
if n == nil {
|
|
base.Fatalf("Incorrect type for selinfo %v", selinfo)
|
|
}
|
|
return n.TArgs()
|
|
}
|
|
|
|
func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
|
|
return g.exprs(unpackListExpr(expr))
|
|
}
|
|
|
|
func unpackListExpr(expr syntax.Expr) []syntax.Expr {
|
|
switch expr := expr.(type) {
|
|
case nil:
|
|
return nil
|
|
case *syntax.ListExpr:
|
|
return expr.ElemList
|
|
default:
|
|
return []syntax.Expr{expr}
|
|
}
|
|
}
|
|
|
|
func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
|
|
nodes := make([]ir.Node, len(exprs))
|
|
for i, expr := range exprs {
|
|
nodes[i] = g.expr(expr)
|
|
}
|
|
return nodes
|
|
}
|
|
|
|
func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
|
|
if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
|
|
n := ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
|
|
n.SetOp(ir.OPTRLIT)
|
|
return typed(g.typ(typ), n)
|
|
}
|
|
|
|
_, isStruct := typ.Underlying().(*types2.Struct)
|
|
|
|
exprs := make([]ir.Node, len(lit.ElemList))
|
|
for i, elem := range lit.ElemList {
|
|
switch elem := elem.(type) {
|
|
case *syntax.KeyValueExpr:
|
|
var key ir.Node
|
|
if isStruct {
|
|
key = ir.NewIdent(g.pos(elem.Key), g.name(elem.Key.(*syntax.Name)))
|
|
} else {
|
|
key = g.expr(elem.Key)
|
|
}
|
|
exprs[i] = ir.NewKeyExpr(g.pos(elem), key, g.expr(elem.Value))
|
|
default:
|
|
exprs[i] = g.expr(elem)
|
|
}
|
|
}
|
|
|
|
n := ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, nil, exprs)
|
|
typed(g.typ(typ), n)
|
|
return transformCompLit(n)
|
|
}
|
|
|
|
func (g *irgen) funcLit(typ2 types2.Type, expr *syntax.FuncLit) ir.Node {
|
|
fn := ir.NewClosureFunc(g.pos(expr), ir.CurFunc != nil)
|
|
ir.NameClosure(fn.OClosure, ir.CurFunc)
|
|
|
|
typ := g.typ(typ2)
|
|
typed(typ, fn.Nname)
|
|
typed(typ, fn.OClosure)
|
|
fn.SetTypecheck(1)
|
|
|
|
g.funcBody(fn, nil, expr.Type, expr.Body)
|
|
|
|
ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)
|
|
|
|
// TODO(mdempsky): ir.CaptureName should probably handle
|
|
// copying these fields from the canonical variable.
|
|
for _, cv := range fn.ClosureVars {
|
|
cv.SetType(cv.Canonical().Type())
|
|
cv.SetTypecheck(1)
|
|
cv.SetWalkdef(1)
|
|
}
|
|
|
|
if g.topFuncIsGeneric {
|
|
// Don't add any closure inside a generic function/method to the
|
|
// g.target.Decls list, even though it may not be generic itself.
|
|
// See issue #47514.
|
|
return ir.UseClosure(fn.OClosure, nil)
|
|
} else {
|
|
return ir.UseClosure(fn.OClosure, g.target)
|
|
}
|
|
}
|
|
|
|
func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
|
|
n := g.expr(typ)
|
|
if n.Op() != ir.OTYPE {
|
|
base.FatalfAt(g.pos(typ), "expected type: %L", n)
|
|
}
|
|
return n.Type()
|
|
}
|
|
|
|
// constExprOp returns an ir.Op that represents the outermost
|
|
// operation of the given constant expression. It's intended for use
|
|
// with ir.RawOrigExpr.
|
|
func constExprOp(expr syntax.Expr) ir.Op {
|
|
switch expr := expr.(type) {
|
|
default:
|
|
panic(fmt.Sprintf("%s: unexpected expression: %T", expr.Pos(), expr))
|
|
|
|
case *syntax.BasicLit:
|
|
return ir.OLITERAL
|
|
case *syntax.Name, *syntax.SelectorExpr:
|
|
return ir.ONAME
|
|
case *syntax.CallExpr:
|
|
return ir.OCALL
|
|
case *syntax.Operation:
|
|
if expr.Y == nil {
|
|
return unOps[expr.Op]
|
|
}
|
|
return binOps[expr.Op]
|
|
}
|
|
}
|
|
|
|
func unparen(expr syntax.Expr) syntax.Expr {
|
|
for {
|
|
paren, ok := expr.(*syntax.ParenExpr)
|
|
if !ok {
|
|
return expr
|
|
}
|
|
expr = paren.X
|
|
}
|
|
}
|