go/src/cmd/compile/internal/noder/stencil.go
Dan Scales c236095638 cmd/compile: add support for generic maps
Add support for maps in subster.typ(). Add new test cases maps.go and set.go.

Change substitution of a TFUNC in subster.typ() to always create new
param and result structs if any of the receiver, param, or result
structs get substituted. All these func structs must be copied, because
they have offset fields that are dependent, and so must have an
independent copy for each new signature (else there will be an error
later when frame offsets are calculated).

Change-Id: I576942a62f06b46b6f005abc98f65533008de8dc
Reviewed-on: https://go-review.googlesource.com/c/go/+/301670
Trust: Dan Scales <danscales@google.com>
Trust: Robert Griesemer <gri@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
2021-03-15 20:28:34 +00:00

791 lines
24 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file will evolve, since we plan to do a mix of stenciling and passing
// around dictionaries.
package noder
import (
"bytes"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
"strings"
)
// For catching problems as we add more features
// TODO(danscales): remove assertions or replace with base.FatalfAt()
func assert(p bool) {
if !p {
panic("assertion failed")
}
}
// stencil scans functions for instantiated generic function calls and creates the
// required instantiations for simple generic functions. It also creates
// instantiated methods for all fully-instantiated generic types that have been
// encountered already or new ones that are encountered during the stenciling
// process.
func (g *irgen) stencil() {
g.target.Stencils = make(map[*types.Sym]*ir.Func)
// Instantiate the methods of instantiated generic types that we have seen so far.
g.instantiateMethods()
// Don't use range(g.target.Decls) - we also want to process any new instantiated
// functions that are created during this loop, in order to handle generic
// functions calling other generic functions.
for i := 0; i < len(g.target.Decls); i++ {
decl := g.target.Decls[i]
// Look for function instantiations in bodies of non-generic
// functions or in global assignments (ignore global type and
// constant declarations).
switch decl.Op() {
case ir.ODCLFUNC:
if decl.Type().HasTParam() {
// Skip any generic functions
continue
}
case ir.OAS:
case ir.OAS2:
default:
continue
}
// For all non-generic code, search for any function calls using
// generic function instantiations. Then create the needed
// instantiated function if it hasn't been created yet, and change
// to calling that function directly.
modified := false
foundFuncInst := false
ir.Visit(decl, func(n ir.Node) {
if n.Op() == ir.OFUNCINST {
// We found a function instantiation that is not
// immediately called.
foundFuncInst = true
}
if n.Op() != ir.OCALL || n.(*ir.CallExpr).X.Op() != ir.OFUNCINST {
return
}
// We have found a function call using a generic function
// instantiation.
call := n.(*ir.CallExpr)
inst := call.X.(*ir.InstExpr)
st := g.getInstantiationForNode(inst)
// Replace the OFUNCINST with a direct reference to the
// new stenciled function
call.X = st.Nname
if inst.X.Op() == ir.OCALLPART {
// When we create an instantiation of a method
// call, we make it a function. So, move the
// receiver to be the first arg of the function
// call.
withRecv := make([]ir.Node, len(call.Args)+1)
dot := inst.X.(*ir.SelectorExpr)
withRecv[0] = dot.X
copy(withRecv[1:], call.Args)
call.Args = withRecv
}
// Do the typechecking of the Call now, which changes OCALL
// to OCALLFUNC and does typecheckaste/assignconvfn.
call.SetTypecheck(0)
typecheck.Call(call)
modified = true
})
// If we found an OFUNCINST without a corresponding call in the
// above decl, then traverse the nodes of decl again (with
// EditChildren rather than Visit), where we actually change the
// OFUNCINST node to an ONAME for the instantiated function.
// EditChildren is more expensive than Visit, so we only do this
// in the infrequent case of an OFUNCINSt without a corresponding
// call.
if foundFuncInst {
var edit func(ir.Node) ir.Node
edit = func(x ir.Node) ir.Node {
if x.Op() == ir.OFUNCINST {
st := g.getInstantiationForNode(x.(*ir.InstExpr))
return st.Nname
}
ir.EditChildren(x, edit)
return x
}
edit(decl)
}
if base.Flag.W > 1 && modified {
ir.Dump(fmt.Sprintf("\nmodified %v", decl), decl)
}
// We may have seen new fully-instantiated generic types while
// instantiating any needed functions/methods in the above
// function. If so, instantiate all the methods of those types
// (which will then lead to more function/methods to scan in the loop).
g.instantiateMethods()
}
}
// instantiateMethods instantiates all the methods of all fully-instantiated
// generic types that have been added to g.instTypeList.
func (g *irgen) instantiateMethods() {
for i := 0; i < len(g.instTypeList); i++ {
typ := g.instTypeList[i]
// Get the base generic type by looking up the symbol of the
// generic (uninstantiated) name.
baseSym := typ.Sym().Pkg.Lookup(genericTypeName(typ.Sym()))
baseType := baseSym.Def.(*ir.Name).Type()
for j, m := range typ.Methods().Slice() {
name := m.Nname.(*ir.Name)
targs := make([]ir.Node, len(typ.RParams()))
for k, targ := range typ.RParams() {
targs[k] = ir.TypeNode(targ)
}
baseNname := baseType.Methods().Slice()[j].Nname.(*ir.Name)
name.Func = g.getInstantiation(baseNname, targs, true)
}
}
g.instTypeList = nil
}
// genericSym returns the name of the base generic type for the type named by
// sym. It simply returns the name obtained by removing everything after the
// first bracket ("[").
func genericTypeName(sym *types.Sym) string {
return sym.Name[0:strings.Index(sym.Name, "[")]
}
// getInstantiationForNode returns the function/method instantiation for a
// InstExpr node inst.
func (g *irgen) getInstantiationForNode(inst *ir.InstExpr) *ir.Func {
if meth, ok := inst.X.(*ir.SelectorExpr); ok {
return g.getInstantiation(meth.Selection.Nname.(*ir.Name), inst.Targs, true)
} else {
return g.getInstantiation(inst.X.(*ir.Name), inst.Targs, false)
}
}
// getInstantiation gets the instantiantion of the function or method nameNode
// with the type arguments targs. If the instantiated function is not already
// cached, then it calls genericSubst to create the new instantiation.
func (g *irgen) getInstantiation(nameNode *ir.Name, targs []ir.Node, isMeth bool) *ir.Func {
sym := makeInstName(nameNode.Sym(), targs, isMeth)
st := g.target.Stencils[sym]
if st == nil {
// If instantiation doesn't exist yet, create it and add
// to the list of decls.
st = g.genericSubst(sym, nameNode, targs, isMeth)
g.target.Stencils[sym] = st
g.target.Decls = append(g.target.Decls, st)
if base.Flag.W > 1 {
ir.Dump(fmt.Sprintf("\nstenciled %v", st), st)
}
}
return st
}
// makeInstName makes the unique name for a stenciled generic function or method,
// based on the name of the function fy=nsym and the targs. It replaces any
// existing bracket type list in the name. makeInstName asserts that fnsym has
// brackets in its name if and only if hasBrackets is true.
// TODO(danscales): remove the assertions and the hasBrackets argument later.
//
// Names of declared generic functions have no brackets originally, so hasBrackets
// should be false. Names of generic methods already have brackets, since the new
// type parameter is specified in the generic type of the receiver (e.g. func
// (func (v *value[T]).set(...) { ... } has the original name (*value[T]).set.
//
// The standard naming is something like: 'genFn[int,bool]' for functions and
// '(*genType[int,bool]).methodName' for methods
func makeInstName(fnsym *types.Sym, targs []ir.Node, hasBrackets bool) *types.Sym {
b := bytes.NewBufferString("")
name := fnsym.Name
i := strings.Index(name, "[")
assert(hasBrackets == (i >= 0))
if i >= 0 {
b.WriteString(name[0:i])
} else {
b.WriteString(name)
}
b.WriteString("[")
for i, targ := range targs {
if i > 0 {
b.WriteString(",")
}
b.WriteString(targ.Type().String())
}
b.WriteString("]")
if i >= 0 {
i2 := strings.Index(name[i:], "]")
assert(i2 >= 0)
b.WriteString(name[i+i2+1:])
}
return typecheck.Lookup(b.String())
}
// Struct containing info needed for doing the substitution as we create the
// instantiation of a generic function with specified type arguments.
type subster struct {
g *irgen
isMethod bool // If a method is being instantiated
newf *ir.Func // Func node for the new stenciled function
tparams []*types.Field
targs []ir.Node
// The substitution map from name nodes in the generic function to the
// name nodes in the new stenciled function.
vars map[*ir.Name]*ir.Name
}
// genericSubst returns a new function with name newsym. The function is an
// instantiation of a generic function or method specified by namedNode with type
// args targs. For a method with a generic receiver, it returns an instantiated
// function type where the receiver becomes the first parameter. Otherwise the
// instantiated method would still need to be transformed by later compiler
// phases.
func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []ir.Node, isMethod bool) *ir.Func {
var tparams []*types.Field
if isMethod {
// Get the type params from the method receiver (after skipping
// over any pointer)
recvType := nameNode.Type().Recv().Type
recvType = deref(recvType)
tparams = make([]*types.Field, len(recvType.RParams()))
for i, rparam := range recvType.RParams() {
tparams[i] = types.NewField(src.NoXPos, nil, rparam)
}
} else {
tparams = nameNode.Type().TParams().Fields().Slice()
}
gf := nameNode.Func
// Pos of the instantiated function is same as the generic function
newf := ir.NewFunc(gf.Pos())
newf.Nname = ir.NewNameAt(gf.Pos(), newsym)
newf.Nname.Func = newf
newf.Nname.Defn = newf
newsym.Def = newf.Nname
assert(len(tparams) == len(targs))
subst := &subster{
g: g,
isMethod: isMethod,
newf: newf,
tparams: tparams,
targs: targs,
vars: make(map[*ir.Name]*ir.Name),
}
newf.Dcl = make([]*ir.Name, len(gf.Dcl))
for i, n := range gf.Dcl {
newf.Dcl[i] = subst.node(n).(*ir.Name)
}
newf.Body = subst.list(gf.Body)
// Ugly: we have to insert the Name nodes of the parameters/results into
// the function type. The current function type has no Nname fields set,
// because it came via conversion from the types2 type.
oldt := nameNode.Type()
// We also transform a generic method type to the corresponding
// instantiated function type where the receiver is the first parameter.
newt := types.NewSignature(oldt.Pkg(), nil, nil,
subst.fields(ir.PPARAM, append(oldt.Recvs().FieldSlice(), oldt.Params().FieldSlice()...), newf.Dcl),
subst.fields(ir.PPARAMOUT, oldt.Results().FieldSlice(), newf.Dcl))
newf.Nname.Ntype = ir.TypeNode(newt)
newf.Nname.SetType(newt)
ir.MarkFunc(newf.Nname)
newf.SetTypecheck(1)
newf.Nname.SetTypecheck(1)
// TODO(danscales) - remove later, but avoid confusion for now.
newf.Pragma = ir.Noinline
return newf
}
// node is like DeepCopy(), but creates distinct ONAME nodes, and also descends
// into closures. It substitutes type arguments for type parameters in all the new
// nodes.
func (subst *subster) node(n ir.Node) ir.Node {
// Use closure to capture all state needed by the ir.EditChildren argument.
var edit func(ir.Node) ir.Node
edit = func(x ir.Node) ir.Node {
switch x.Op() {
case ir.OTYPE:
return ir.TypeNode(subst.typ(x.Type()))
case ir.ONAME:
name := x.(*ir.Name)
if v := subst.vars[name]; v != nil {
return v
}
m := ir.NewNameAt(name.Pos(), name.Sym())
if name.IsClosureVar() {
m.SetIsClosureVar(true)
}
t := x.Type()
newt := subst.typ(t)
m.SetType(newt)
m.Curfn = subst.newf
m.Class = name.Class
m.Func = name.Func
subst.vars[name] = m
m.SetTypecheck(1)
return m
case ir.OLITERAL, ir.ONIL:
if x.Sym() != nil {
return x
}
}
m := ir.Copy(x)
if _, isExpr := m.(ir.Expr); isExpr {
t := x.Type()
if t == nil {
// t can be nil only if this is a call that has no
// return values, so allow that and otherwise give
// an error.
_, isCallExpr := m.(*ir.CallExpr)
_, isStructKeyExpr := m.(*ir.StructKeyExpr)
if !isCallExpr && !isStructKeyExpr && x.Op() != ir.OPANIC &&
x.Op() != ir.OCLOSE {
base.Fatalf(fmt.Sprintf("Nil type for %v", x))
}
} else if x.Op() != ir.OCLOSURE {
m.SetType(subst.typ(x.Type()))
}
}
ir.EditChildren(m, edit)
if x.Op() == ir.OXDOT {
// A method value/call via a type param will have been left as an
// OXDOT. When we see this during stenciling, finish the
// typechecking, now that we have the instantiated receiver type.
// We need to do this now, since the access/selection to the
// method for the real type is very different from the selection
// for the type param.
m.SetTypecheck(0)
// m will transform to an OCALLPART
typecheck.Expr(m)
}
if x.Op() == ir.OCALL {
call := m.(*ir.CallExpr)
if call.X.Op() == ir.OTYPE {
// Do typechecking on a conversion, now that we
// know the type argument.
m.SetTypecheck(0)
m = typecheck.Expr(m)
} else if call.X.Op() == ir.OCALLPART {
// Redo the typechecking, now that we know the method
// value is being called.
call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
call.X.SetTypecheck(0)
call.X.SetType(nil)
typecheck.Callee(call.X)
call.SetTypecheck(0)
typecheck.Call(call)
} else if call.X.Op() != ir.OFUNCINST {
// A call with an OFUNCINST will get typechecked
// in stencil() once we have created & attached the
// instantiation to be called.
base.FatalfAt(call.Pos(), "Expecting OCALLPART or OTYPE or OFUNCINST with CALL")
}
}
if x.Op() == ir.OCLOSURE {
x := x.(*ir.ClosureExpr)
// Need to save/duplicate x.Func.Nname,
// x.Func.Nname.Ntype, x.Func.Dcl, x.Func.ClosureVars, and
// x.Func.Body.
oldfn := x.Func
newfn := ir.NewFunc(oldfn.Pos())
if oldfn.ClosureCalled() {
newfn.SetClosureCalled(true)
}
newfn.SetIsHiddenClosure(true)
m.(*ir.ClosureExpr).Func = newfn
// Closure name can already have brackets, if it derives
// from a generic method
newsym := makeInstName(oldfn.Nname.Sym(), subst.targs, subst.isMethod)
newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), newsym)
newfn.Nname.Func = newfn
newfn.Nname.Defn = newfn
ir.MarkFunc(newfn.Nname)
newfn.OClosure = m.(*ir.ClosureExpr)
saveNewf := subst.newf
subst.newf = newfn
newfn.Dcl = subst.namelist(oldfn.Dcl)
newfn.ClosureVars = subst.namelist(oldfn.ClosureVars)
newfn.Body = subst.list(oldfn.Body)
subst.newf = saveNewf
// Set Ntype for now to be compatible with later parts of compiler
newfn.Nname.Ntype = subst.node(oldfn.Nname.Ntype).(ir.Ntype)
typed(subst.typ(oldfn.Nname.Type()), newfn.Nname)
typed(newfn.Nname.Type(), m)
newfn.SetTypecheck(1)
subst.g.target.Decls = append(subst.g.target.Decls, newfn)
}
return m
}
return edit(n)
}
func (subst *subster) namelist(l []*ir.Name) []*ir.Name {
s := make([]*ir.Name, len(l))
for i, n := range l {
s[i] = subst.node(n).(*ir.Name)
if n.Defn != nil {
s[i].Defn = subst.node(n.Defn)
}
if n.Outer != nil {
s[i].Outer = subst.node(n.Outer).(*ir.Name)
}
}
return s
}
func (subst *subster) list(l []ir.Node) []ir.Node {
s := make([]ir.Node, len(l))
for i, n := range l {
s[i] = subst.node(n)
}
return s
}
// tstruct substitutes type params in types of the fields of a structure type. For
// each field, if Nname is set, tstruct also translates the Nname using
// subst.vars, if Nname is in subst.vars. To always force the creation of a new
// (top-level) struct, regardless of whether anything changed with the types or
// names of the struct's fields, set force to true.
func (subst *subster) tstruct(t *types.Type, force bool) *types.Type {
if t.NumFields() == 0 {
if t.HasTParam() {
// For an empty struct, we need to return a new type,
// since it may now be fully instantiated (HasTParam
// becomes false).
return types.NewStruct(t.Pkg(), nil)
}
return t
}
var newfields []*types.Field
if force {
newfields = make([]*types.Field, t.NumFields())
}
for i, f := range t.Fields().Slice() {
t2 := subst.typ(f.Type)
if (t2 != f.Type || f.Nname != nil) && newfields == nil {
newfields = make([]*types.Field, t.NumFields())
for j := 0; j < i; j++ {
newfields[j] = t.Field(j)
}
}
if newfields != nil {
// TODO(danscales): make sure this works for the field
// names of embedded types (which should keep the name of
// the type param, not the instantiated type).
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
if f.Nname != nil {
// f.Nname may not be in subst.vars[] if this is
// a function name or a function instantiation type
// that we are translating
v := subst.vars[f.Nname.(*ir.Name)]
// Be careful not to put a nil var into Nname,
// since Nname is an interface, so it would be a
// non-nil interface.
if v != nil {
newfields[i].Nname = v
}
}
}
}
if newfields != nil {
return types.NewStruct(t.Pkg(), newfields)
}
return t
}
// tinter substitutes type params in types of the methods of an interface type.
func (subst *subster) tinter(t *types.Type) *types.Type {
if t.Methods().Len() == 0 {
return t
}
var newfields []*types.Field
for i, f := range t.Methods().Slice() {
t2 := subst.typ(f.Type)
if (t2 != f.Type || f.Nname != nil) && newfields == nil {
newfields = make([]*types.Field, t.NumFields())
for j := 0; j < i; j++ {
newfields[j] = t.Methods().Slice()[j]
}
}
if newfields != nil {
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
}
}
if newfields != nil {
return types.NewInterface(t.Pkg(), newfields)
}
return t
}
// instTypeName creates a name for an instantiated type, based on the name of the
// generic type and the type args
func instTypeName(name string, targs []*types.Type) string {
b := bytes.NewBufferString(name)
b.WriteByte('[')
for i, targ := range targs {
if i > 0 {
b.WriteByte(',')
}
b.WriteString(targ.String())
}
b.WriteByte(']')
return b.String()
}
// typ computes the type obtained by substituting any type parameter in t with the
// corresponding type argument in subst. If t contains no type parameters, the
// result is t; otherwise the result is a new type. It deals with recursive types
// by using TFORW types and finding partially or fully created types via sym.Def.
func (subst *subster) typ(t *types.Type) *types.Type {
if !t.HasTParam() {
return t
}
if t.Kind() == types.TTYPEPARAM {
for i, tp := range subst.tparams {
if tp.Type == t {
return subst.targs[i].Type()
}
}
// If t is a simple typeparam T, then t has the name/symbol 'T'
// and t.Underlying() == t.
//
// However, consider the type definition: 'type P[T any] T'. We
// might use this definition so we can have a variant of type T
// that we can add new methods to. Suppose t is a reference to
// P[T]. t has the name 'P[T]', but its kind is TTYPEPARAM,
// because P[T] is defined as T. If we look at t.Underlying(), it
// is different, because the name of t.Underlying() is 'T' rather
// than 'P[T]'. But the kind of t.Underlying() is also TTYPEPARAM.
// In this case, we do the needed recursive substitution in the
// case statement below.
if t.Underlying() == t {
// t is a simple typeparam that didn't match anything in tparam
return t
}
// t is a more complex typeparam (e.g. P[T], as above, whose
// definition is just T).
assert(t.Sym() != nil)
}
var newsym *types.Sym
var neededTargs []*types.Type
var forw *types.Type
if t.Sym() != nil {
// Translate the type params for this type according to
// the tparam/targs mapping from subst.
neededTargs = make([]*types.Type, len(t.RParams()))
for i, rparam := range t.RParams() {
neededTargs[i] = subst.typ(rparam)
}
// For a named (defined) type, we have to change the name of the
// type as well. We do this first, so we can look up if we've
// already seen this type during this substitution or other
// definitions/substitutions.
genName := genericTypeName(t.Sym())
newsym = t.Sym().Pkg.Lookup(instTypeName(genName, neededTargs))
if newsym.Def != nil {
// We've already created this instantiated defined type.
return newsym.Def.Type()
}
// In order to deal with recursive generic types, create a TFORW type
// initially and set its Def field, so it can be found if this type
// appears recursively within the type.
forw = types.New(types.TFORW)
forw.SetSym(newsym)
newsym.Def = ir.TypeNode(forw)
//println("Creating new type by sub", newsym.Name, forw.HasTParam())
forw.SetRParams(neededTargs)
}
var newt *types.Type
switch t.Kind() {
case types.TTYPEPARAM:
if t.Sym() == newsym {
// The substitution did not change the type.
return t
}
// Substitute the underlying typeparam (e.g. T in P[T], see
// the example describing type P[T] above).
newt = subst.typ(t.Underlying())
assert(newt != t)
case types.TARRAY:
elem := t.Elem()
newelem := subst.typ(elem)
if newelem != elem {
newt = types.NewArray(newelem, t.NumElem())
}
case types.TPTR:
elem := t.Elem()
newelem := subst.typ(elem)
if newelem != elem {
newt = types.NewPtr(newelem)
}
case types.TSLICE:
elem := t.Elem()
newelem := subst.typ(elem)
if newelem != elem {
newt = types.NewSlice(newelem)
}
case types.TSTRUCT:
newt = subst.tstruct(t, false)
if newt == t {
newt = nil
}
case types.TFUNC:
newrecvs := subst.tstruct(t.Recvs(), false)
newparams := subst.tstruct(t.Params(), false)
newresults := subst.tstruct(t.Results(), false)
if newrecvs != t.Recvs() || newparams != t.Params() || newresults != t.Results() {
// If any types have changed, then the all the fields of
// of recv, params, and results must be copied, because they have
// offset fields that are dependent, and so must have an
// independent copy for each new signature.
var newrecv *types.Field
if newrecvs.NumFields() > 0 {
if newrecvs == t.Recvs() {
newrecvs = subst.tstruct(t.Recvs(), true)
}
newrecv = newrecvs.Field(0)
}
if newparams == t.Params() {
newparams = subst.tstruct(t.Params(), true)
}
if newresults == t.Results() {
newresults = subst.tstruct(t.Results(), true)
}
newt = types.NewSignature(t.Pkg(), newrecv, t.TParams().FieldSlice(), newparams.FieldSlice(), newresults.FieldSlice())
}
case types.TINTER:
newt = subst.tinter(t)
if newt == t {
newt = nil
}
case types.TMAP:
newkey := subst.typ(t.Key())
newval := subst.typ(t.Elem())
if newkey != t.Key() || newval != t.Elem() {
newt = types.NewMap(newkey, newval)
}
case types.TCHAN:
elem := t.Elem()
newelem := subst.typ(elem)
if newelem != elem {
newt = types.NewChan(newelem, t.ChanDir())
if !newt.HasTParam() {
// TODO(danscales): not sure why I have to do this
// only for channels.....
types.CheckSize(newt)
}
}
}
if newt == nil {
// Even though there were typeparams in the type, there may be no
// change if this is a function type for a function call (which will
// have its own tparams/targs in the function instantiation).
return t
}
if t.Sym() == nil {
// Not a named type, so there was no forwarding type and there are
// no methods to substitute.
assert(t.Methods().Len() == 0)
return newt
}
forw.SetUnderlying(newt)
newt = forw
if t.Kind() != types.TINTER && t.Methods().Len() > 0 {
// Fill in the method info for the new type.
var newfields []*types.Field
newfields = make([]*types.Field, t.Methods().Len())
for i, f := range t.Methods().Slice() {
t2 := subst.typ(f.Type)
oldsym := f.Nname.Sym()
newsym := makeInstName(oldsym, subst.targs, true)
var nname *ir.Name
if newsym.Def != nil {
nname = newsym.Def.(*ir.Name)
} else {
nname = ir.NewNameAt(f.Pos, newsym)
nname.SetType(t2)
newsym.Def = nname
}
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
newfields[i].Nname = nname
}
newt.Methods().Set(newfields)
if !newt.HasTParam() {
// Generate all the methods for a new fully-instantiated type.
subst.g.instTypeList = append(subst.g.instTypeList, newt)
}
}
return newt
}
// fields sets the Nname field for the Field nodes inside a type signature, based
// on the corresponding in/out parameters in dcl. It depends on the in and out
// parameters being in order in dcl.
func (subst *subster) fields(class ir.Class, oldfields []*types.Field, dcl []*ir.Name) []*types.Field {
newfields := make([]*types.Field, len(oldfields))
var i int
// Find the starting index in dcl of declarations of the class (either
// PPARAM or PPARAMOUT).
for i = range dcl {
if dcl[i].Class == class {
break
}
}
// Create newfields nodes that are copies of the oldfields nodes, but
// with substitution for any type params, and with Nname set to be the node in
// Dcl for the corresponding PPARAM or PPARAMOUT.
for j := range oldfields {
newfields[j] = oldfields[j].Copy()
newfields[j].Type = subst.typ(oldfields[j].Type)
newfields[j].Nname = dcl[i]
i++
}
return newfields
}
// defer does a single defer of type t, if it is a pointer type.
func deref(t *types.Type) *types.Type {
if t.IsPtr() {
return t.Elem()
}
return t
}