go/src/math/rand/v2/rand.go
Russ Cox c29444ef39 math/rand, math/rand/v2: use ChaCha8 for global rand
Move ChaCha8 code into internal/chacha8rand and use it to implement
runtime.rand, which is used for the unseeded global source for
both math/rand and math/rand/v2. This also affects the calculation of
the start point for iteration over very very large maps (when the
32-bit fastrand is not big enough).

The benefit is that misuse of the global random number generators
in math/rand and math/rand/v2 in contexts where non-predictable
randomness is important for security reasons is no longer a
security problem, removing a common mistake among programmers
who are unaware of the different kinds of randomness.

The cost is an extra 304 bytes per thread stored in the m struct
plus 2-3ns more per random uint64 due to the more sophisticated
algorithm. Using PCG looks like it would cost about the same,
although I haven't benchmarked that.

Before this, the math/rand and math/rand/v2 global generator
was wyrand (https://github.com/wangyi-fudan/wyhash).
For math/rand, using wyrand instead of the Mitchell/Reeds/Thompson
ALFG was justifiable, since the latter was not any better.
But for math/rand/v2, the global generator really should be
at least as good as one of the well-studied, specific algorithms
provided directly by the package, and it's not.

(Wyrand is still reasonable for scheduling and cache decisions.)

Good randomness does have a cost: about twice wyrand.

Also rationalize the various runtime rand references.

goos: linux
goarch: amd64
pkg: math/rand/v2
cpu: AMD Ryzen 9 7950X 16-Core Processor
                        │ bbb48afeb7.amd64 │           5cf807d1ea.amd64           │
                        │      sec/op      │    sec/op     vs base                │
ChaCha8-32                     1.862n ± 2%    1.861n ± 2%        ~ (p=0.825 n=20)
PCG_DXSM-32                    1.471n ± 1%    1.460n ± 2%        ~ (p=0.153 n=20)
SourceUint64-32                1.636n ± 2%    1.582n ± 1%   -3.30% (p=0.000 n=20)
GlobalInt64-32                 2.087n ± 1%    3.663n ± 1%  +75.54% (p=0.000 n=20)
GlobalInt64Parallel-32        0.1042n ± 1%   0.2026n ± 1%  +94.48% (p=0.000 n=20)
GlobalUint64-32                2.263n ± 2%    3.724n ± 1%  +64.57% (p=0.000 n=20)
GlobalUint64Parallel-32       0.1019n ± 1%   0.1973n ± 1%  +93.67% (p=0.000 n=20)
Int64-32                       1.771n ± 1%    1.774n ± 1%        ~ (p=0.449 n=20)
Uint64-32                      1.863n ± 2%    1.866n ± 1%        ~ (p=0.364 n=20)
GlobalIntN1000-32              3.134n ± 3%    4.730n ± 2%  +50.95% (p=0.000 n=20)
IntN1000-32                    2.489n ± 1%    2.489n ± 1%        ~ (p=0.683 n=20)
Int64N1000-32                  2.521n ± 1%    2.516n ± 1%        ~ (p=0.394 n=20)
Int64N1e8-32                   2.479n ± 1%    2.478n ± 2%        ~ (p=0.743 n=20)
Int64N1e9-32                   2.530n ± 2%    2.514n ± 2%        ~ (p=0.193 n=20)
Int64N2e9-32                   2.501n ± 1%    2.494n ± 1%        ~ (p=0.616 n=20)
Int64N1e18-32                  3.227n ± 1%    3.205n ± 1%        ~ (p=0.101 n=20)
Int64N2e18-32                  3.647n ± 1%    3.599n ± 1%        ~ (p=0.019 n=20)
Int64N4e18-32                  5.135n ± 1%    5.069n ± 2%        ~ (p=0.034 n=20)
Int32N1000-32                  2.657n ± 1%    2.637n ± 1%        ~ (p=0.180 n=20)
Int32N1e8-32                   2.636n ± 1%    2.636n ± 1%        ~ (p=0.763 n=20)
Int32N1e9-32                   2.660n ± 2%    2.638n ± 1%        ~ (p=0.358 n=20)
Int32N2e9-32                   2.662n ± 2%    2.618n ± 2%        ~ (p=0.064 n=20)
Float32-32                     2.272n ± 2%    2.239n ± 2%        ~ (p=0.194 n=20)
Float64-32                     2.272n ± 1%    2.286n ± 2%        ~ (p=0.763 n=20)
ExpFloat64-32                  3.762n ± 1%    3.744n ± 1%        ~ (p=0.171 n=20)
NormFloat64-32                 3.706n ± 1%    3.655n ± 2%        ~ (p=0.066 n=20)
Perm3-32                       32.93n ± 3%    34.62n ± 1%   +5.13% (p=0.000 n=20)
Perm30-32                      202.9n ± 1%    204.0n ± 1%        ~ (p=0.482 n=20)
Perm30ViaShuffle-32            115.0n ± 1%    114.9n ± 1%        ~ (p=0.358 n=20)
ShuffleOverhead-32             112.8n ± 1%    112.7n ± 1%        ~ (p=0.692 n=20)
Concurrent-32                  2.107n ± 0%    3.725n ± 1%  +76.75% (p=0.000 n=20)

goos: darwin
goarch: arm64
pkg: math/rand/v2
                       │ bbb48afeb7.arm64 │           5cf807d1ea.arm64            │
                       │      sec/op      │    sec/op     vs base                 │
ChaCha8-8                     2.480n ± 0%    2.429n ± 0%    -2.04% (p=0.000 n=20)
PCG_DXSM-8                    2.531n ± 0%    2.530n ± 0%         ~ (p=0.877 n=20)
SourceUint64-8                2.534n ± 0%    2.533n ± 0%         ~ (p=0.732 n=20)
GlobalInt64-8                 2.172n ± 1%    4.794n ± 0%  +120.67% (p=0.000 n=20)
GlobalInt64Parallel-8        0.4320n ± 0%   0.9605n ± 0%  +122.32% (p=0.000 n=20)
GlobalUint64-8                2.182n ± 0%    4.770n ± 0%  +118.58% (p=0.000 n=20)
GlobalUint64Parallel-8       0.4307n ± 0%   0.9583n ± 0%  +122.51% (p=0.000 n=20)
Int64-8                       4.107n ± 0%    4.104n ± 0%         ~ (p=0.416 n=20)
Uint64-8                      4.080n ± 0%    4.080n ± 0%         ~ (p=0.052 n=20)
GlobalIntN1000-8              2.814n ± 2%    5.643n ± 0%  +100.50% (p=0.000 n=20)
IntN1000-8                    4.141n ± 0%    4.139n ± 0%         ~ (p=0.140 n=20)
Int64N1000-8                  4.140n ± 0%    4.140n ± 0%         ~ (p=0.313 n=20)
Int64N1e8-8                   4.140n ± 0%    4.139n ± 0%         ~ (p=0.103 n=20)
Int64N1e9-8                   4.139n ± 0%    4.140n ± 0%         ~ (p=0.761 n=20)
Int64N2e9-8                   4.140n ± 0%    4.140n ± 0%         ~ (p=0.636 n=20)
Int64N1e18-8                  5.266n ± 0%    5.326n ± 1%    +1.14% (p=0.001 n=20)
Int64N2e18-8                  6.052n ± 0%    6.167n ± 0%    +1.90% (p=0.000 n=20)
Int64N4e18-8                  8.826n ± 0%    9.051n ± 0%    +2.55% (p=0.000 n=20)
Int32N1000-8                  4.127n ± 0%    4.132n ± 0%    +0.12% (p=0.000 n=20)
Int32N1e8-8                   4.126n ± 0%    4.131n ± 0%    +0.12% (p=0.000 n=20)
Int32N1e9-8                   4.127n ± 0%    4.132n ± 0%    +0.12% (p=0.000 n=20)
Int32N2e9-8                   4.132n ± 0%    4.131n ± 0%         ~ (p=0.017 n=20)
Float32-8                     4.109n ± 0%    4.105n ± 0%         ~ (p=0.379 n=20)
Float64-8                     4.107n ± 0%    4.106n ± 0%         ~ (p=0.867 n=20)
ExpFloat64-8                  5.339n ± 0%    5.383n ± 0%    +0.82% (p=0.000 n=20)
NormFloat64-8                 5.735n ± 0%    5.737n ± 1%         ~ (p=0.856 n=20)
Perm3-8                       26.65n ± 0%    26.80n ± 1%    +0.58% (p=0.000 n=20)
Perm30-8                      194.8n ± 1%    197.0n ± 0%    +1.18% (p=0.000 n=20)
Perm30ViaShuffle-8            156.6n ± 0%    157.6n ± 1%    +0.61% (p=0.000 n=20)
ShuffleOverhead-8             124.9n ± 0%    125.5n ± 0%    +0.52% (p=0.000 n=20)
Concurrent-8                  2.434n ± 3%    5.066n ± 0%  +108.09% (p=0.000 n=20)

goos: linux
goarch: 386
pkg: math/rand/v2
cpu: AMD Ryzen 9 7950X 16-Core Processor
                        │ bbb48afeb7.386 │            5cf807d1ea.386             │
                        │     sec/op     │    sec/op     vs base                 │
ChaCha8-32                  11.295n ± 1%    4.748n ± 2%   -57.96% (p=0.000 n=20)
PCG_DXSM-32                  7.693n ± 1%    7.738n ± 2%         ~ (p=0.542 n=20)
SourceUint64-32              7.658n ± 2%    7.622n ± 2%         ~ (p=0.344 n=20)
GlobalInt64-32               3.473n ± 2%    7.526n ± 2%  +116.73% (p=0.000 n=20)
GlobalInt64Parallel-32      0.3198n ± 0%   0.5444n ± 0%   +70.22% (p=0.000 n=20)
GlobalUint64-32              3.612n ± 0%    7.575n ± 1%  +109.69% (p=0.000 n=20)
GlobalUint64Parallel-32     0.3168n ± 0%   0.5403n ± 0%   +70.51% (p=0.000 n=20)
Int64-32                     7.673n ± 2%    7.789n ± 1%         ~ (p=0.122 n=20)
Uint64-32                    7.773n ± 1%    7.827n ± 2%         ~ (p=0.920 n=20)
GlobalIntN1000-32            6.268n ± 1%    9.581n ± 1%   +52.87% (p=0.000 n=20)
IntN1000-32                  10.33n ± 2%    10.45n ± 1%         ~ (p=0.233 n=20)
Int64N1000-32                10.98n ± 2%    11.01n ± 1%         ~ (p=0.401 n=20)
Int64N1e8-32                 11.19n ± 2%    10.97n ± 1%         ~ (p=0.033 n=20)
Int64N1e9-32                 11.06n ± 1%    11.08n ± 1%         ~ (p=0.498 n=20)
Int64N2e9-32                 11.10n ± 1%    11.01n ± 2%         ~ (p=0.995 n=20)
Int64N1e18-32                15.23n ± 2%    15.04n ± 1%         ~ (p=0.973 n=20)
Int64N2e18-32                15.89n ± 1%    15.85n ± 1%         ~ (p=0.409 n=20)
Int64N4e18-32                18.96n ± 2%    19.34n ± 2%         ~ (p=0.048 n=20)
Int32N1000-32                10.46n ± 2%    10.44n ± 2%         ~ (p=0.480 n=20)
Int32N1e8-32                 10.46n ± 2%    10.49n ± 2%         ~ (p=0.951 n=20)
Int32N1e9-32                 10.28n ± 2%    10.26n ± 1%         ~ (p=0.431 n=20)
Int32N2e9-32                 10.50n ± 2%    10.44n ± 2%         ~ (p=0.249 n=20)
Float32-32                   13.80n ± 2%    13.80n ± 2%         ~ (p=0.751 n=20)
Float64-32                   23.55n ± 2%    23.87n ± 0%         ~ (p=0.408 n=20)
ExpFloat64-32                15.36n ± 1%    15.29n ± 2%         ~ (p=0.316 n=20)
NormFloat64-32               13.57n ± 1%    13.79n ± 1%    +1.66% (p=0.005 n=20)
Perm3-32                     45.70n ± 2%    46.99n ± 2%    +2.81% (p=0.001 n=20)
Perm30-32                    399.0n ± 1%    403.8n ± 1%    +1.19% (p=0.006 n=20)
Perm30ViaShuffle-32          349.0n ± 1%    350.4n ± 1%         ~ (p=0.909 n=20)
ShuffleOverhead-32           322.3n ± 1%    323.8n ± 1%         ~ (p=0.410 n=20)
Concurrent-32                3.331n ± 1%    7.312n ± 1%  +119.50% (p=0.000 n=20)

For #61716.

Change-Id: Ibdddeed85c34d9ae397289dc899e04d4845f9ed2
Reviewed-on: https://go-review.googlesource.com/c/go/+/516860
Reviewed-by: Michael Pratt <mpratt@google.com>
Reviewed-by: Filippo Valsorda <filippo@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
2023-12-05 20:34:30 +00:00

363 lines
13 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rand implements pseudo-random number generators suitable for tasks
// such as simulation, but it should not be used for security-sensitive work.
//
// Random numbers are generated by a [Source], usually wrapped in a [Rand].
// Both types should be used by a single goroutine at a time: sharing among
// multiple goroutines requires some kind of synchronization.
//
// Top-level functions, such as [Float64] and [Int],
// are safe for concurrent use by multiple goroutines.
//
// This package's outputs might be easily predictable regardless of how it's
// seeded. For random numbers suitable for security-sensitive work, see the
// crypto/rand package.
package rand
import (
"math/bits"
_ "unsafe" // for go:linkname
)
// A Source is a source of uniformly-distributed
// pseudo-random uint64 values in the range [0, 1<<64).
//
// A Source is not safe for concurrent use by multiple goroutines.
type Source interface {
Uint64() uint64
}
// A Rand is a source of random numbers.
type Rand struct {
src Source
}
// New returns a new Rand that uses random values from src
// to generate other random values.
func New(src Source) *Rand {
return &Rand{src: src}
}
// Int64 returns a non-negative pseudo-random 63-bit integer as an int64.
func (r *Rand) Int64() int64 { return int64(r.src.Uint64() &^ (1 << 63)) }
// Uint32 returns a pseudo-random 32-bit value as a uint32.
func (r *Rand) Uint32() uint32 { return uint32(r.src.Uint64() >> 32) }
// Uint64 returns a pseudo-random 64-bit value as a uint64.
func (r *Rand) Uint64() uint64 { return r.src.Uint64() }
// Int32 returns a non-negative pseudo-random 31-bit integer as an int32.
func (r *Rand) Int32() int32 { return int32(r.src.Uint64() >> 33) }
// Int returns a non-negative pseudo-random int.
func (r *Rand) Int() int { return int(uint(r.src.Uint64()) << 1 >> 1) }
// Int64N returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n <= 0.
func (r *Rand) Int64N(n int64) int64 {
if n <= 0 {
panic("invalid argument to Int64N")
}
return int64(r.uint64n(uint64(n)))
}
// Uint64N returns, as a uint64, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n == 0.
func (r *Rand) Uint64N(n uint64) uint64 {
if n == 0 {
panic("invalid argument to Uint64N")
}
return r.uint64n(n)
}
// uint64n is the no-bounds-checks version of Uint64N.
func (r *Rand) uint64n(n uint64) uint64 {
if is32bit && uint64(uint32(n)) == n {
return uint64(r.uint32n(uint32(n)))
}
if n&(n-1) == 0 { // n is power of two, can mask
return r.Uint64() & (n - 1)
}
// Suppose we have a uint64 x uniform in the range [0,2⁶⁴)
// and want to reduce it to the range [0,n) preserving exact uniformity.
// We can simulate a scaling arbitrary precision x * (n/2⁶⁴) by
// the high bits of a double-width multiply of x*n, meaning (x*n)/2⁶⁴.
// Since there are 2⁶⁴ possible inputs x and only n possible outputs,
// the output is necessarily biased if n does not divide 2⁶⁴.
// In general (x*n)/2⁶⁴ = k for x*n in [k*2⁶⁴,(k+1)*2⁶⁴).
// There are either floor(2⁶⁴/n) or ceil(2⁶⁴/n) possible products
// in that range, depending on k.
// But suppose we reject the sample and try again when
// x*n is in [k*2⁶⁴, k*2⁶⁴+(2⁶⁴%n)), meaning rejecting fewer than n possible
// outcomes out of the 2⁶⁴.
// Now there are exactly floor(2⁶⁴/n) possible ways to produce
// each output value k, so we've restored uniformity.
// To get valid uint64 math, 2⁶⁴ % n = (2⁶⁴ - n) % n = -n % n,
// so the direct implementation of this algorithm would be:
//
// hi, lo := bits.Mul64(r.Uint64(), n)
// thresh := -n % n
// for lo < thresh {
// hi, lo = bits.Mul64(r.Uint64(), n)
// }
//
// That still leaves an expensive 64-bit division that we would rather avoid.
// We know that thresh < n, and n is usually much less than 2⁶⁴, so we can
// avoid the last four lines unless lo < n.
//
// See also:
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction
// https://lemire.me/blog/2016/06/30/fast-random-shuffling
hi, lo := bits.Mul64(r.Uint64(), n)
if lo < n {
thresh := -n % n
for lo < thresh {
hi, lo = bits.Mul64(r.Uint64(), n)
}
}
return hi
}
// uint32n is an identical computation to uint64n
// but optimized for 32-bit systems.
func (r *Rand) uint32n(n uint32) uint32 {
if n&(n-1) == 0 { // n is power of two, can mask
return uint32(r.Uint64()) & (n - 1)
}
// On 64-bit systems we still use the uint64 code below because
// the probability of a random uint64 lo being < a uint32 n is near zero,
// meaning the unbiasing loop almost never runs.
// On 32-bit systems, here we need to implement that same logic in 32-bit math,
// both to preserve the exact output sequence observed on 64-bit machines
// and to preserve the optimization that the unbiasing loop almost never runs.
//
// We want to compute
// hi, lo := bits.Mul64(r.Uint64(), n)
// In terms of 32-bit halves, this is:
// x1:x0 := r.Uint64()
// 0:hi, lo1:lo0 := bits.Mul64(x1:x0, 0:n)
// Writing out the multiplication in terms of bits.Mul32 allows
// using direct hardware instructions and avoiding
// the computations involving these zeros.
x := r.Uint64()
lo1a, lo0 := bits.Mul32(uint32(x), n)
hi, lo1b := bits.Mul32(uint32(x>>32), n)
lo1, c := bits.Add32(lo1a, lo1b, 0)
hi += c
if lo1 == 0 && lo0 < uint32(n) {
n64 := uint64(n)
thresh := uint32(-n64 % n64)
for lo1 == 0 && lo0 < thresh {
x := r.Uint64()
lo1a, lo0 = bits.Mul32(uint32(x), n)
hi, lo1b = bits.Mul32(uint32(x>>32), n)
lo1, c = bits.Add32(lo1a, lo1b, 0)
hi += c
}
}
return hi
}
// Int32N returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n <= 0.
func (r *Rand) Int32N(n int32) int32 {
if n <= 0 {
panic("invalid argument to Int32N")
}
return int32(r.uint64n(uint64(n)))
}
// Uint32N returns, as a uint32, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n == 0.
func (r *Rand) Uint32N(n uint32) uint32 {
if n == 0 {
panic("invalid argument to Uint32N")
}
return uint32(r.uint64n(uint64(n)))
}
const is32bit = ^uint(0)>>32 == 0
// IntN returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n <= 0.
func (r *Rand) IntN(n int) int {
if n <= 0 {
panic("invalid argument to IntN")
}
return int(r.uint64n(uint64(n)))
}
// UintN returns, as a uint, a non-negative pseudo-random number in the half-open interval [0,n).
// It panics if n == 0.
func (r *Rand) UintN(n uint) uint {
if n == 0 {
panic("invalid argument to UintN")
}
return uint(r.uint64n(uint64(n)))
}
// Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0).
func (r *Rand) Float64() float64 {
// There are exactly 1<<53 float64s in [0,1). Use Intn(1<<53) / (1<<53).
return float64(r.Uint64()<<11>>11) / (1 << 53)
}
// Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0).
func (r *Rand) Float32() float32 {
// There are exactly 1<<24 float32s in [0,1). Use Intn(1<<24) / (1<<24).
return float32(r.Uint32()<<8>>8) / (1 << 24)
}
// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers
// in the half-open interval [0,n).
func (r *Rand) Perm(n int) []int {
p := make([]int, n)
for i := range p {
p[i] = i
}
r.Shuffle(len(p), func(i, j int) { p[i], p[j] = p[j], p[i] })
return p
}
// Shuffle pseudo-randomizes the order of elements.
// n is the number of elements. Shuffle panics if n < 0.
// swap swaps the elements with indexes i and j.
func (r *Rand) Shuffle(n int, swap func(i, j int)) {
if n < 0 {
panic("invalid argument to Shuffle")
}
// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
// Shuffle really ought not be called with n that doesn't fit in 32 bits.
// Not only will it take a very long time, but with 2³¹! possible permutations,
// there's no way that any PRNG can have a big enough internal state to
// generate even a minuscule percentage of the possible permutations.
// Nevertheless, the right API signature accepts an int n, so handle it as best we can.
for i := n - 1; i > 0; i-- {
j := int(r.uint64n(uint64(i + 1)))
swap(i, j)
}
}
/*
* Top-level convenience functions
*/
// globalRand is the source of random numbers for the top-level
// convenience functions.
var globalRand = &Rand{src: &runtimeSource{}}
//go:linkname runtime_rand runtime.rand
func runtime_rand() uint64
// runtimeSource is a Source that uses the runtime fastrand functions.
type runtimeSource struct{}
func (*runtimeSource) Uint64() uint64 {
return runtime_rand()
}
// Int64 returns a non-negative pseudo-random 63-bit integer as an int64
// from the default Source.
func Int64() int64 { return globalRand.Int64() }
// Uint32 returns a pseudo-random 32-bit value as a uint32
// from the default Source.
func Uint32() uint32 { return globalRand.Uint32() }
// Uint64N returns, as a uint64, a pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func Uint64N(n uint64) uint64 { return globalRand.Uint64N(n) }
// Uint32N returns, as a uint32, a pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func Uint32N(n uint32) uint32 { return globalRand.Uint32N(n) }
// Uint64 returns a pseudo-random 64-bit value as a uint64
// from the default Source.
func Uint64() uint64 { return globalRand.Uint64() }
// Int32 returns a non-negative pseudo-random 31-bit integer as an int32
// from the default Source.
func Int32() int32 { return globalRand.Int32() }
// Int returns a non-negative pseudo-random int from the default Source.
func Int() int { return globalRand.Int() }
// Int64N returns, as an int64, a pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func Int64N(n int64) int64 { return globalRand.Int64N(n) }
// Int32N returns, as an int32, a pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func Int32N(n int32) int32 { return globalRand.Int32N(n) }
// IntN returns, as an int, a pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func IntN(n int) int { return globalRand.IntN(n) }
// UintN returns, as a uint, a pseudo-random number in the half-open interval [0,n)
// from the default Source.
// It panics if n <= 0.
func UintN(n uint) uint { return globalRand.UintN(n) }
// N returns a pseudo-random number in the half-open interval [0,n) from the default Source.
// The type parameter Int can be any integer type.
// It panics if n <= 0.
func N[Int intType](n Int) Int {
if n <= 0 {
panic("invalid argument to N")
}
return Int(globalRand.uint64n(uint64(n)))
}
type intType interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr
}
// Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0)
// from the default Source.
func Float64() float64 { return globalRand.Float64() }
// Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0)
// from the default Source.
func Float32() float32 { return globalRand.Float32() }
// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers
// in the half-open interval [0,n) from the default Source.
func Perm(n int) []int { return globalRand.Perm(n) }
// Shuffle pseudo-randomizes the order of elements using the default Source.
// n is the number of elements. Shuffle panics if n < 0.
// swap swaps the elements with indexes i and j.
func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) }
// NormFloat64 returns a normally distributed float64 in the range
// [-math.MaxFloat64, +math.MaxFloat64] with
// standard normal distribution (mean = 0, stddev = 1)
// from the default Source.
// To produce a different normal distribution, callers can
// adjust the output using:
//
// sample = NormFloat64() * desiredStdDev + desiredMean
func NormFloat64() float64 { return globalRand.NormFloat64() }
// ExpFloat64 returns an exponentially distributed float64 in the range
// (0, +math.MaxFloat64] with an exponential distribution whose rate parameter
// (lambda) is 1 and whose mean is 1/lambda (1) from the default Source.
// To produce a distribution with a different rate parameter,
// callers can adjust the output using:
//
// sample = ExpFloat64() / desiredRateParameter
func ExpFloat64() float64 { return globalRand.ExpFloat64() }