mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Use the new SwissTable-based map in internal/runtime/maps as the basis for the runtime map when GOEXPERIMENT=swissmap. Integration is complete enough to pass all.bash. Notable missing features: * Race integration / concurrent write detection * Stack-allocated maps * Specialized "fast" map variants * Indirect key / elem For #54766. Cq-Include-Trybots: luci.golang.try:gotip-linux-ppc64_power10,gotip-linux-amd64-longtest-swissmap Change-Id: Ie97b656b6d8e05c0403311ae08fef9f51756a639 Reviewed-on: https://go-review.googlesource.com/c/go/+/594596 Reviewed-by: Keith Randall <khr@golang.org> Reviewed-by: Keith Randall <khr@google.com> Reviewed-by: Michael Knyszek <mknyszek@google.com> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
2406 lines
77 KiB
Go
2406 lines
77 KiB
Go
// Copyright 2019 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// TODO/NICETOHAVE:
|
|
// - eliminate DW_CLS_ if not used
|
|
// - package info in compilation units
|
|
// - assign types to their packages
|
|
// - gdb uses c syntax, meaning clumsy quoting is needed for go identifiers. eg
|
|
// ptype struct '[]uint8' and qualifiers need to be quoted away
|
|
// - file:line info for variables
|
|
// - make strings a typedef so prettyprinters can see the underlying string type
|
|
|
|
package ld
|
|
|
|
import (
|
|
"cmd/internal/dwarf"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/src"
|
|
"cmd/internal/sys"
|
|
"cmd/link/internal/loader"
|
|
"cmd/link/internal/sym"
|
|
"cmp"
|
|
"fmt"
|
|
"internal/abi"
|
|
"internal/buildcfg"
|
|
"log"
|
|
"path"
|
|
"runtime"
|
|
"slices"
|
|
"strings"
|
|
"sync"
|
|
)
|
|
|
|
// dwctxt is a wrapper intended to satisfy the method set of
|
|
// dwarf.Context, so that functions like dwarf.PutAttrs will work with
|
|
// DIEs that use loader.Sym as opposed to *sym.Symbol. It is also
|
|
// being used as a place to store tables/maps that are useful as part
|
|
// of type conversion (this is just a convenience; it would be easy to
|
|
// split these things out into another type if need be).
|
|
type dwctxt struct {
|
|
linkctxt *Link
|
|
ldr *loader.Loader
|
|
arch *sys.Arch
|
|
|
|
// This maps type name string (e.g. "uintptr") to loader symbol for
|
|
// the DWARF DIE for that type (e.g. "go:info.type.uintptr")
|
|
tmap map[string]loader.Sym
|
|
|
|
// This maps loader symbol for the DWARF DIE symbol generated for
|
|
// a type (e.g. "go:info.uintptr") to the type symbol itself
|
|
// ("type:uintptr").
|
|
// FIXME: try converting this map (and the next one) to a single
|
|
// array indexed by loader.Sym -- this may perform better.
|
|
rtmap map[loader.Sym]loader.Sym
|
|
|
|
// This maps Go type symbol (e.g. "type:XXX") to loader symbol for
|
|
// the typedef DIE for that type (e.g. "go:info.XXX..def")
|
|
tdmap map[loader.Sym]loader.Sym
|
|
|
|
// Cache these type symbols, so as to avoid repeatedly looking them up
|
|
typeRuntimeEface loader.Sym
|
|
typeRuntimeIface loader.Sym
|
|
uintptrInfoSym loader.Sym
|
|
|
|
// Used at various points in that parallel portion of DWARF gen to
|
|
// protect against conflicting updates to globals (such as "gdbscript")
|
|
dwmu *sync.Mutex
|
|
}
|
|
|
|
// dwSym wraps a loader.Sym; this type is meant to obey the interface
|
|
// rules for dwarf.Sym from the cmd/internal/dwarf package. DwDie and
|
|
// DwAttr objects contain references to symbols via this type.
|
|
type dwSym loader.Sym
|
|
|
|
func (c dwctxt) PtrSize() int {
|
|
return c.arch.PtrSize
|
|
}
|
|
|
|
func (c dwctxt) Size(s dwarf.Sym) int64 {
|
|
return int64(len(c.ldr.Data(loader.Sym(s.(dwSym)))))
|
|
}
|
|
|
|
func (c dwctxt) AddInt(s dwarf.Sym, size int, i int64) {
|
|
ds := loader.Sym(s.(dwSym))
|
|
dsu := c.ldr.MakeSymbolUpdater(ds)
|
|
dsu.AddUintXX(c.arch, uint64(i), size)
|
|
}
|
|
|
|
func (c dwctxt) AddBytes(s dwarf.Sym, b []byte) {
|
|
ds := loader.Sym(s.(dwSym))
|
|
dsu := c.ldr.MakeSymbolUpdater(ds)
|
|
dsu.AddBytes(b)
|
|
}
|
|
|
|
func (c dwctxt) AddString(s dwarf.Sym, v string) {
|
|
ds := loader.Sym(s.(dwSym))
|
|
dsu := c.ldr.MakeSymbolUpdater(ds)
|
|
dsu.Addstring(v)
|
|
}
|
|
|
|
func (c dwctxt) AddAddress(s dwarf.Sym, data interface{}, value int64) {
|
|
ds := loader.Sym(s.(dwSym))
|
|
dsu := c.ldr.MakeSymbolUpdater(ds)
|
|
if value != 0 {
|
|
value -= dsu.Value()
|
|
}
|
|
tgtds := loader.Sym(data.(dwSym))
|
|
dsu.AddAddrPlus(c.arch, tgtds, value)
|
|
}
|
|
|
|
func (c dwctxt) AddCURelativeAddress(s dwarf.Sym, data interface{}, value int64) {
|
|
ds := loader.Sym(s.(dwSym))
|
|
dsu := c.ldr.MakeSymbolUpdater(ds)
|
|
if value != 0 {
|
|
value -= dsu.Value()
|
|
}
|
|
tgtds := loader.Sym(data.(dwSym))
|
|
dsu.AddCURelativeAddrPlus(c.arch, tgtds, value)
|
|
}
|
|
|
|
func (c dwctxt) AddSectionOffset(s dwarf.Sym, size int, t interface{}, ofs int64) {
|
|
ds := loader.Sym(s.(dwSym))
|
|
dsu := c.ldr.MakeSymbolUpdater(ds)
|
|
tds := loader.Sym(t.(dwSym))
|
|
switch size {
|
|
default:
|
|
c.linkctxt.Errorf(ds, "invalid size %d in adddwarfref\n", size)
|
|
case c.arch.PtrSize, 4:
|
|
}
|
|
dsu.AddSymRef(c.arch, tds, ofs, objabi.R_ADDROFF, size)
|
|
}
|
|
|
|
func (c dwctxt) AddDWARFAddrSectionOffset(s dwarf.Sym, t interface{}, ofs int64) {
|
|
size := 4
|
|
if isDwarf64(c.linkctxt) {
|
|
size = 8
|
|
}
|
|
ds := loader.Sym(s.(dwSym))
|
|
dsu := c.ldr.MakeSymbolUpdater(ds)
|
|
tds := loader.Sym(t.(dwSym))
|
|
switch size {
|
|
default:
|
|
c.linkctxt.Errorf(ds, "invalid size %d in adddwarfref\n", size)
|
|
case c.arch.PtrSize, 4:
|
|
}
|
|
dsu.AddSymRef(c.arch, tds, ofs, objabi.R_DWARFSECREF, size)
|
|
}
|
|
|
|
func (c dwctxt) Logf(format string, args ...interface{}) {
|
|
c.linkctxt.Logf(format, args...)
|
|
}
|
|
|
|
// At the moment these interfaces are only used in the compiler.
|
|
|
|
func (c dwctxt) CurrentOffset(s dwarf.Sym) int64 {
|
|
panic("should be used only in the compiler")
|
|
}
|
|
|
|
func (c dwctxt) RecordDclReference(s dwarf.Sym, t dwarf.Sym, dclIdx int, inlIndex int) {
|
|
panic("should be used only in the compiler")
|
|
}
|
|
|
|
func (c dwctxt) RecordChildDieOffsets(s dwarf.Sym, vars []*dwarf.Var, offsets []int32) {
|
|
panic("should be used only in the compiler")
|
|
}
|
|
|
|
func isDwarf64(ctxt *Link) bool {
|
|
return ctxt.HeadType == objabi.Haix
|
|
}
|
|
|
|
// https://sourceware.org/gdb/onlinedocs/gdb/dotdebug_005fgdb_005fscripts-section.html
|
|
// Each entry inside .debug_gdb_scripts section begins with a non-null prefix
|
|
// byte that specifies the kind of entry. The following entries are supported:
|
|
const (
|
|
GdbScriptPythonFileId = 1
|
|
GdbScriptSchemeFileId = 3
|
|
GdbScriptPythonTextId = 4
|
|
GdbScriptSchemeTextId = 6
|
|
)
|
|
|
|
var gdbscript string
|
|
|
|
// dwarfSecInfo holds information about a DWARF output section,
|
|
// specifically a section symbol and a list of symbols contained in
|
|
// that section. On the syms list, the first symbol will always be the
|
|
// section symbol, then any remaining symbols (if any) will be
|
|
// sub-symbols in that section. Note that for some sections (eg:
|
|
// .debug_abbrev), the section symbol is all there is (all content is
|
|
// contained in it). For other sections (eg: .debug_info), the section
|
|
// symbol is empty and all the content is in the sub-symbols. Finally
|
|
// there are some sections (eg: .debug_ranges) where it is a mix (both
|
|
// the section symbol and the sub-symbols have content)
|
|
type dwarfSecInfo struct {
|
|
syms []loader.Sym
|
|
}
|
|
|
|
// secSym returns the section symbol for the section.
|
|
func (dsi *dwarfSecInfo) secSym() loader.Sym {
|
|
if len(dsi.syms) == 0 {
|
|
return 0
|
|
}
|
|
return dsi.syms[0]
|
|
}
|
|
|
|
// subSyms returns a list of sub-symbols for the section.
|
|
func (dsi *dwarfSecInfo) subSyms() []loader.Sym {
|
|
if len(dsi.syms) == 0 {
|
|
return []loader.Sym{}
|
|
}
|
|
return dsi.syms[1:]
|
|
}
|
|
|
|
// dwarfp stores the collected DWARF symbols created during
|
|
// dwarf generation.
|
|
var dwarfp []dwarfSecInfo
|
|
|
|
func (d *dwctxt) writeabbrev() dwarfSecInfo {
|
|
abrvs := d.ldr.CreateSymForUpdate(".debug_abbrev", 0)
|
|
abrvs.SetType(sym.SDWARFSECT)
|
|
abrvs.AddBytes(dwarf.GetAbbrev())
|
|
return dwarfSecInfo{syms: []loader.Sym{abrvs.Sym()}}
|
|
}
|
|
|
|
var dwtypes dwarf.DWDie
|
|
|
|
// newattr attaches a new attribute to the specified DIE.
|
|
//
|
|
// FIXME: at the moment attributes are stored in a linked list in a
|
|
// fairly space-inefficient way -- it might be better to instead look
|
|
// up all attrs in a single large table, then store indices into the
|
|
// table in the DIE. This would allow us to common up storage for
|
|
// attributes that are shared by many DIEs (ex: byte size of N).
|
|
func newattr(die *dwarf.DWDie, attr uint16, cls int, value int64, data interface{}) {
|
|
a := new(dwarf.DWAttr)
|
|
a.Link = die.Attr
|
|
die.Attr = a
|
|
a.Atr = attr
|
|
a.Cls = uint8(cls)
|
|
a.Value = value
|
|
a.Data = data
|
|
}
|
|
|
|
// Each DIE (except the root ones) has at least 1 attribute: its
|
|
// name. getattr moves the desired one to the front so
|
|
// frequently searched ones are found faster.
|
|
func getattr(die *dwarf.DWDie, attr uint16) *dwarf.DWAttr {
|
|
if die.Attr.Atr == attr {
|
|
return die.Attr
|
|
}
|
|
|
|
a := die.Attr
|
|
b := a.Link
|
|
for b != nil {
|
|
if b.Atr == attr {
|
|
a.Link = b.Link
|
|
b.Link = die.Attr
|
|
die.Attr = b
|
|
return b
|
|
}
|
|
|
|
a = b
|
|
b = b.Link
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Every DIE manufactured by the linker has at least an AT_name
|
|
// attribute (but it will only be written out if it is listed in the abbrev).
|
|
// The compiler does create nameless DWARF DIEs (ex: concrete subprogram
|
|
// instance).
|
|
// FIXME: it would be more efficient to bulk-allocate DIEs.
|
|
func (d *dwctxt) newdie(parent *dwarf.DWDie, abbrev int, name string) *dwarf.DWDie {
|
|
die := new(dwarf.DWDie)
|
|
die.Abbrev = abbrev
|
|
die.Link = parent.Child
|
|
parent.Child = die
|
|
|
|
newattr(die, dwarf.DW_AT_name, dwarf.DW_CLS_STRING, int64(len(name)), name)
|
|
|
|
// Sanity check: all DIEs created in the linker should be named.
|
|
if name == "" {
|
|
panic("nameless DWARF DIE")
|
|
}
|
|
|
|
var st sym.SymKind
|
|
switch abbrev {
|
|
case dwarf.DW_ABRV_FUNCTYPEPARAM, dwarf.DW_ABRV_FUNCTYPEOUTPARAM, dwarf.DW_ABRV_DOTDOTDOT, dwarf.DW_ABRV_STRUCTFIELD, dwarf.DW_ABRV_ARRAYRANGE:
|
|
// There are no relocations against these dies, and their names
|
|
// are not unique, so don't create a symbol.
|
|
return die
|
|
case dwarf.DW_ABRV_COMPUNIT, dwarf.DW_ABRV_COMPUNIT_TEXTLESS:
|
|
// Avoid collisions with "real" symbol names.
|
|
name = fmt.Sprintf(".pkg.%s.%d", name, len(d.linkctxt.compUnits))
|
|
st = sym.SDWARFCUINFO
|
|
case dwarf.DW_ABRV_VARIABLE:
|
|
st = sym.SDWARFVAR
|
|
default:
|
|
// Everything else is assigned a type of SDWARFTYPE. that
|
|
// this also includes loose ends such as STRUCT_FIELD.
|
|
st = sym.SDWARFTYPE
|
|
}
|
|
ds := d.ldr.LookupOrCreateSym(dwarf.InfoPrefix+name, 0)
|
|
dsu := d.ldr.MakeSymbolUpdater(ds)
|
|
dsu.SetType(st)
|
|
d.ldr.SetAttrNotInSymbolTable(ds, true)
|
|
d.ldr.SetAttrReachable(ds, true)
|
|
die.Sym = dwSym(ds)
|
|
if abbrev >= dwarf.DW_ABRV_NULLTYPE && abbrev <= dwarf.DW_ABRV_TYPEDECL {
|
|
d.tmap[name] = ds
|
|
}
|
|
|
|
return die
|
|
}
|
|
|
|
func walktypedef(die *dwarf.DWDie) *dwarf.DWDie {
|
|
if die == nil {
|
|
return nil
|
|
}
|
|
// Resolve typedef if present.
|
|
if die.Abbrev == dwarf.DW_ABRV_TYPEDECL {
|
|
for attr := die.Attr; attr != nil; attr = attr.Link {
|
|
if attr.Atr == dwarf.DW_AT_type && attr.Cls == dwarf.DW_CLS_REFERENCE && attr.Data != nil {
|
|
return attr.Data.(*dwarf.DWDie)
|
|
}
|
|
}
|
|
}
|
|
|
|
return die
|
|
}
|
|
|
|
func (d *dwctxt) walksymtypedef(symIdx loader.Sym) loader.Sym {
|
|
|
|
// We're being given the loader symbol for the type DIE, e.g.
|
|
// "go:info.type.uintptr". Map that first to the type symbol (e.g.
|
|
// "type:uintptr") and then to the typedef DIE for the type.
|
|
// FIXME: this seems clunky, maybe there is a better way to do this.
|
|
|
|
if ts, ok := d.rtmap[symIdx]; ok {
|
|
if def, ok := d.tdmap[ts]; ok {
|
|
return def
|
|
}
|
|
d.linkctxt.Errorf(ts, "internal error: no entry for sym %d in tdmap\n", ts)
|
|
return 0
|
|
}
|
|
d.linkctxt.Errorf(symIdx, "internal error: no entry for sym %d in rtmap\n", symIdx)
|
|
return 0
|
|
}
|
|
|
|
// Find child by AT_name using hashtable if available or linear scan
|
|
// if not.
|
|
func findchild(die *dwarf.DWDie, name string) *dwarf.DWDie {
|
|
var prev *dwarf.DWDie
|
|
for ; die != prev; prev, die = die, walktypedef(die) {
|
|
for a := die.Child; a != nil; a = a.Link {
|
|
if name == getattr(a, dwarf.DW_AT_name).Data {
|
|
return a
|
|
}
|
|
}
|
|
continue
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// find looks up the loader symbol for the DWARF DIE generated for the
|
|
// type with the specified name.
|
|
func (d *dwctxt) find(name string) loader.Sym {
|
|
return d.tmap[name]
|
|
}
|
|
|
|
func (d *dwctxt) mustFind(name string) loader.Sym {
|
|
r := d.find(name)
|
|
if r == 0 {
|
|
Exitf("dwarf find: cannot find %s", name)
|
|
}
|
|
return r
|
|
}
|
|
|
|
func (d *dwctxt) adddwarfref(sb *loader.SymbolBuilder, t loader.Sym, size int) {
|
|
switch size {
|
|
default:
|
|
d.linkctxt.Errorf(sb.Sym(), "invalid size %d in adddwarfref\n", size)
|
|
case d.arch.PtrSize, 4:
|
|
}
|
|
sb.AddSymRef(d.arch, t, 0, objabi.R_DWARFSECREF, size)
|
|
}
|
|
|
|
func (d *dwctxt) newrefattr(die *dwarf.DWDie, attr uint16, ref loader.Sym) {
|
|
if ref == 0 {
|
|
return
|
|
}
|
|
newattr(die, attr, dwarf.DW_CLS_REFERENCE, 0, dwSym(ref))
|
|
}
|
|
|
|
func (d *dwctxt) dtolsym(s dwarf.Sym) loader.Sym {
|
|
if s == nil {
|
|
return 0
|
|
}
|
|
dws := loader.Sym(s.(dwSym))
|
|
return dws
|
|
}
|
|
|
|
func (d *dwctxt) putdie(syms []loader.Sym, die *dwarf.DWDie) []loader.Sym {
|
|
s := d.dtolsym(die.Sym)
|
|
if s == 0 {
|
|
s = syms[len(syms)-1]
|
|
} else {
|
|
syms = append(syms, s)
|
|
}
|
|
sDwsym := dwSym(s)
|
|
dwarf.Uleb128put(d, sDwsym, int64(die.Abbrev))
|
|
dwarf.PutAttrs(d, sDwsym, die.Abbrev, die.Attr)
|
|
if dwarf.HasChildren(die) {
|
|
for die := die.Child; die != nil; die = die.Link {
|
|
syms = d.putdie(syms, die)
|
|
}
|
|
dsu := d.ldr.MakeSymbolUpdater(syms[len(syms)-1])
|
|
dsu.AddUint8(0)
|
|
}
|
|
return syms
|
|
}
|
|
|
|
func reverselist(list **dwarf.DWDie) {
|
|
curr := *list
|
|
var prev *dwarf.DWDie
|
|
for curr != nil {
|
|
next := curr.Link
|
|
curr.Link = prev
|
|
prev = curr
|
|
curr = next
|
|
}
|
|
|
|
*list = prev
|
|
}
|
|
|
|
func reversetree(list **dwarf.DWDie) {
|
|
reverselist(list)
|
|
for die := *list; die != nil; die = die.Link {
|
|
if dwarf.HasChildren(die) {
|
|
reversetree(&die.Child)
|
|
}
|
|
}
|
|
}
|
|
|
|
func newmemberoffsetattr(die *dwarf.DWDie, offs int32) {
|
|
newattr(die, dwarf.DW_AT_data_member_location, dwarf.DW_CLS_CONSTANT, int64(offs), nil)
|
|
}
|
|
|
|
func (d *dwctxt) lookupOrDiag(n string) loader.Sym {
|
|
symIdx := d.ldr.Lookup(n, 0)
|
|
if symIdx == 0 {
|
|
Exitf("dwarf: missing type: %s", n)
|
|
}
|
|
if len(d.ldr.Data(symIdx)) == 0 {
|
|
Exitf("dwarf: missing type (no data): %s", n)
|
|
}
|
|
|
|
return symIdx
|
|
}
|
|
|
|
func (d *dwctxt) dotypedef(parent *dwarf.DWDie, name string, def *dwarf.DWDie) *dwarf.DWDie {
|
|
// Only emit typedefs for real names.
|
|
if strings.HasPrefix(name, "map[") {
|
|
return nil
|
|
}
|
|
if strings.HasPrefix(name, "struct {") {
|
|
return nil
|
|
}
|
|
// cmd/compile uses "noalg.struct {...}" as type name when hash and eq algorithm generation of
|
|
// this struct type is suppressed.
|
|
if strings.HasPrefix(name, "noalg.struct {") {
|
|
return nil
|
|
}
|
|
if strings.HasPrefix(name, "chan ") {
|
|
return nil
|
|
}
|
|
if name[0] == '[' || name[0] == '*' {
|
|
return nil
|
|
}
|
|
if def == nil {
|
|
Errorf(nil, "dwarf: bad def in dotypedef")
|
|
}
|
|
|
|
// Create a new loader symbol for the typedef. We no longer
|
|
// do lookups of typedef symbols by name, so this is going
|
|
// to be an anonymous symbol (we want this for perf reasons).
|
|
tds := d.ldr.CreateExtSym("", 0)
|
|
tdsu := d.ldr.MakeSymbolUpdater(tds)
|
|
tdsu.SetType(sym.SDWARFTYPE)
|
|
def.Sym = dwSym(tds)
|
|
d.ldr.SetAttrNotInSymbolTable(tds, true)
|
|
d.ldr.SetAttrReachable(tds, true)
|
|
|
|
// The typedef entry must be created after the def,
|
|
// so that future lookups will find the typedef instead
|
|
// of the real definition. This hooks the typedef into any
|
|
// circular definition loops, so that gdb can understand them.
|
|
die := d.newdie(parent, dwarf.DW_ABRV_TYPEDECL, name)
|
|
|
|
d.newrefattr(die, dwarf.DW_AT_type, tds)
|
|
|
|
return die
|
|
}
|
|
|
|
// Define gotype, for composite ones recurse into constituents.
|
|
func (d *dwctxt) defgotype(gotype loader.Sym) loader.Sym {
|
|
if gotype == 0 {
|
|
return d.mustFind("<unspecified>")
|
|
}
|
|
|
|
// If we already have a tdmap entry for the gotype, return it.
|
|
if ds, ok := d.tdmap[gotype]; ok {
|
|
return ds
|
|
}
|
|
|
|
sn := d.ldr.SymName(gotype)
|
|
if !strings.HasPrefix(sn, "type:") {
|
|
d.linkctxt.Errorf(gotype, "dwarf: type name doesn't start with \"type:\"")
|
|
return d.mustFind("<unspecified>")
|
|
}
|
|
name := sn[5:] // could also decode from Type.string
|
|
|
|
sdie := d.find(name)
|
|
if sdie != 0 {
|
|
return sdie
|
|
}
|
|
|
|
gtdwSym := d.newtype(gotype)
|
|
d.tdmap[gotype] = loader.Sym(gtdwSym.Sym.(dwSym))
|
|
return loader.Sym(gtdwSym.Sym.(dwSym))
|
|
}
|
|
|
|
func (d *dwctxt) newtype(gotype loader.Sym) *dwarf.DWDie {
|
|
sn := d.ldr.SymName(gotype)
|
|
name := sn[5:] // could also decode from Type.string
|
|
tdata := d.ldr.Data(gotype)
|
|
if len(tdata) == 0 {
|
|
d.linkctxt.Errorf(gotype, "missing type")
|
|
}
|
|
kind := decodetypeKind(d.arch, tdata)
|
|
bytesize := decodetypeSize(d.arch, tdata)
|
|
|
|
var die, typedefdie *dwarf.DWDie
|
|
switch kind {
|
|
case abi.Bool:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name)
|
|
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_boolean, 0)
|
|
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
|
|
|
|
case abi.Int,
|
|
abi.Int8,
|
|
abi.Int16,
|
|
abi.Int32,
|
|
abi.Int64:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name)
|
|
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_signed, 0)
|
|
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
|
|
|
|
case abi.Uint,
|
|
abi.Uint8,
|
|
abi.Uint16,
|
|
abi.Uint32,
|
|
abi.Uint64,
|
|
abi.Uintptr:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name)
|
|
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_unsigned, 0)
|
|
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
|
|
|
|
case abi.Float32,
|
|
abi.Float64:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name)
|
|
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_float, 0)
|
|
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
|
|
|
|
case abi.Complex64,
|
|
abi.Complex128:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name)
|
|
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_complex_float, 0)
|
|
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
|
|
|
|
case abi.Array:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_ARRAYTYPE, name)
|
|
typedefdie = d.dotypedef(&dwtypes, name, die)
|
|
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
|
|
s := decodetypeArrayElem(d.ldr, d.arch, gotype)
|
|
d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s))
|
|
fld := d.newdie(die, dwarf.DW_ABRV_ARRAYRANGE, "range")
|
|
|
|
// use actual length not upper bound; correct for 0-length arrays.
|
|
newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, decodetypeArrayLen(d.ldr, d.arch, gotype), 0)
|
|
|
|
d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
|
|
|
|
case abi.Chan:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_CHANTYPE, name)
|
|
s := decodetypeChanElem(d.ldr, d.arch, gotype)
|
|
d.newrefattr(die, dwarf.DW_AT_go_elem, d.defgotype(s))
|
|
// Save elem type for synthesizechantypes. We could synthesize here
|
|
// but that would change the order of DIEs we output.
|
|
d.newrefattr(die, dwarf.DW_AT_type, s)
|
|
|
|
case abi.Func:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_FUNCTYPE, name)
|
|
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
|
|
typedefdie = d.dotypedef(&dwtypes, name, die)
|
|
data := d.ldr.Data(gotype)
|
|
// FIXME: add caching or reuse reloc slice.
|
|
relocs := d.ldr.Relocs(gotype)
|
|
nfields := decodetypeFuncInCount(d.arch, data)
|
|
for i := 0; i < nfields; i++ {
|
|
s := decodetypeFuncInType(d.ldr, d.arch, gotype, &relocs, i)
|
|
sn := d.ldr.SymName(s)
|
|
fld := d.newdie(die, dwarf.DW_ABRV_FUNCTYPEPARAM, sn[5:])
|
|
d.newrefattr(fld, dwarf.DW_AT_type, d.defgotype(s))
|
|
}
|
|
|
|
if decodetypeFuncDotdotdot(d.arch, data) {
|
|
d.newdie(die, dwarf.DW_ABRV_DOTDOTDOT, "...")
|
|
}
|
|
nfields = decodetypeFuncOutCount(d.arch, data)
|
|
for i := 0; i < nfields; i++ {
|
|
s := decodetypeFuncOutType(d.ldr, d.arch, gotype, &relocs, i)
|
|
sn := d.ldr.SymName(s)
|
|
fld := d.newdie(die, dwarf.DW_ABRV_FUNCTYPEOUTPARAM, sn[5:])
|
|
newattr(fld, dwarf.DW_AT_variable_parameter, dwarf.DW_CLS_FLAG, 1, 0)
|
|
d.newrefattr(fld, dwarf.DW_AT_type, d.defgotype(s))
|
|
}
|
|
|
|
case abi.Interface:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_IFACETYPE, name)
|
|
typedefdie = d.dotypedef(&dwtypes, name, die)
|
|
data := d.ldr.Data(gotype)
|
|
nfields := int(decodetypeIfaceMethodCount(d.arch, data))
|
|
var s loader.Sym
|
|
if nfields == 0 {
|
|
s = d.typeRuntimeEface
|
|
} else {
|
|
s = d.typeRuntimeIface
|
|
}
|
|
d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s))
|
|
|
|
case abi.Map:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_MAPTYPE, name)
|
|
s := decodetypeMapKey(d.ldr, d.arch, gotype)
|
|
d.newrefattr(die, dwarf.DW_AT_go_key, d.defgotype(s))
|
|
s = decodetypeMapValue(d.ldr, d.arch, gotype)
|
|
d.newrefattr(die, dwarf.DW_AT_go_elem, d.defgotype(s))
|
|
// Save gotype for use in synthesizemaptypes. We could synthesize here,
|
|
// but that would change the order of the DIEs.
|
|
d.newrefattr(die, dwarf.DW_AT_type, gotype)
|
|
|
|
case abi.Pointer:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_PTRTYPE, name)
|
|
typedefdie = d.dotypedef(&dwtypes, name, die)
|
|
s := decodetypePtrElem(d.ldr, d.arch, gotype)
|
|
d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s))
|
|
|
|
case abi.Slice:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_SLICETYPE, name)
|
|
typedefdie = d.dotypedef(&dwtypes, name, die)
|
|
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
|
|
s := decodetypeArrayElem(d.ldr, d.arch, gotype)
|
|
elem := d.defgotype(s)
|
|
d.newrefattr(die, dwarf.DW_AT_go_elem, elem)
|
|
|
|
case abi.String:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_STRINGTYPE, name)
|
|
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
|
|
|
|
case abi.Struct:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_STRUCTTYPE, name)
|
|
typedefdie = d.dotypedef(&dwtypes, name, die)
|
|
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
|
|
nfields := decodetypeStructFieldCount(d.ldr, d.arch, gotype)
|
|
for i := 0; i < nfields; i++ {
|
|
f := decodetypeStructFieldName(d.ldr, d.arch, gotype, i)
|
|
s := decodetypeStructFieldType(d.ldr, d.arch, gotype, i)
|
|
if f == "" {
|
|
sn := d.ldr.SymName(s)
|
|
f = sn[5:] // skip "type:"
|
|
}
|
|
fld := d.newdie(die, dwarf.DW_ABRV_STRUCTFIELD, f)
|
|
d.newrefattr(fld, dwarf.DW_AT_type, d.defgotype(s))
|
|
offset := decodetypeStructFieldOffset(d.ldr, d.arch, gotype, i)
|
|
newmemberoffsetattr(fld, int32(offset))
|
|
if decodetypeStructFieldEmbedded(d.ldr, d.arch, gotype, i) {
|
|
newattr(fld, dwarf.DW_AT_go_embedded_field, dwarf.DW_CLS_FLAG, 1, 0)
|
|
}
|
|
}
|
|
|
|
case abi.UnsafePointer:
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BARE_PTRTYPE, name)
|
|
|
|
default:
|
|
d.linkctxt.Errorf(gotype, "dwarf: definition of unknown kind %d", kind)
|
|
die = d.newdie(&dwtypes, dwarf.DW_ABRV_TYPEDECL, name)
|
|
d.newrefattr(die, dwarf.DW_AT_type, d.mustFind("<unspecified>"))
|
|
}
|
|
|
|
newattr(die, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, int64(kind), 0)
|
|
|
|
if d.ldr.AttrReachable(gotype) {
|
|
newattr(die, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(gotype))
|
|
}
|
|
|
|
// Sanity check.
|
|
if _, ok := d.rtmap[gotype]; ok {
|
|
log.Fatalf("internal error: rtmap entry already installed\n")
|
|
}
|
|
|
|
ds := loader.Sym(die.Sym.(dwSym))
|
|
if typedefdie != nil {
|
|
ds = loader.Sym(typedefdie.Sym.(dwSym))
|
|
}
|
|
d.rtmap[ds] = gotype
|
|
|
|
if _, ok := prototypedies[sn]; ok {
|
|
prototypedies[sn] = die
|
|
}
|
|
|
|
if typedefdie != nil {
|
|
return typedefdie
|
|
}
|
|
return die
|
|
}
|
|
|
|
func (d *dwctxt) nameFromDIESym(dwtypeDIESym loader.Sym) string {
|
|
sn := d.ldr.SymName(dwtypeDIESym)
|
|
return sn[len(dwarf.InfoPrefix):]
|
|
}
|
|
|
|
func (d *dwctxt) defptrto(dwtype loader.Sym) loader.Sym {
|
|
|
|
// FIXME: it would be nice if the compiler attached an aux symbol
|
|
// ref from the element type to the pointer type -- it would be
|
|
// more efficient to do it this way as opposed to via name lookups.
|
|
|
|
ptrname := "*" + d.nameFromDIESym(dwtype)
|
|
if die := d.find(ptrname); die != 0 {
|
|
return die
|
|
}
|
|
|
|
pdie := d.newdie(&dwtypes, dwarf.DW_ABRV_PTRTYPE, ptrname)
|
|
d.newrefattr(pdie, dwarf.DW_AT_type, dwtype)
|
|
|
|
// The DWARF info synthesizes pointer types that don't exist at the
|
|
// language level, like *hash<...> and *bucket<...>, and the data
|
|
// pointers of slices. Link to the ones we can find.
|
|
gts := d.ldr.Lookup("type:"+ptrname, 0)
|
|
if gts != 0 && d.ldr.AttrReachable(gts) {
|
|
newattr(pdie, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, int64(abi.Pointer), 0)
|
|
newattr(pdie, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(gts))
|
|
}
|
|
|
|
if gts != 0 {
|
|
ds := loader.Sym(pdie.Sym.(dwSym))
|
|
d.rtmap[ds] = gts
|
|
d.tdmap[gts] = ds
|
|
}
|
|
|
|
return d.dtolsym(pdie.Sym)
|
|
}
|
|
|
|
// Copies src's children into dst. Copies attributes by value.
|
|
// DWAttr.data is copied as pointer only. If except is one of
|
|
// the top-level children, it will not be copied.
|
|
func (d *dwctxt) copychildrenexcept(ctxt *Link, dst *dwarf.DWDie, src *dwarf.DWDie, except *dwarf.DWDie) {
|
|
for src = src.Child; src != nil; src = src.Link {
|
|
if src == except {
|
|
continue
|
|
}
|
|
c := d.newdie(dst, src.Abbrev, getattr(src, dwarf.DW_AT_name).Data.(string))
|
|
for a := src.Attr; a != nil; a = a.Link {
|
|
newattr(c, a.Atr, int(a.Cls), a.Value, a.Data)
|
|
}
|
|
d.copychildrenexcept(ctxt, c, src, nil)
|
|
}
|
|
|
|
reverselist(&dst.Child)
|
|
}
|
|
|
|
func (d *dwctxt) copychildren(ctxt *Link, dst *dwarf.DWDie, src *dwarf.DWDie) {
|
|
d.copychildrenexcept(ctxt, dst, src, nil)
|
|
}
|
|
|
|
// Search children (assumed to have TAG_member) for the one named
|
|
// field and set its AT_type to dwtype
|
|
func (d *dwctxt) substitutetype(structdie *dwarf.DWDie, field string, dwtype loader.Sym) {
|
|
child := findchild(structdie, field)
|
|
if child == nil {
|
|
Exitf("dwarf substitutetype: %s does not have member %s",
|
|
getattr(structdie, dwarf.DW_AT_name).Data, field)
|
|
return
|
|
}
|
|
|
|
a := getattr(child, dwarf.DW_AT_type)
|
|
if a != nil {
|
|
a.Data = dwSym(dwtype)
|
|
} else {
|
|
d.newrefattr(child, dwarf.DW_AT_type, dwtype)
|
|
}
|
|
}
|
|
|
|
func (d *dwctxt) findprotodie(ctxt *Link, name string) *dwarf.DWDie {
|
|
die, ok := prototypedies[name]
|
|
if ok && die == nil {
|
|
d.defgotype(d.lookupOrDiag(name))
|
|
die = prototypedies[name]
|
|
}
|
|
if die == nil {
|
|
log.Fatalf("internal error: DIE generation failed for %s\nprototypedies: %+v", name, prototypedies)
|
|
}
|
|
return die
|
|
}
|
|
|
|
func (d *dwctxt) synthesizestringtypes(ctxt *Link, die *dwarf.DWDie) {
|
|
prototype := walktypedef(d.findprotodie(ctxt, "type:runtime.stringStructDWARF"))
|
|
if prototype == nil {
|
|
return
|
|
}
|
|
|
|
for ; die != nil; die = die.Link {
|
|
if die.Abbrev != dwarf.DW_ABRV_STRINGTYPE {
|
|
continue
|
|
}
|
|
d.copychildren(ctxt, die, prototype)
|
|
}
|
|
}
|
|
|
|
func (d *dwctxt) synthesizeslicetypes(ctxt *Link, die *dwarf.DWDie) {
|
|
prototype := walktypedef(d.findprotodie(ctxt, "type:runtime.slice"))
|
|
if prototype == nil {
|
|
return
|
|
}
|
|
|
|
for ; die != nil; die = die.Link {
|
|
if die.Abbrev != dwarf.DW_ABRV_SLICETYPE {
|
|
continue
|
|
}
|
|
d.copychildren(ctxt, die, prototype)
|
|
elem := loader.Sym(getattr(die, dwarf.DW_AT_go_elem).Data.(dwSym))
|
|
d.substitutetype(die, "array", d.defptrto(elem))
|
|
}
|
|
}
|
|
|
|
func mkinternaltypename(base string, arg1 string, arg2 string) string {
|
|
if arg2 == "" {
|
|
return fmt.Sprintf("%s<%s>", base, arg1)
|
|
}
|
|
return fmt.Sprintf("%s<%s,%s>", base, arg1, arg2)
|
|
}
|
|
|
|
func (d *dwctxt) mkinternaltype(ctxt *Link, abbrev int, typename, keyname, valname string, f func(*dwarf.DWDie)) loader.Sym {
|
|
name := mkinternaltypename(typename, keyname, valname)
|
|
symname := dwarf.InfoPrefix + name
|
|
s := d.ldr.Lookup(symname, 0)
|
|
if s != 0 && d.ldr.SymType(s) == sym.SDWARFTYPE {
|
|
return s
|
|
}
|
|
die := d.newdie(&dwtypes, abbrev, name)
|
|
f(die)
|
|
return d.dtolsym(die.Sym)
|
|
}
|
|
|
|
func (d *dwctxt) synthesizemaptypes(ctxt *Link, die *dwarf.DWDie) {
|
|
if buildcfg.Experiment.SwissMap {
|
|
d.synthesizemaptypesSwiss(ctxt, die)
|
|
} else {
|
|
d.synthesizemaptypesOld(ctxt, die)
|
|
}
|
|
}
|
|
|
|
func (d *dwctxt) synthesizemaptypesSwiss(ctxt *Link, die *dwarf.DWDie) {
|
|
hash := walktypedef(d.findprotodie(ctxt, "type:internal/runtime/maps.table"))
|
|
//bucket := walktypedef(d.findprotodie(ctxt, "type:internal/runtime/maps.Map"))
|
|
|
|
if hash == nil {
|
|
return
|
|
}
|
|
|
|
for ; die != nil; die = die.Link {
|
|
if die.Abbrev != dwarf.DW_ABRV_MAPTYPE {
|
|
continue
|
|
}
|
|
gotype := loader.Sym(getattr(die, dwarf.DW_AT_type).Data.(dwSym))
|
|
keytype := decodetypeMapKey(d.ldr, d.arch, gotype)
|
|
valtype := decodetypeMapValue(d.ldr, d.arch, gotype)
|
|
//keydata := d.ldr.Data(keytype)
|
|
//valdata := d.ldr.Data(valtype)
|
|
//keysize, valsize := decodetypeSize(d.arch, keydata), decodetypeSize(d.arch, valdata)
|
|
keytype, valtype = d.walksymtypedef(d.defgotype(keytype)), d.walksymtypedef(d.defgotype(valtype))
|
|
|
|
// compute size info like hashmap.c does.
|
|
//indirectKey, indirectVal := false, false
|
|
//if keysize > abi.SwissMapMaxKeyBytes {
|
|
// keysize = int64(d.arch.PtrSize)
|
|
// indirectKey = true
|
|
//}
|
|
//if valsize > abi.SwissMapMaxElemBytes {
|
|
// valsize = int64(d.arch.PtrSize)
|
|
// indirectVal = true
|
|
//}
|
|
|
|
// Construct type to represent an array of BucketSize keys
|
|
// TODO
|
|
keyname := d.nameFromDIESym(keytype)
|
|
//dwhks := d.mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]key", keyname, "", func(dwhk *dwarf.DWDie) {
|
|
// newattr(dwhk, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, abi.SwissMapBucketCount*keysize, 0)
|
|
// t := keytype
|
|
// if indirectKey {
|
|
// t = d.defptrto(keytype)
|
|
// }
|
|
// d.newrefattr(dwhk, dwarf.DW_AT_type, t)
|
|
// fld := d.newdie(dwhk, dwarf.DW_ABRV_ARRAYRANGE, "size")
|
|
// newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, abi.SwissMapBucketCount, 0)
|
|
// d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
|
|
//})
|
|
|
|
// Construct type to represent an array of BucketSize values
|
|
// TODO
|
|
valname := d.nameFromDIESym(valtype)
|
|
//dwhvs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]val", valname, "", func(dwhv *dwarf.DWDie) {
|
|
// newattr(dwhv, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, abi.SwissMapBucketCount*valsize, 0)
|
|
// t := valtype
|
|
// if indirectVal {
|
|
// t = d.defptrto(valtype)
|
|
// }
|
|
// d.newrefattr(dwhv, dwarf.DW_AT_type, t)
|
|
// fld := d.newdie(dwhv, dwarf.DW_ABRV_ARRAYRANGE, "size")
|
|
// newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, abi.SwissMapBucketCount, 0)
|
|
// d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
|
|
//})
|
|
|
|
// Construct bucket<K,V>
|
|
// TODO
|
|
//dwhbs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "bucket", keyname, valname, func(dwhb *dwarf.DWDie) {
|
|
// // Copy over all fields except the field "data" from the generic
|
|
// // bucket. "data" will be replaced with keys/values below.
|
|
// d.copychildrenexcept(ctxt, dwhb, bucket, findchild(bucket, "data"))
|
|
|
|
// fld := d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "keys")
|
|
// d.newrefattr(fld, dwarf.DW_AT_type, dwhks)
|
|
// newmemberoffsetattr(fld, abi.SwissMapBucketCount)
|
|
// fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "values")
|
|
// d.newrefattr(fld, dwarf.DW_AT_type, dwhvs)
|
|
// newmemberoffsetattr(fld, abi.SwissMapBucketCount+abi.SwissMapBucketCount*int32(keysize))
|
|
// fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "overflow")
|
|
// d.newrefattr(fld, dwarf.DW_AT_type, d.defptrto(d.dtolsym(dwhb.Sym)))
|
|
// newmemberoffsetattr(fld, abi.SwissMapBucketCount+abi.SwissMapBucketCount*(int32(keysize)+int32(valsize)))
|
|
// if d.arch.RegSize > d.arch.PtrSize {
|
|
// fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "pad")
|
|
// d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
|
|
// newmemberoffsetattr(fld, abi.SwissMapBucketCount+abi.SwissMapBucketCount*(int32(keysize)+int32(valsize))+int32(d.arch.PtrSize))
|
|
// }
|
|
|
|
// newattr(dwhb, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, abi.SwissMapBucketCount+abi.SwissMapBucketCount*keysize+abi.SwissMapBucketCount*valsize+int64(d.arch.RegSize), 0)
|
|
//})
|
|
|
|
// Construct hash<K,V>
|
|
dwhs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hash", keyname, valname, func(dwh *dwarf.DWDie) {
|
|
d.copychildren(ctxt, dwh, hash)
|
|
//d.substitutetype(dwh, "buckets", d.defptrto(dwhbs))
|
|
//d.substitutetype(dwh, "oldbuckets", d.defptrto(dwhbs))
|
|
newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hash, dwarf.DW_AT_byte_size).Value, nil)
|
|
})
|
|
|
|
// make map type a pointer to hash<K,V>
|
|
d.newrefattr(die, dwarf.DW_AT_type, d.defptrto(dwhs))
|
|
}
|
|
}
|
|
|
|
func (d *dwctxt) synthesizemaptypesOld(ctxt *Link, die *dwarf.DWDie) {
|
|
hash := walktypedef(d.findprotodie(ctxt, "type:runtime.hmap"))
|
|
bucket := walktypedef(d.findprotodie(ctxt, "type:runtime.bmap"))
|
|
|
|
if hash == nil {
|
|
return
|
|
}
|
|
|
|
for ; die != nil; die = die.Link {
|
|
if die.Abbrev != dwarf.DW_ABRV_MAPTYPE {
|
|
continue
|
|
}
|
|
gotype := loader.Sym(getattr(die, dwarf.DW_AT_type).Data.(dwSym))
|
|
keytype := decodetypeMapKey(d.ldr, d.arch, gotype)
|
|
valtype := decodetypeMapValue(d.ldr, d.arch, gotype)
|
|
keydata := d.ldr.Data(keytype)
|
|
valdata := d.ldr.Data(valtype)
|
|
keysize, valsize := decodetypeSize(d.arch, keydata), decodetypeSize(d.arch, valdata)
|
|
keytype, valtype = d.walksymtypedef(d.defgotype(keytype)), d.walksymtypedef(d.defgotype(valtype))
|
|
|
|
// compute size info like hashmap.c does.
|
|
indirectKey, indirectVal := false, false
|
|
if keysize > abi.OldMapMaxKeyBytes {
|
|
keysize = int64(d.arch.PtrSize)
|
|
indirectKey = true
|
|
}
|
|
if valsize > abi.OldMapMaxElemBytes {
|
|
valsize = int64(d.arch.PtrSize)
|
|
indirectVal = true
|
|
}
|
|
|
|
// Construct type to represent an array of BucketSize keys
|
|
keyname := d.nameFromDIESym(keytype)
|
|
dwhks := d.mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]key", keyname, "", func(dwhk *dwarf.DWDie) {
|
|
newattr(dwhk, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, abi.OldMapBucketCount*keysize, 0)
|
|
t := keytype
|
|
if indirectKey {
|
|
t = d.defptrto(keytype)
|
|
}
|
|
d.newrefattr(dwhk, dwarf.DW_AT_type, t)
|
|
fld := d.newdie(dwhk, dwarf.DW_ABRV_ARRAYRANGE, "size")
|
|
newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, abi.OldMapBucketCount, 0)
|
|
d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
|
|
})
|
|
|
|
// Construct type to represent an array of BucketSize values
|
|
valname := d.nameFromDIESym(valtype)
|
|
dwhvs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]val", valname, "", func(dwhv *dwarf.DWDie) {
|
|
newattr(dwhv, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, abi.OldMapBucketCount*valsize, 0)
|
|
t := valtype
|
|
if indirectVal {
|
|
t = d.defptrto(valtype)
|
|
}
|
|
d.newrefattr(dwhv, dwarf.DW_AT_type, t)
|
|
fld := d.newdie(dwhv, dwarf.DW_ABRV_ARRAYRANGE, "size")
|
|
newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, abi.OldMapBucketCount, 0)
|
|
d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
|
|
})
|
|
|
|
// Construct bucket<K,V>
|
|
dwhbs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "bucket", keyname, valname, func(dwhb *dwarf.DWDie) {
|
|
// Copy over all fields except the field "data" from the generic
|
|
// bucket. "data" will be replaced with keys/values below.
|
|
d.copychildrenexcept(ctxt, dwhb, bucket, findchild(bucket, "data"))
|
|
|
|
fld := d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "keys")
|
|
d.newrefattr(fld, dwarf.DW_AT_type, dwhks)
|
|
newmemberoffsetattr(fld, abi.OldMapBucketCount)
|
|
fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "values")
|
|
d.newrefattr(fld, dwarf.DW_AT_type, dwhvs)
|
|
newmemberoffsetattr(fld, abi.OldMapBucketCount+abi.OldMapBucketCount*int32(keysize))
|
|
fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "overflow")
|
|
d.newrefattr(fld, dwarf.DW_AT_type, d.defptrto(d.dtolsym(dwhb.Sym)))
|
|
newmemberoffsetattr(fld, abi.OldMapBucketCount+abi.OldMapBucketCount*(int32(keysize)+int32(valsize)))
|
|
if d.arch.RegSize > d.arch.PtrSize {
|
|
fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "pad")
|
|
d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
|
|
newmemberoffsetattr(fld, abi.OldMapBucketCount+abi.OldMapBucketCount*(int32(keysize)+int32(valsize))+int32(d.arch.PtrSize))
|
|
}
|
|
|
|
newattr(dwhb, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, abi.OldMapBucketCount+abi.OldMapBucketCount*keysize+abi.OldMapBucketCount*valsize+int64(d.arch.RegSize), 0)
|
|
})
|
|
|
|
// Construct hash<K,V>
|
|
dwhs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hash", keyname, valname, func(dwh *dwarf.DWDie) {
|
|
d.copychildren(ctxt, dwh, hash)
|
|
d.substitutetype(dwh, "buckets", d.defptrto(dwhbs))
|
|
d.substitutetype(dwh, "oldbuckets", d.defptrto(dwhbs))
|
|
newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hash, dwarf.DW_AT_byte_size).Value, nil)
|
|
})
|
|
|
|
// make map type a pointer to hash<K,V>
|
|
d.newrefattr(die, dwarf.DW_AT_type, d.defptrto(dwhs))
|
|
}
|
|
}
|
|
|
|
func (d *dwctxt) synthesizechantypes(ctxt *Link, die *dwarf.DWDie) {
|
|
sudog := walktypedef(d.findprotodie(ctxt, "type:runtime.sudog"))
|
|
waitq := walktypedef(d.findprotodie(ctxt, "type:runtime.waitq"))
|
|
hchan := walktypedef(d.findprotodie(ctxt, "type:runtime.hchan"))
|
|
if sudog == nil || waitq == nil || hchan == nil {
|
|
return
|
|
}
|
|
|
|
sudogsize := int(getattr(sudog, dwarf.DW_AT_byte_size).Value)
|
|
|
|
for ; die != nil; die = die.Link {
|
|
if die.Abbrev != dwarf.DW_ABRV_CHANTYPE {
|
|
continue
|
|
}
|
|
elemgotype := loader.Sym(getattr(die, dwarf.DW_AT_type).Data.(dwSym))
|
|
tname := d.ldr.SymName(elemgotype)
|
|
elemname := tname[5:]
|
|
elemtype := d.walksymtypedef(d.defgotype(d.lookupOrDiag(tname)))
|
|
|
|
// sudog<T>
|
|
dwss := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "sudog", elemname, "", func(dws *dwarf.DWDie) {
|
|
d.copychildren(ctxt, dws, sudog)
|
|
d.substitutetype(dws, "elem", d.defptrto(elemtype))
|
|
newattr(dws, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, int64(sudogsize), nil)
|
|
})
|
|
|
|
// waitq<T>
|
|
dwws := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "waitq", elemname, "", func(dww *dwarf.DWDie) {
|
|
|
|
d.copychildren(ctxt, dww, waitq)
|
|
d.substitutetype(dww, "first", d.defptrto(dwss))
|
|
d.substitutetype(dww, "last", d.defptrto(dwss))
|
|
newattr(dww, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(waitq, dwarf.DW_AT_byte_size).Value, nil)
|
|
})
|
|
|
|
// hchan<T>
|
|
dwhs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hchan", elemname, "", func(dwh *dwarf.DWDie) {
|
|
d.copychildren(ctxt, dwh, hchan)
|
|
d.substitutetype(dwh, "recvq", dwws)
|
|
d.substitutetype(dwh, "sendq", dwws)
|
|
newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hchan, dwarf.DW_AT_byte_size).Value, nil)
|
|
})
|
|
|
|
d.newrefattr(die, dwarf.DW_AT_type, d.defptrto(dwhs))
|
|
}
|
|
}
|
|
|
|
// createUnitLength creates the initial length field with value v and update
|
|
// offset of unit_length if needed.
|
|
func (d *dwctxt) createUnitLength(su *loader.SymbolBuilder, v uint64) {
|
|
if isDwarf64(d.linkctxt) {
|
|
su.AddUint32(d.arch, 0xFFFFFFFF)
|
|
}
|
|
d.addDwarfAddrField(su, v)
|
|
}
|
|
|
|
// addDwarfAddrField adds a DWARF field in DWARF 64bits or 32bits.
|
|
func (d *dwctxt) addDwarfAddrField(sb *loader.SymbolBuilder, v uint64) {
|
|
if isDwarf64(d.linkctxt) {
|
|
sb.AddUint(d.arch, v)
|
|
} else {
|
|
sb.AddUint32(d.arch, uint32(v))
|
|
}
|
|
}
|
|
|
|
// addDwarfAddrRef adds a DWARF pointer in DWARF 64bits or 32bits.
|
|
func (d *dwctxt) addDwarfAddrRef(sb *loader.SymbolBuilder, t loader.Sym) {
|
|
if isDwarf64(d.linkctxt) {
|
|
d.adddwarfref(sb, t, 8)
|
|
} else {
|
|
d.adddwarfref(sb, t, 4)
|
|
}
|
|
}
|
|
|
|
// calcCompUnitRanges calculates the PC ranges of the compilation units.
|
|
func (d *dwctxt) calcCompUnitRanges() {
|
|
var prevUnit *sym.CompilationUnit
|
|
for _, s := range d.linkctxt.Textp {
|
|
sym := loader.Sym(s)
|
|
|
|
fi := d.ldr.FuncInfo(sym)
|
|
if !fi.Valid() {
|
|
continue
|
|
}
|
|
|
|
// Skip linker-created functions (ex: runtime.addmoduledata), since they
|
|
// don't have DWARF to begin with.
|
|
unit := d.ldr.SymUnit(sym)
|
|
if unit == nil {
|
|
continue
|
|
}
|
|
|
|
// Update PC ranges.
|
|
//
|
|
// We don't simply compare the end of the previous
|
|
// symbol with the start of the next because there's
|
|
// often a little padding between them. Instead, we
|
|
// only create boundaries between symbols from
|
|
// different units.
|
|
sval := d.ldr.SymValue(sym)
|
|
u0val := d.ldr.SymValue(loader.Sym(unit.Textp[0]))
|
|
if prevUnit != unit {
|
|
unit.PCs = append(unit.PCs, dwarf.Range{Start: sval - u0val})
|
|
prevUnit = unit
|
|
}
|
|
unit.PCs[len(unit.PCs)-1].End = sval - u0val + int64(len(d.ldr.Data(sym)))
|
|
}
|
|
}
|
|
|
|
func movetomodule(ctxt *Link, parent *dwarf.DWDie) {
|
|
die := ctxt.runtimeCU.DWInfo.Child
|
|
if die == nil {
|
|
ctxt.runtimeCU.DWInfo.Child = parent.Child
|
|
return
|
|
}
|
|
for die.Link != nil {
|
|
die = die.Link
|
|
}
|
|
die.Link = parent.Child
|
|
}
|
|
|
|
/*
|
|
* Generate a sequence of opcodes that is as short as possible.
|
|
* See section 6.2.5
|
|
*/
|
|
const (
|
|
LINE_BASE = -4
|
|
LINE_RANGE = 10
|
|
PC_RANGE = (255 - OPCODE_BASE) / LINE_RANGE
|
|
OPCODE_BASE = 11
|
|
)
|
|
|
|
/*
|
|
* Walk prog table, emit line program and build DIE tree.
|
|
*/
|
|
|
|
func getCompilationDir() string {
|
|
// OSX requires this be set to something, but it's not easy to choose
|
|
// a value. Linking takes place in a temporary directory, so there's
|
|
// no point including it here. Paths in the file table are usually
|
|
// absolute, in which case debuggers will ignore this value. -trimpath
|
|
// produces relative paths, but we don't know where they start, so
|
|
// all we can do here is try not to make things worse.
|
|
return "."
|
|
}
|
|
|
|
func (d *dwctxt) importInfoSymbol(dsym loader.Sym) {
|
|
d.ldr.SetAttrReachable(dsym, true)
|
|
d.ldr.SetAttrNotInSymbolTable(dsym, true)
|
|
dst := d.ldr.SymType(dsym)
|
|
if dst != sym.SDWARFCONST && dst != sym.SDWARFABSFCN {
|
|
log.Fatalf("error: DWARF info sym %d/%s with incorrect type %s", dsym, d.ldr.SymName(dsym), d.ldr.SymType(dsym).String())
|
|
}
|
|
relocs := d.ldr.Relocs(dsym)
|
|
for i := 0; i < relocs.Count(); i++ {
|
|
r := relocs.At(i)
|
|
if r.Type() != objabi.R_DWARFSECREF {
|
|
continue
|
|
}
|
|
rsym := r.Sym()
|
|
// If there is an entry for the symbol in our rtmap, then it
|
|
// means we've processed the type already, and can skip this one.
|
|
if _, ok := d.rtmap[rsym]; ok {
|
|
// type already generated
|
|
continue
|
|
}
|
|
// FIXME: is there a way we could avoid materializing the
|
|
// symbol name here?
|
|
sn := d.ldr.SymName(rsym)
|
|
tn := sn[len(dwarf.InfoPrefix):]
|
|
ts := d.ldr.Lookup("type:"+tn, 0)
|
|
d.defgotype(ts)
|
|
}
|
|
}
|
|
|
|
func expandFile(fname string) string {
|
|
fname = strings.TrimPrefix(fname, src.FileSymPrefix)
|
|
return expandGoroot(fname)
|
|
}
|
|
|
|
// writeDirFileTables emits the portion of the DWARF line table
|
|
// prologue containing the include directories and file names,
|
|
// described in section 6.2.4 of the DWARF 4 standard. It walks the
|
|
// filepaths for the unit to discover any common directories, which
|
|
// are emitted to the directory table first, then the file table is
|
|
// emitted after that.
|
|
func (d *dwctxt) writeDirFileTables(unit *sym.CompilationUnit, lsu *loader.SymbolBuilder) {
|
|
type fileDir struct {
|
|
base string
|
|
dir int
|
|
}
|
|
dirNums := make(map[string]int)
|
|
dirs := []string{""}
|
|
files := []fileDir{}
|
|
|
|
// Preprocess files to collect directories. This assumes that the
|
|
// file table is already de-duped.
|
|
for i, name := range unit.FileTable {
|
|
name := expandFile(name)
|
|
if len(name) == 0 {
|
|
// Can't have empty filenames, and having a unique
|
|
// filename is quite useful for debugging.
|
|
name = fmt.Sprintf("<missing>_%d", i)
|
|
}
|
|
// Note the use of "path" here and not "filepath". The compiler
|
|
// hard-codes to use "/" in DWARF paths (even for Windows), so we
|
|
// want to maintain that here.
|
|
file := path.Base(name)
|
|
dir := path.Dir(name)
|
|
dirIdx, ok := dirNums[dir]
|
|
if !ok && dir != "." {
|
|
dirIdx = len(dirNums) + 1
|
|
dirNums[dir] = dirIdx
|
|
dirs = append(dirs, dir)
|
|
}
|
|
files = append(files, fileDir{base: file, dir: dirIdx})
|
|
|
|
// We can't use something that may be dead-code
|
|
// eliminated from a binary here. proc.go contains
|
|
// main and the scheduler, so it's not going anywhere.
|
|
if i := strings.Index(name, "runtime/proc.go"); i >= 0 && unit.Lib.Pkg == "runtime" {
|
|
d.dwmu.Lock()
|
|
if gdbscript == "" {
|
|
k := strings.Index(name, "runtime/proc.go")
|
|
gdbscript = name[:k] + "runtime/runtime-gdb.py"
|
|
}
|
|
d.dwmu.Unlock()
|
|
}
|
|
}
|
|
|
|
// Emit directory section. This is a series of nul terminated
|
|
// strings, followed by a single zero byte.
|
|
lsDwsym := dwSym(lsu.Sym())
|
|
for k := 1; k < len(dirs); k++ {
|
|
d.AddString(lsDwsym, dirs[k])
|
|
}
|
|
lsu.AddUint8(0) // terminator
|
|
|
|
// Emit file section.
|
|
for k := 0; k < len(files); k++ {
|
|
d.AddString(lsDwsym, files[k].base)
|
|
dwarf.Uleb128put(d, lsDwsym, int64(files[k].dir))
|
|
lsu.AddUint8(0) // mtime
|
|
lsu.AddUint8(0) // length
|
|
}
|
|
lsu.AddUint8(0) // terminator
|
|
}
|
|
|
|
// writelines collects up and chains together the symbols needed to
|
|
// form the DWARF line table for the specified compilation unit,
|
|
// returning a list of symbols. The returned list will include an
|
|
// initial symbol containing the line table header and prologue (with
|
|
// file table), then a series of compiler-emitted line table symbols
|
|
// (one per live function), and finally an epilog symbol containing an
|
|
// end-of-sequence operator. The prologue and epilog symbols are passed
|
|
// in (having been created earlier); here we add content to them.
|
|
func (d *dwctxt) writelines(unit *sym.CompilationUnit, lineProlog loader.Sym) []loader.Sym {
|
|
is_stmt := uint8(1) // initially = recommended default_is_stmt = 1, tracks is_stmt toggles.
|
|
|
|
unitstart := int64(-1)
|
|
headerstart := int64(-1)
|
|
headerend := int64(-1)
|
|
|
|
syms := make([]loader.Sym, 0, len(unit.Textp)+2)
|
|
syms = append(syms, lineProlog)
|
|
lsu := d.ldr.MakeSymbolUpdater(lineProlog)
|
|
lsDwsym := dwSym(lineProlog)
|
|
newattr(unit.DWInfo, dwarf.DW_AT_stmt_list, dwarf.DW_CLS_PTR, 0, lsDwsym)
|
|
|
|
// Write .debug_line Line Number Program Header (sec 6.2.4)
|
|
// Fields marked with (*) must be changed for 64-bit dwarf
|
|
unitLengthOffset := lsu.Size()
|
|
d.createUnitLength(lsu, 0) // unit_length (*), filled in at end
|
|
unitstart = lsu.Size()
|
|
lsu.AddUint16(d.arch, 2) // dwarf version (appendix F) -- version 3 is incompatible w/ XCode 9.0's dsymutil, latest supported on OSX 10.12 as of 2018-05
|
|
headerLengthOffset := lsu.Size()
|
|
d.addDwarfAddrField(lsu, 0) // header_length (*), filled in at end
|
|
headerstart = lsu.Size()
|
|
|
|
// cpos == unitstart + 4 + 2 + 4
|
|
lsu.AddUint8(1) // minimum_instruction_length
|
|
lsu.AddUint8(is_stmt) // default_is_stmt
|
|
lsu.AddUint8(LINE_BASE & 0xFF) // line_base
|
|
lsu.AddUint8(LINE_RANGE) // line_range
|
|
lsu.AddUint8(OPCODE_BASE) // opcode_base
|
|
lsu.AddUint8(0) // standard_opcode_lengths[1]
|
|
lsu.AddUint8(1) // standard_opcode_lengths[2]
|
|
lsu.AddUint8(1) // standard_opcode_lengths[3]
|
|
lsu.AddUint8(1) // standard_opcode_lengths[4]
|
|
lsu.AddUint8(1) // standard_opcode_lengths[5]
|
|
lsu.AddUint8(0) // standard_opcode_lengths[6]
|
|
lsu.AddUint8(0) // standard_opcode_lengths[7]
|
|
lsu.AddUint8(0) // standard_opcode_lengths[8]
|
|
lsu.AddUint8(1) // standard_opcode_lengths[9]
|
|
lsu.AddUint8(0) // standard_opcode_lengths[10]
|
|
|
|
// Call helper to emit dir and file sections.
|
|
d.writeDirFileTables(unit, lsu)
|
|
|
|
// capture length at end of file names.
|
|
headerend = lsu.Size()
|
|
unitlen := lsu.Size() - unitstart
|
|
|
|
// Output the state machine for each function remaining.
|
|
for _, s := range unit.Textp {
|
|
fnSym := loader.Sym(s)
|
|
_, _, _, lines := d.ldr.GetFuncDwarfAuxSyms(fnSym)
|
|
|
|
// Chain the line symbol onto the list.
|
|
if lines != 0 {
|
|
syms = append(syms, lines)
|
|
unitlen += int64(len(d.ldr.Data(lines)))
|
|
}
|
|
}
|
|
|
|
if d.linkctxt.HeadType == objabi.Haix {
|
|
addDwsectCUSize(".debug_line", unit.Lib.Pkg, uint64(unitlen))
|
|
}
|
|
|
|
if isDwarf64(d.linkctxt) {
|
|
lsu.SetUint(d.arch, unitLengthOffset+4, uint64(unitlen)) // +4 because of 0xFFFFFFFF
|
|
lsu.SetUint(d.arch, headerLengthOffset, uint64(headerend-headerstart))
|
|
} else {
|
|
lsu.SetUint32(d.arch, unitLengthOffset, uint32(unitlen))
|
|
lsu.SetUint32(d.arch, headerLengthOffset, uint32(headerend-headerstart))
|
|
}
|
|
|
|
return syms
|
|
}
|
|
|
|
// writepcranges generates the DW_AT_ranges table for compilation unit
|
|
// "unit", and returns a collection of ranges symbols (one for the
|
|
// compilation unit DIE itself and the remainder from functions in the unit).
|
|
func (d *dwctxt) writepcranges(unit *sym.CompilationUnit, base loader.Sym, pcs []dwarf.Range, rangeProlog loader.Sym) []loader.Sym {
|
|
|
|
syms := make([]loader.Sym, 0, len(unit.RangeSyms)+1)
|
|
syms = append(syms, rangeProlog)
|
|
rsu := d.ldr.MakeSymbolUpdater(rangeProlog)
|
|
rDwSym := dwSym(rangeProlog)
|
|
|
|
// Create PC ranges for the compilation unit DIE.
|
|
newattr(unit.DWInfo, dwarf.DW_AT_ranges, dwarf.DW_CLS_PTR, rsu.Size(), rDwSym)
|
|
newattr(unit.DWInfo, dwarf.DW_AT_low_pc, dwarf.DW_CLS_ADDRESS, 0, dwSym(base))
|
|
dwarf.PutBasedRanges(d, rDwSym, pcs)
|
|
|
|
// Collect up the ranges for functions in the unit.
|
|
rsize := uint64(rsu.Size())
|
|
for _, ls := range unit.RangeSyms {
|
|
s := loader.Sym(ls)
|
|
syms = append(syms, s)
|
|
rsize += uint64(d.ldr.SymSize(s))
|
|
}
|
|
|
|
if d.linkctxt.HeadType == objabi.Haix {
|
|
addDwsectCUSize(".debug_ranges", unit.Lib.Pkg, rsize)
|
|
}
|
|
|
|
return syms
|
|
}
|
|
|
|
/*
|
|
* Emit .debug_frame
|
|
*/
|
|
const (
|
|
dataAlignmentFactor = -4
|
|
)
|
|
|
|
// appendPCDeltaCFA appends per-PC CFA deltas to b and returns the final slice.
|
|
func appendPCDeltaCFA(arch *sys.Arch, b []byte, deltapc, cfa int64) []byte {
|
|
b = append(b, dwarf.DW_CFA_def_cfa_offset_sf)
|
|
b = dwarf.AppendSleb128(b, cfa/dataAlignmentFactor)
|
|
|
|
switch {
|
|
case deltapc < 0x40:
|
|
b = append(b, uint8(dwarf.DW_CFA_advance_loc+deltapc))
|
|
case deltapc < 0x100:
|
|
b = append(b, dwarf.DW_CFA_advance_loc1)
|
|
b = append(b, uint8(deltapc))
|
|
case deltapc < 0x10000:
|
|
b = append(b, dwarf.DW_CFA_advance_loc2, 0, 0)
|
|
arch.ByteOrder.PutUint16(b[len(b)-2:], uint16(deltapc))
|
|
default:
|
|
b = append(b, dwarf.DW_CFA_advance_loc4, 0, 0, 0, 0)
|
|
arch.ByteOrder.PutUint32(b[len(b)-4:], uint32(deltapc))
|
|
}
|
|
return b
|
|
}
|
|
|
|
func (d *dwctxt) writeframes(fs loader.Sym) dwarfSecInfo {
|
|
fsd := dwSym(fs)
|
|
fsu := d.ldr.MakeSymbolUpdater(fs)
|
|
fsu.SetType(sym.SDWARFSECT)
|
|
isdw64 := isDwarf64(d.linkctxt)
|
|
haslr := d.linkctxt.Arch.HasLR
|
|
|
|
// Length field is 4 bytes on Dwarf32 and 12 bytes on Dwarf64
|
|
lengthFieldSize := int64(4)
|
|
if isdw64 {
|
|
lengthFieldSize += 8
|
|
}
|
|
|
|
// Emit the CIE, Section 6.4.1
|
|
cieReserve := uint32(16)
|
|
if haslr {
|
|
cieReserve = 32
|
|
}
|
|
if isdw64 {
|
|
cieReserve += 4 // 4 bytes added for cid
|
|
}
|
|
d.createUnitLength(fsu, uint64(cieReserve)) // initial length, must be multiple of thearch.ptrsize
|
|
d.addDwarfAddrField(fsu, ^uint64(0)) // cid
|
|
fsu.AddUint8(3) // dwarf version (appendix F)
|
|
fsu.AddUint8(0) // augmentation ""
|
|
dwarf.Uleb128put(d, fsd, 1) // code_alignment_factor
|
|
dwarf.Sleb128put(d, fsd, dataAlignmentFactor) // all CFI offset calculations include multiplication with this factor
|
|
dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr)) // return_address_register
|
|
|
|
fsu.AddUint8(dwarf.DW_CFA_def_cfa) // Set the current frame address..
|
|
dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfregsp)) // ...to use the value in the platform's SP register (defined in l.go)...
|
|
if haslr {
|
|
dwarf.Uleb128put(d, fsd, int64(0)) // ...plus a 0 offset.
|
|
|
|
fsu.AddUint8(dwarf.DW_CFA_same_value) // The platform's link register is unchanged during the prologue.
|
|
dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr))
|
|
|
|
fsu.AddUint8(dwarf.DW_CFA_val_offset) // The previous value...
|
|
dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfregsp)) // ...of the platform's SP register...
|
|
dwarf.Uleb128put(d, fsd, int64(0)) // ...is CFA+0.
|
|
} else {
|
|
dwarf.Uleb128put(d, fsd, int64(d.arch.PtrSize)) // ...plus the word size (because the call instruction implicitly adds one word to the frame).
|
|
|
|
fsu.AddUint8(dwarf.DW_CFA_offset_extended) // The previous value...
|
|
dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr)) // ...of the return address...
|
|
dwarf.Uleb128put(d, fsd, int64(-d.arch.PtrSize)/dataAlignmentFactor) // ...is saved at [CFA - (PtrSize/4)].
|
|
}
|
|
|
|
pad := int64(cieReserve) + lengthFieldSize - int64(len(d.ldr.Data(fs)))
|
|
|
|
if pad < 0 {
|
|
Exitf("dwarf: cieReserve too small by %d bytes.", -pad)
|
|
}
|
|
|
|
internalExec := d.linkctxt.BuildMode == BuildModeExe && d.linkctxt.IsInternal()
|
|
addAddrPlus := loader.GenAddAddrPlusFunc(internalExec)
|
|
|
|
fsu.AddBytes(zeros[:pad])
|
|
|
|
var deltaBuf []byte
|
|
pcsp := obj.NewPCIter(uint32(d.arch.MinLC))
|
|
for _, s := range d.linkctxt.Textp {
|
|
fn := loader.Sym(s)
|
|
fi := d.ldr.FuncInfo(fn)
|
|
if !fi.Valid() {
|
|
continue
|
|
}
|
|
fpcsp := d.ldr.Pcsp(s)
|
|
|
|
// Emit a FDE, Section 6.4.1.
|
|
// First build the section contents into a byte buffer.
|
|
deltaBuf = deltaBuf[:0]
|
|
if haslr && fi.TopFrame() {
|
|
// Mark the link register as having an undefined value.
|
|
// This stops call stack unwinders progressing any further.
|
|
// TODO: similar mark on non-LR architectures.
|
|
deltaBuf = append(deltaBuf, dwarf.DW_CFA_undefined)
|
|
deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr))
|
|
}
|
|
|
|
for pcsp.Init(d.linkctxt.loader.Data(fpcsp)); !pcsp.Done; pcsp.Next() {
|
|
nextpc := pcsp.NextPC
|
|
|
|
// pciterinit goes up to the end of the function,
|
|
// but DWARF expects us to stop just before the end.
|
|
if int64(nextpc) == int64(len(d.ldr.Data(fn))) {
|
|
nextpc--
|
|
if nextpc < pcsp.PC {
|
|
continue
|
|
}
|
|
}
|
|
|
|
spdelta := int64(pcsp.Value)
|
|
if !haslr {
|
|
// Return address has been pushed onto stack.
|
|
spdelta += int64(d.arch.PtrSize)
|
|
}
|
|
|
|
if haslr && !fi.TopFrame() {
|
|
// TODO(bryanpkc): This is imprecise. In general, the instruction
|
|
// that stores the return address to the stack frame is not the
|
|
// same one that allocates the frame.
|
|
if pcsp.Value > 0 {
|
|
// The return address is preserved at (CFA-frame_size)
|
|
// after a stack frame has been allocated.
|
|
deltaBuf = append(deltaBuf, dwarf.DW_CFA_offset_extended_sf)
|
|
deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr))
|
|
deltaBuf = dwarf.AppendSleb128(deltaBuf, -spdelta/dataAlignmentFactor)
|
|
} else {
|
|
// The return address is restored into the link register
|
|
// when a stack frame has been de-allocated.
|
|
deltaBuf = append(deltaBuf, dwarf.DW_CFA_same_value)
|
|
deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr))
|
|
}
|
|
}
|
|
|
|
deltaBuf = appendPCDeltaCFA(d.arch, deltaBuf, int64(nextpc)-int64(pcsp.PC), spdelta)
|
|
}
|
|
pad := int(Rnd(int64(len(deltaBuf)), int64(d.arch.PtrSize))) - len(deltaBuf)
|
|
deltaBuf = append(deltaBuf, zeros[:pad]...)
|
|
|
|
// Emit the FDE header, Section 6.4.1.
|
|
// 4 bytes: length, must be multiple of thearch.ptrsize
|
|
// 4/8 bytes: Pointer to the CIE above, at offset 0
|
|
// ptrsize: initial location
|
|
// ptrsize: address range
|
|
|
|
fdeLength := uint64(4 + 2*d.arch.PtrSize + len(deltaBuf))
|
|
if isdw64 {
|
|
fdeLength += 4 // 4 bytes added for CIE pointer
|
|
}
|
|
d.createUnitLength(fsu, fdeLength)
|
|
|
|
if d.linkctxt.LinkMode == LinkExternal {
|
|
d.addDwarfAddrRef(fsu, fs)
|
|
} else {
|
|
d.addDwarfAddrField(fsu, 0) // CIE offset
|
|
}
|
|
addAddrPlus(fsu, d.arch, s, 0)
|
|
fsu.AddUintXX(d.arch, uint64(len(d.ldr.Data(fn))), d.arch.PtrSize) // address range
|
|
fsu.AddBytes(deltaBuf)
|
|
|
|
if d.linkctxt.HeadType == objabi.Haix {
|
|
addDwsectCUSize(".debug_frame", d.ldr.SymPkg(fn), fdeLength+uint64(lengthFieldSize))
|
|
}
|
|
}
|
|
|
|
return dwarfSecInfo{syms: []loader.Sym{fs}}
|
|
}
|
|
|
|
/*
|
|
* Walk DWarfDebugInfoEntries, and emit .debug_info
|
|
*/
|
|
|
|
const (
|
|
COMPUNITHEADERSIZE = 4 + 2 + 4 + 1
|
|
)
|
|
|
|
func (d *dwctxt) writeUnitInfo(u *sym.CompilationUnit, abbrevsym loader.Sym, infoEpilog loader.Sym) []loader.Sym {
|
|
syms := []loader.Sym{}
|
|
if len(u.Textp) == 0 && u.DWInfo.Child == nil && len(u.VarDIEs) == 0 {
|
|
return syms
|
|
}
|
|
|
|
compunit := u.DWInfo
|
|
s := d.dtolsym(compunit.Sym)
|
|
su := d.ldr.MakeSymbolUpdater(s)
|
|
|
|
// Write .debug_info Compilation Unit Header (sec 7.5.1)
|
|
// Fields marked with (*) must be changed for 64-bit dwarf
|
|
// This must match COMPUNITHEADERSIZE above.
|
|
d.createUnitLength(su, 0) // unit_length (*), will be filled in later.
|
|
su.AddUint16(d.arch, 4) // dwarf version (appendix F)
|
|
|
|
// debug_abbrev_offset (*)
|
|
d.addDwarfAddrRef(su, abbrevsym)
|
|
|
|
su.AddUint8(uint8(d.arch.PtrSize)) // address_size
|
|
|
|
ds := dwSym(s)
|
|
dwarf.Uleb128put(d, ds, int64(compunit.Abbrev))
|
|
dwarf.PutAttrs(d, ds, compunit.Abbrev, compunit.Attr)
|
|
|
|
// This is an under-estimate; more will be needed for type DIEs.
|
|
cu := make([]loader.Sym, 0, len(u.AbsFnDIEs)+len(u.FuncDIEs))
|
|
cu = append(cu, s)
|
|
cu = append(cu, u.AbsFnDIEs...)
|
|
cu = append(cu, u.FuncDIEs...)
|
|
if u.Consts != 0 {
|
|
cu = append(cu, loader.Sym(u.Consts))
|
|
}
|
|
cu = append(cu, u.VarDIEs...)
|
|
var cusize int64
|
|
for _, child := range cu {
|
|
cusize += int64(len(d.ldr.Data(child)))
|
|
}
|
|
|
|
for die := compunit.Child; die != nil; die = die.Link {
|
|
l := len(cu)
|
|
lastSymSz := int64(len(d.ldr.Data(cu[l-1])))
|
|
cu = d.putdie(cu, die)
|
|
if lastSymSz != int64(len(d.ldr.Data(cu[l-1]))) {
|
|
// putdie will sometimes append directly to the last symbol of the list
|
|
cusize = cusize - lastSymSz + int64(len(d.ldr.Data(cu[l-1])))
|
|
}
|
|
for _, child := range cu[l:] {
|
|
cusize += int64(len(d.ldr.Data(child)))
|
|
}
|
|
}
|
|
|
|
culu := d.ldr.MakeSymbolUpdater(infoEpilog)
|
|
culu.AddUint8(0) // closes compilation unit DIE
|
|
cu = append(cu, infoEpilog)
|
|
cusize++
|
|
|
|
// Save size for AIX symbol table.
|
|
if d.linkctxt.HeadType == objabi.Haix {
|
|
addDwsectCUSize(".debug_info", d.getPkgFromCUSym(s), uint64(cusize))
|
|
}
|
|
if isDwarf64(d.linkctxt) {
|
|
cusize -= 12 // exclude the length field.
|
|
su.SetUint(d.arch, 4, uint64(cusize)) // 4 because of 0XFFFFFFFF
|
|
} else {
|
|
cusize -= 4 // exclude the length field.
|
|
su.SetUint32(d.arch, 0, uint32(cusize))
|
|
}
|
|
return append(syms, cu...)
|
|
}
|
|
|
|
func (d *dwctxt) writegdbscript() dwarfSecInfo {
|
|
// TODO (aix): make it available
|
|
if d.linkctxt.HeadType == objabi.Haix {
|
|
return dwarfSecInfo{}
|
|
}
|
|
if d.linkctxt.LinkMode == LinkExternal && d.linkctxt.HeadType == objabi.Hwindows && d.linkctxt.BuildMode == BuildModeCArchive {
|
|
// gcc on Windows places .debug_gdb_scripts in the wrong location, which
|
|
// causes the program not to run. See https://golang.org/issue/20183
|
|
// Non c-archives can avoid this issue via a linker script
|
|
// (see fix near writeGDBLinkerScript).
|
|
// c-archive users would need to specify the linker script manually.
|
|
// For UX it's better not to deal with this.
|
|
return dwarfSecInfo{}
|
|
}
|
|
if gdbscript == "" {
|
|
return dwarfSecInfo{}
|
|
}
|
|
|
|
gs := d.ldr.CreateSymForUpdate(".debug_gdb_scripts", 0)
|
|
gs.SetType(sym.SDWARFSECT)
|
|
|
|
gs.AddUint8(GdbScriptPythonFileId)
|
|
gs.Addstring(gdbscript)
|
|
return dwarfSecInfo{syms: []loader.Sym{gs.Sym()}}
|
|
}
|
|
|
|
// FIXME: might be worth looking replacing this map with a function
|
|
// that switches based on symbol instead.
|
|
|
|
var prototypedies map[string]*dwarf.DWDie
|
|
|
|
func dwarfEnabled(ctxt *Link) bool {
|
|
if *FlagW { // disable dwarf
|
|
return false
|
|
}
|
|
if ctxt.HeadType == objabi.Hplan9 || ctxt.HeadType == objabi.Hjs || ctxt.HeadType == objabi.Hwasip1 {
|
|
return false
|
|
}
|
|
|
|
if ctxt.LinkMode == LinkExternal {
|
|
switch {
|
|
case ctxt.IsELF:
|
|
case ctxt.HeadType == objabi.Hdarwin:
|
|
case ctxt.HeadType == objabi.Hwindows:
|
|
case ctxt.HeadType == objabi.Haix:
|
|
res, err := dwarf.IsDWARFEnabledOnAIXLd(ctxt.extld())
|
|
if err != nil {
|
|
Exitf("%v", err)
|
|
}
|
|
return res
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// mkBuiltinType populates the dwctxt2 sym lookup maps for the
|
|
// newly created builtin type DIE 'typeDie'.
|
|
func (d *dwctxt) mkBuiltinType(ctxt *Link, abrv int, tname string) *dwarf.DWDie {
|
|
// create type DIE
|
|
die := d.newdie(&dwtypes, abrv, tname)
|
|
|
|
// Look up type symbol.
|
|
gotype := d.lookupOrDiag("type:" + tname)
|
|
|
|
// Map from die sym to type sym
|
|
ds := loader.Sym(die.Sym.(dwSym))
|
|
d.rtmap[ds] = gotype
|
|
|
|
// Map from type to def sym
|
|
d.tdmap[gotype] = ds
|
|
|
|
return die
|
|
}
|
|
|
|
// dwarfVisitFunction takes a function (text) symbol and processes the
|
|
// subprogram DIE for the function and picks up any other DIEs
|
|
// (absfns, types) that it references.
|
|
func (d *dwctxt) dwarfVisitFunction(fnSym loader.Sym, unit *sym.CompilationUnit) {
|
|
// The DWARF subprogram DIE symbol is listed as an aux sym
|
|
// of the text (fcn) symbol, so ask the loader to retrieve it,
|
|
// as well as the associated range symbol.
|
|
infosym, _, rangesym, _ := d.ldr.GetFuncDwarfAuxSyms(fnSym)
|
|
if infosym == 0 {
|
|
return
|
|
}
|
|
d.ldr.SetAttrNotInSymbolTable(infosym, true)
|
|
d.ldr.SetAttrReachable(infosym, true)
|
|
unit.FuncDIEs = append(unit.FuncDIEs, sym.LoaderSym(infosym))
|
|
if rangesym != 0 {
|
|
d.ldr.SetAttrNotInSymbolTable(rangesym, true)
|
|
d.ldr.SetAttrReachable(rangesym, true)
|
|
unit.RangeSyms = append(unit.RangeSyms, sym.LoaderSym(rangesym))
|
|
}
|
|
|
|
// Walk the relocations of the subprogram DIE symbol to discover
|
|
// references to abstract function DIEs, Go type DIES, and
|
|
// (via R_USETYPE relocs) types that were originally assigned to
|
|
// locals/params but were optimized away.
|
|
drelocs := d.ldr.Relocs(infosym)
|
|
for ri := 0; ri < drelocs.Count(); ri++ {
|
|
r := drelocs.At(ri)
|
|
// Look for "use type" relocs.
|
|
if r.Type() == objabi.R_USETYPE {
|
|
d.defgotype(r.Sym())
|
|
continue
|
|
}
|
|
if r.Type() != objabi.R_DWARFSECREF {
|
|
continue
|
|
}
|
|
|
|
rsym := r.Sym()
|
|
rst := d.ldr.SymType(rsym)
|
|
|
|
// Look for abstract function references.
|
|
if rst == sym.SDWARFABSFCN {
|
|
if !d.ldr.AttrOnList(rsym) {
|
|
// abstract function
|
|
d.ldr.SetAttrOnList(rsym, true)
|
|
unit.AbsFnDIEs = append(unit.AbsFnDIEs, sym.LoaderSym(rsym))
|
|
d.importInfoSymbol(rsym)
|
|
}
|
|
continue
|
|
}
|
|
|
|
// Look for type references.
|
|
if rst != sym.SDWARFTYPE && rst != sym.Sxxx {
|
|
continue
|
|
}
|
|
if _, ok := d.rtmap[rsym]; ok {
|
|
// type already generated
|
|
continue
|
|
}
|
|
|
|
rsn := d.ldr.SymName(rsym)
|
|
tn := rsn[len(dwarf.InfoPrefix):]
|
|
ts := d.ldr.Lookup("type:"+tn, 0)
|
|
d.defgotype(ts)
|
|
}
|
|
}
|
|
|
|
// dwarfGenerateDebugInfo generated debug info entries for all types,
|
|
// variables and functions in the program.
|
|
// Along with dwarfGenerateDebugSyms they are the two main entry points into
|
|
// dwarf generation: dwarfGenerateDebugInfo does all the work that should be
|
|
// done before symbol names are mangled while dwarfGenerateDebugSyms does
|
|
// all the work that can only be done after addresses have been assigned to
|
|
// text symbols.
|
|
func dwarfGenerateDebugInfo(ctxt *Link) {
|
|
if !dwarfEnabled(ctxt) {
|
|
return
|
|
}
|
|
|
|
d := &dwctxt{
|
|
linkctxt: ctxt,
|
|
ldr: ctxt.loader,
|
|
arch: ctxt.Arch,
|
|
tmap: make(map[string]loader.Sym),
|
|
tdmap: make(map[loader.Sym]loader.Sym),
|
|
rtmap: make(map[loader.Sym]loader.Sym),
|
|
}
|
|
d.typeRuntimeEface = d.lookupOrDiag("type:runtime.eface")
|
|
d.typeRuntimeIface = d.lookupOrDiag("type:runtime.iface")
|
|
|
|
if ctxt.HeadType == objabi.Haix {
|
|
// Initial map used to store package size for each DWARF section.
|
|
dwsectCUSize = make(map[string]uint64)
|
|
}
|
|
|
|
// For ctxt.Diagnostic messages.
|
|
newattr(&dwtypes, dwarf.DW_AT_name, dwarf.DW_CLS_STRING, int64(len("dwtypes")), "dwtypes")
|
|
|
|
// Unspecified type. There are no references to this in the symbol table.
|
|
d.newdie(&dwtypes, dwarf.DW_ABRV_NULLTYPE, "<unspecified>")
|
|
|
|
// Some types that must exist to define other ones (uintptr in particular
|
|
// is needed for array size)
|
|
unsafeptrDie := d.mkBuiltinType(ctxt, dwarf.DW_ABRV_BARE_PTRTYPE, "unsafe.Pointer")
|
|
newattr(unsafeptrDie, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(d.lookupOrDiag("type:unsafe.Pointer")))
|
|
uintptrDie := d.mkBuiltinType(ctxt, dwarf.DW_ABRV_BASETYPE, "uintptr")
|
|
newattr(uintptrDie, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_unsigned, 0)
|
|
newattr(uintptrDie, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, int64(d.arch.PtrSize), 0)
|
|
newattr(uintptrDie, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, int64(abi.Uintptr), 0)
|
|
newattr(uintptrDie, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(d.lookupOrDiag("type:uintptr")))
|
|
|
|
d.uintptrInfoSym = d.mustFind("uintptr")
|
|
|
|
// Prototypes needed for type synthesis.
|
|
prototypedies = map[string]*dwarf.DWDie{
|
|
"type:runtime.stringStructDWARF": nil,
|
|
"type:runtime.slice": nil,
|
|
"type:runtime.sudog": nil,
|
|
"type:runtime.waitq": nil,
|
|
"type:runtime.hchan": nil,
|
|
}
|
|
if buildcfg.Experiment.SwissMap {
|
|
prototypedies["type:internal/runtime/maps.table"] = nil
|
|
} else {
|
|
prototypedies["type:runtime.hmap"] = nil
|
|
prototypedies["type:runtime.bmap"] = nil
|
|
}
|
|
|
|
// Needed by the prettyprinter code for interface inspection.
|
|
for _, typ := range []string{
|
|
"type:internal/abi.Type",
|
|
"type:internal/abi.ArrayType",
|
|
"type:internal/abi.ChanType",
|
|
"type:internal/abi.FuncType",
|
|
"type:internal/abi.PtrType",
|
|
"type:internal/abi.SliceType",
|
|
"type:internal/abi.StructType",
|
|
"type:internal/abi.InterfaceType",
|
|
"type:internal/abi.ITab",
|
|
"type:internal/abi.Imethod"} {
|
|
d.defgotype(d.lookupOrDiag(typ))
|
|
}
|
|
if buildcfg.Experiment.SwissMap {
|
|
d.defgotype(d.lookupOrDiag("type:internal/abi.SwissMapType"))
|
|
} else {
|
|
d.defgotype(d.lookupOrDiag("type:internal/abi.OldMapType"))
|
|
}
|
|
|
|
// fake root DIE for compile unit DIEs
|
|
var dwroot dwarf.DWDie
|
|
flagVariants := make(map[string]bool)
|
|
|
|
for _, lib := range ctxt.Library {
|
|
|
|
consts := d.ldr.Lookup(dwarf.ConstInfoPrefix+lib.Pkg, 0)
|
|
for _, unit := range lib.Units {
|
|
// We drop the constants into the first CU.
|
|
if consts != 0 {
|
|
unit.Consts = sym.LoaderSym(consts)
|
|
d.importInfoSymbol(consts)
|
|
consts = 0
|
|
}
|
|
ctxt.compUnits = append(ctxt.compUnits, unit)
|
|
|
|
// We need at least one runtime unit.
|
|
if unit.Lib.Pkg == "runtime" {
|
|
ctxt.runtimeCU = unit
|
|
}
|
|
|
|
cuabrv := dwarf.DW_ABRV_COMPUNIT
|
|
if len(unit.Textp) == 0 {
|
|
cuabrv = dwarf.DW_ABRV_COMPUNIT_TEXTLESS
|
|
}
|
|
unit.DWInfo = d.newdie(&dwroot, cuabrv, unit.Lib.Pkg)
|
|
newattr(unit.DWInfo, dwarf.DW_AT_language, dwarf.DW_CLS_CONSTANT, int64(dwarf.DW_LANG_Go), 0)
|
|
// OS X linker requires compilation dir or absolute path in comp unit name to output debug info.
|
|
compDir := getCompilationDir()
|
|
// TODO: Make this be the actual compilation directory, not
|
|
// the linker directory. If we move CU construction into the
|
|
// compiler, this should happen naturally.
|
|
newattr(unit.DWInfo, dwarf.DW_AT_comp_dir, dwarf.DW_CLS_STRING, int64(len(compDir)), compDir)
|
|
|
|
var peData []byte
|
|
if producerExtra := d.ldr.Lookup(dwarf.CUInfoPrefix+"producer."+unit.Lib.Pkg, 0); producerExtra != 0 {
|
|
peData = d.ldr.Data(producerExtra)
|
|
}
|
|
producer := "Go cmd/compile " + buildcfg.Version
|
|
if len(peData) > 0 {
|
|
// We put a semicolon before the flags to clearly
|
|
// separate them from the version, which can be long
|
|
// and have lots of weird things in it in development
|
|
// versions. We promise not to put a semicolon in the
|
|
// version, so it should be safe for readers to scan
|
|
// forward to the semicolon.
|
|
producer += "; " + string(peData)
|
|
flagVariants[string(peData)] = true
|
|
} else {
|
|
flagVariants[""] = true
|
|
}
|
|
|
|
newattr(unit.DWInfo, dwarf.DW_AT_producer, dwarf.DW_CLS_STRING, int64(len(producer)), producer)
|
|
|
|
var pkgname string
|
|
if pnSymIdx := d.ldr.Lookup(dwarf.CUInfoPrefix+"packagename."+unit.Lib.Pkg, 0); pnSymIdx != 0 {
|
|
pnsData := d.ldr.Data(pnSymIdx)
|
|
pkgname = string(pnsData)
|
|
}
|
|
newattr(unit.DWInfo, dwarf.DW_AT_go_package_name, dwarf.DW_CLS_STRING, int64(len(pkgname)), pkgname)
|
|
|
|
// Scan all functions in this compilation unit, create
|
|
// DIEs for all referenced types, find all referenced
|
|
// abstract functions, visit range symbols. Note that
|
|
// Textp has been dead-code-eliminated already.
|
|
for _, s := range unit.Textp {
|
|
d.dwarfVisitFunction(loader.Sym(s), unit)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fix for 31034: if the objects feeding into this link were compiled
|
|
// with different sets of flags, then don't issue an error if
|
|
// the -strictdups checks fail.
|
|
if checkStrictDups > 1 && len(flagVariants) > 1 {
|
|
checkStrictDups = 1
|
|
}
|
|
|
|
// Make a pass through all data symbols, looking for those
|
|
// corresponding to reachable, Go-generated, user-visible
|
|
// global variables. For each global of this sort, locate
|
|
// the corresponding compiler-generated DIE symbol and tack
|
|
// it onto the list associated with the unit.
|
|
// Also looks for dictionary symbols and generates DIE symbols for each
|
|
// type they reference.
|
|
for idx := loader.Sym(1); idx < loader.Sym(d.ldr.NDef()); idx++ {
|
|
if !d.ldr.AttrReachable(idx) ||
|
|
d.ldr.AttrNotInSymbolTable(idx) ||
|
|
d.ldr.SymVersion(idx) >= sym.SymVerStatic {
|
|
continue
|
|
}
|
|
t := d.ldr.SymType(idx)
|
|
switch t {
|
|
case sym.SRODATA, sym.SDATA, sym.SNOPTRDATA, sym.STYPE, sym.SBSS, sym.SNOPTRBSS, sym.STLSBSS:
|
|
// ok
|
|
default:
|
|
continue
|
|
}
|
|
// Skip things with no type, unless it's a dictionary
|
|
gt := d.ldr.SymGoType(idx)
|
|
if gt == 0 {
|
|
if t == sym.SRODATA {
|
|
if d.ldr.IsDict(idx) {
|
|
// This is a dictionary, make sure that all types referenced by this dictionary are reachable
|
|
relocs := d.ldr.Relocs(idx)
|
|
for i := 0; i < relocs.Count(); i++ {
|
|
reloc := relocs.At(i)
|
|
if reloc.Type() == objabi.R_USEIFACE {
|
|
d.defgotype(reloc.Sym())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
continue
|
|
}
|
|
// Skip file local symbols (this includes static tmps, stack
|
|
// object symbols, and local symbols in assembler src files).
|
|
if d.ldr.IsFileLocal(idx) {
|
|
continue
|
|
}
|
|
|
|
// Find compiler-generated DWARF info sym for global in question,
|
|
// and tack it onto the appropriate unit. Note that there are
|
|
// circumstances under which we can't find the compiler-generated
|
|
// symbol-- this typically happens as a result of compiler options
|
|
// (e.g. compile package X with "-dwarf=0").
|
|
varDIE := d.ldr.GetVarDwarfAuxSym(idx)
|
|
if varDIE != 0 {
|
|
unit := d.ldr.SymUnit(idx)
|
|
d.defgotype(gt)
|
|
unit.VarDIEs = append(unit.VarDIEs, sym.LoaderSym(varDIE))
|
|
}
|
|
}
|
|
|
|
d.synthesizestringtypes(ctxt, dwtypes.Child)
|
|
d.synthesizeslicetypes(ctxt, dwtypes.Child)
|
|
d.synthesizemaptypes(ctxt, dwtypes.Child)
|
|
d.synthesizechantypes(ctxt, dwtypes.Child)
|
|
}
|
|
|
|
// dwarfGenerateDebugSyms constructs debug_line, debug_frame, and
|
|
// debug_loc. It also writes out the debug_info section using symbols
|
|
// generated in dwarfGenerateDebugInfo2.
|
|
func dwarfGenerateDebugSyms(ctxt *Link) {
|
|
if !dwarfEnabled(ctxt) {
|
|
return
|
|
}
|
|
d := &dwctxt{
|
|
linkctxt: ctxt,
|
|
ldr: ctxt.loader,
|
|
arch: ctxt.Arch,
|
|
dwmu: new(sync.Mutex),
|
|
}
|
|
d.dwarfGenerateDebugSyms()
|
|
}
|
|
|
|
// dwUnitSyms stores input and output symbols for DWARF generation
|
|
// for a given compilation unit.
|
|
type dwUnitSyms struct {
|
|
// Inputs for a given unit.
|
|
lineProlog loader.Sym
|
|
rangeProlog loader.Sym
|
|
infoEpilog loader.Sym
|
|
|
|
// Outputs for a given unit.
|
|
linesyms []loader.Sym
|
|
infosyms []loader.Sym
|
|
locsyms []loader.Sym
|
|
rangessyms []loader.Sym
|
|
}
|
|
|
|
// dwUnitPortion assembles the DWARF content for a given compilation
|
|
// unit: debug_info, debug_lines, debug_ranges, debug_loc (debug_frame
|
|
// is handled elsewhere). Order is important; the calls to writelines
|
|
// and writepcranges below make updates to the compilation unit DIE,
|
|
// hence they have to happen before the call to writeUnitInfo.
|
|
func (d *dwctxt) dwUnitPortion(u *sym.CompilationUnit, abbrevsym loader.Sym, us *dwUnitSyms) {
|
|
if u.DWInfo.Abbrev != dwarf.DW_ABRV_COMPUNIT_TEXTLESS {
|
|
us.linesyms = d.writelines(u, us.lineProlog)
|
|
base := loader.Sym(u.Textp[0])
|
|
us.rangessyms = d.writepcranges(u, base, u.PCs, us.rangeProlog)
|
|
us.locsyms = d.collectUnitLocs(u)
|
|
}
|
|
us.infosyms = d.writeUnitInfo(u, abbrevsym, us.infoEpilog)
|
|
}
|
|
|
|
func (d *dwctxt) dwarfGenerateDebugSyms() {
|
|
abbrevSec := d.writeabbrev()
|
|
dwarfp = append(dwarfp, abbrevSec)
|
|
d.calcCompUnitRanges()
|
|
slices.SortFunc(d.linkctxt.compUnits, compilationUnitByStartPCCmp)
|
|
|
|
// newdie adds DIEs to the *beginning* of the parent's DIE list.
|
|
// Now that we're done creating DIEs, reverse the trees so DIEs
|
|
// appear in the order they were created.
|
|
for _, u := range d.linkctxt.compUnits {
|
|
reversetree(&u.DWInfo.Child)
|
|
}
|
|
reversetree(&dwtypes.Child)
|
|
movetomodule(d.linkctxt, &dwtypes)
|
|
|
|
mkSecSym := func(name string) loader.Sym {
|
|
s := d.ldr.CreateSymForUpdate(name, 0)
|
|
s.SetType(sym.SDWARFSECT)
|
|
s.SetReachable(true)
|
|
return s.Sym()
|
|
}
|
|
mkAnonSym := func(kind sym.SymKind) loader.Sym {
|
|
s := d.ldr.MakeSymbolUpdater(d.ldr.CreateExtSym("", 0))
|
|
s.SetType(kind)
|
|
s.SetReachable(true)
|
|
return s.Sym()
|
|
}
|
|
|
|
// Create the section symbols.
|
|
frameSym := mkSecSym(".debug_frame")
|
|
locSym := mkSecSym(".debug_loc")
|
|
lineSym := mkSecSym(".debug_line")
|
|
rangesSym := mkSecSym(".debug_ranges")
|
|
infoSym := mkSecSym(".debug_info")
|
|
|
|
// Create the section objects
|
|
lineSec := dwarfSecInfo{syms: []loader.Sym{lineSym}}
|
|
locSec := dwarfSecInfo{syms: []loader.Sym{locSym}}
|
|
rangesSec := dwarfSecInfo{syms: []loader.Sym{rangesSym}}
|
|
frameSec := dwarfSecInfo{syms: []loader.Sym{frameSym}}
|
|
infoSec := dwarfSecInfo{syms: []loader.Sym{infoSym}}
|
|
|
|
// Create any new symbols that will be needed during the
|
|
// parallel portion below.
|
|
ncu := len(d.linkctxt.compUnits)
|
|
unitSyms := make([]dwUnitSyms, ncu)
|
|
for i := 0; i < ncu; i++ {
|
|
us := &unitSyms[i]
|
|
us.lineProlog = mkAnonSym(sym.SDWARFLINES)
|
|
us.rangeProlog = mkAnonSym(sym.SDWARFRANGE)
|
|
us.infoEpilog = mkAnonSym(sym.SDWARFFCN)
|
|
}
|
|
|
|
var wg sync.WaitGroup
|
|
sema := make(chan struct{}, runtime.GOMAXPROCS(0))
|
|
|
|
// Kick off generation of .debug_frame, since it doesn't have
|
|
// any entanglements and can be started right away.
|
|
wg.Add(1)
|
|
go func() {
|
|
sema <- struct{}{}
|
|
defer func() {
|
|
<-sema
|
|
wg.Done()
|
|
}()
|
|
frameSec = d.writeframes(frameSym)
|
|
}()
|
|
|
|
// Create a goroutine per comp unit to handle the generation that
|
|
// unit's portion of .debug_line, .debug_loc, .debug_ranges, and
|
|
// .debug_info.
|
|
wg.Add(len(d.linkctxt.compUnits))
|
|
for i := 0; i < ncu; i++ {
|
|
go func(u *sym.CompilationUnit, us *dwUnitSyms) {
|
|
sema <- struct{}{}
|
|
defer func() {
|
|
<-sema
|
|
wg.Done()
|
|
}()
|
|
d.dwUnitPortion(u, abbrevSec.secSym(), us)
|
|
}(d.linkctxt.compUnits[i], &unitSyms[i])
|
|
}
|
|
wg.Wait()
|
|
|
|
markReachable := func(syms []loader.Sym) []loader.Sym {
|
|
for _, s := range syms {
|
|
d.ldr.SetAttrNotInSymbolTable(s, true)
|
|
d.ldr.SetAttrReachable(s, true)
|
|
}
|
|
return syms
|
|
}
|
|
|
|
// Stitch together the results.
|
|
for i := 0; i < ncu; i++ {
|
|
r := &unitSyms[i]
|
|
lineSec.syms = append(lineSec.syms, markReachable(r.linesyms)...)
|
|
infoSec.syms = append(infoSec.syms, markReachable(r.infosyms)...)
|
|
locSec.syms = append(locSec.syms, markReachable(r.locsyms)...)
|
|
rangesSec.syms = append(rangesSec.syms, markReachable(r.rangessyms)...)
|
|
}
|
|
dwarfp = append(dwarfp, lineSec)
|
|
dwarfp = append(dwarfp, frameSec)
|
|
gdbScriptSec := d.writegdbscript()
|
|
if gdbScriptSec.secSym() != 0 {
|
|
dwarfp = append(dwarfp, gdbScriptSec)
|
|
}
|
|
dwarfp = append(dwarfp, infoSec)
|
|
if len(locSec.syms) > 1 {
|
|
dwarfp = append(dwarfp, locSec)
|
|
}
|
|
dwarfp = append(dwarfp, rangesSec)
|
|
|
|
// Check to make sure we haven't listed any symbols more than once
|
|
// in the info section. This used to be done by setting and
|
|
// checking the OnList attribute in "putdie", but that strategy
|
|
// was not friendly for concurrency.
|
|
seen := loader.MakeBitmap(d.ldr.NSym())
|
|
for _, s := range infoSec.syms {
|
|
if seen.Has(s) {
|
|
log.Fatalf("dwarf symbol %s listed multiple times",
|
|
d.ldr.SymName(s))
|
|
}
|
|
seen.Set(s)
|
|
}
|
|
}
|
|
|
|
func (d *dwctxt) collectUnitLocs(u *sym.CompilationUnit) []loader.Sym {
|
|
syms := []loader.Sym{}
|
|
for _, fn := range u.FuncDIEs {
|
|
relocs := d.ldr.Relocs(loader.Sym(fn))
|
|
for i := 0; i < relocs.Count(); i++ {
|
|
reloc := relocs.At(i)
|
|
if reloc.Type() != objabi.R_DWARFSECREF {
|
|
continue
|
|
}
|
|
rsym := reloc.Sym()
|
|
if d.ldr.SymType(rsym) == sym.SDWARFLOC {
|
|
syms = append(syms, rsym)
|
|
// One location list entry per function, but many relocations to it. Don't duplicate.
|
|
break
|
|
}
|
|
}
|
|
}
|
|
return syms
|
|
}
|
|
|
|
// Add DWARF section names to the section header string table, by calling add
|
|
// on each name. ELF only.
|
|
func dwarfaddshstrings(ctxt *Link, add func(string)) {
|
|
if *FlagW { // disable dwarf
|
|
return
|
|
}
|
|
|
|
secs := []string{"abbrev", "frame", "info", "loc", "line", "gdb_scripts", "ranges"}
|
|
for _, sec := range secs {
|
|
add(".debug_" + sec)
|
|
if ctxt.IsExternal() {
|
|
add(elfRelType + ".debug_" + sec)
|
|
}
|
|
}
|
|
}
|
|
|
|
func dwarfaddelfsectionsyms(ctxt *Link) {
|
|
if *FlagW { // disable dwarf
|
|
return
|
|
}
|
|
if ctxt.LinkMode != LinkExternal {
|
|
return
|
|
}
|
|
|
|
ldr := ctxt.loader
|
|
for _, si := range dwarfp {
|
|
s := si.secSym()
|
|
sect := ldr.SymSect(si.secSym())
|
|
putelfsectionsym(ctxt, ctxt.Out, s, sect.Elfsect.(*ElfShdr).shnum)
|
|
}
|
|
}
|
|
|
|
// dwarfcompress compresses the DWARF sections. Relocations are applied
|
|
// on the fly. After this, dwarfp will contain a different (new) set of
|
|
// symbols, and sections may have been replaced.
|
|
func dwarfcompress(ctxt *Link) {
|
|
// compressedSect is a helper type for parallelizing compression.
|
|
type compressedSect struct {
|
|
index int
|
|
compressed []byte
|
|
syms []loader.Sym
|
|
}
|
|
|
|
supported := ctxt.IsELF || ctxt.IsWindows() || ctxt.IsDarwin()
|
|
if !ctxt.compressDWARF || !supported || ctxt.IsExternal() {
|
|
return
|
|
}
|
|
|
|
var compressedCount int
|
|
resChannel := make(chan compressedSect)
|
|
for i := range dwarfp {
|
|
go func(resIndex int, syms []loader.Sym) {
|
|
resChannel <- compressedSect{resIndex, compressSyms(ctxt, syms), syms}
|
|
}(compressedCount, dwarfp[i].syms)
|
|
compressedCount++
|
|
}
|
|
res := make([]compressedSect, compressedCount)
|
|
for ; compressedCount > 0; compressedCount-- {
|
|
r := <-resChannel
|
|
res[r.index] = r
|
|
}
|
|
|
|
ldr := ctxt.loader
|
|
var newDwarfp []dwarfSecInfo
|
|
Segdwarf.Sections = Segdwarf.Sections[:0]
|
|
for _, z := range res {
|
|
s := z.syms[0]
|
|
if z.compressed == nil {
|
|
// Compression didn't help.
|
|
ds := dwarfSecInfo{syms: z.syms}
|
|
newDwarfp = append(newDwarfp, ds)
|
|
Segdwarf.Sections = append(Segdwarf.Sections, ldr.SymSect(s))
|
|
} else {
|
|
var compressedSegName string
|
|
if ctxt.IsELF {
|
|
compressedSegName = ldr.SymSect(s).Name
|
|
} else {
|
|
compressedSegName = ".zdebug_" + ldr.SymSect(s).Name[len(".debug_"):]
|
|
}
|
|
sect := addsection(ctxt.loader, ctxt.Arch, &Segdwarf, compressedSegName, 04)
|
|
sect.Align = int32(ctxt.Arch.Alignment)
|
|
sect.Length = uint64(len(z.compressed))
|
|
sect.Compressed = true
|
|
newSym := ldr.MakeSymbolBuilder(compressedSegName)
|
|
ldr.SetAttrReachable(s, true)
|
|
newSym.SetData(z.compressed)
|
|
newSym.SetSize(int64(len(z.compressed)))
|
|
ldr.SetSymSect(newSym.Sym(), sect)
|
|
ds := dwarfSecInfo{syms: []loader.Sym{newSym.Sym()}}
|
|
newDwarfp = append(newDwarfp, ds)
|
|
|
|
// compressed symbols are no longer needed.
|
|
for _, s := range z.syms {
|
|
ldr.SetAttrReachable(s, false)
|
|
ldr.FreeSym(s)
|
|
}
|
|
}
|
|
}
|
|
dwarfp = newDwarfp
|
|
|
|
// Re-compute the locations of the compressed DWARF symbols
|
|
// and sections, since the layout of these within the file is
|
|
// based on Section.Vaddr and Symbol.Value.
|
|
pos := Segdwarf.Vaddr
|
|
var prevSect *sym.Section
|
|
for _, si := range dwarfp {
|
|
for _, s := range si.syms {
|
|
ldr.SetSymValue(s, int64(pos))
|
|
sect := ldr.SymSect(s)
|
|
if sect != prevSect {
|
|
sect.Vaddr = uint64(pos)
|
|
prevSect = sect
|
|
}
|
|
if ldr.SubSym(s) != 0 {
|
|
log.Fatalf("%s: unexpected sub-symbols", ldr.SymName(s))
|
|
}
|
|
pos += uint64(ldr.SymSize(s))
|
|
if ctxt.IsWindows() {
|
|
pos = uint64(Rnd(int64(pos), PEFILEALIGN))
|
|
}
|
|
}
|
|
}
|
|
Segdwarf.Length = pos - Segdwarf.Vaddr
|
|
}
|
|
|
|
func compilationUnitByStartPCCmp(a, b *sym.CompilationUnit) int {
|
|
switch {
|
|
case len(a.Textp) == 0 && len(b.Textp) == 0:
|
|
return strings.Compare(a.Lib.Pkg, b.Lib.Pkg)
|
|
case len(a.Textp) != 0 && len(b.Textp) == 0:
|
|
return -1
|
|
case len(a.Textp) == 0 && len(b.Textp) != 0:
|
|
return +1
|
|
default:
|
|
return cmp.Compare(a.PCs[0].Start, b.PCs[0].Start)
|
|
}
|
|
}
|
|
|
|
// getPkgFromCUSym returns the package name for the compilation unit
|
|
// represented by s.
|
|
// The prefix dwarf.InfoPrefix+".pkg." needs to be removed in order to get
|
|
// the package name.
|
|
func (d *dwctxt) getPkgFromCUSym(s loader.Sym) string {
|
|
return strings.TrimPrefix(d.ldr.SymName(s), dwarf.InfoPrefix+".pkg.")
|
|
}
|
|
|
|
// On AIX, the symbol table needs to know where are the compilation units parts
|
|
// for a specific package in each .dw section.
|
|
// dwsectCUSize map will save the size of a compilation unit for
|
|
// the corresponding .dw section.
|
|
// This size can later be retrieved with the index "sectionName.pkgName".
|
|
var dwsectCUSizeMu sync.Mutex
|
|
var dwsectCUSize map[string]uint64
|
|
|
|
// getDwsectCUSize retrieves the corresponding package size inside the current section.
|
|
func getDwsectCUSize(sname string, pkgname string) uint64 {
|
|
return dwsectCUSize[sname+"."+pkgname]
|
|
}
|
|
|
|
func addDwsectCUSize(sname string, pkgname string, size uint64) {
|
|
dwsectCUSizeMu.Lock()
|
|
defer dwsectCUSizeMu.Unlock()
|
|
dwsectCUSize[sname+"."+pkgname] += size
|
|
}
|