go/src/runtime/malloc.c
Russ Cox c3b5db895b runtime: delete panicstring; move its checks into gopanic
In Go 1.3 the runtime called panicstring to report errors like
divide by zero or memory faults. Now we call panic (gopanic)
with pre-allocated error values. That new path is missing the
checking that panicstring did, so add it there.

The only call to panicstring left is in cnew, which is problematic
because if it fails, probably the heap is corrupt. In that case,
calling panicstring creates a new errorCString (no allocation there),
but then panic tries to print it, invoking errorCString.Error, which
does a string concatenation (allocating), which then dies.
Replace that one panicstring with a throw: cnew is for allocating
runtime data structures and should never ask for an inappropriate
amount of memory.

With panicstring gone, delete newErrorCString, errorCString.
While we're here, delete newErrorString, not called by anyone.
(It can't be: that would be C code calling Go code that might
block or grow the stack.)

Found while debugging a malloc corruption.
This resulted in 'panic during panic' instead of a more useful message.

LGTM=khr
R=khr
CC=golang-codereviews
https://golang.org/cl/138290045
2014-09-18 14:49:24 -04:00

419 lines
12 KiB
C

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// See malloc.h for overview.
//
// TODO(rsc): double-check stats.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "type.h"
#include "typekind.h"
#include "race.h"
#include "stack.h"
#include "textflag.h"
// Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K.
#pragma dataflag NOPTR
MHeap runtime·mheap;
#pragma dataflag NOPTR
MStats runtime·memstats;
int32
runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
{
uintptr n, i;
byte *p;
MSpan *s;
g->m->mcache->local_nlookup++;
if (sizeof(void*) == 4 && g->m->mcache->local_nlookup >= (1<<30)) {
// purge cache stats to prevent overflow
runtime·lock(&runtime·mheap.lock);
runtime·purgecachedstats(g->m->mcache);
runtime·unlock(&runtime·mheap.lock);
}
s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
if(sp)
*sp = s;
if(s == nil) {
if(base)
*base = nil;
if(size)
*size = 0;
return 0;
}
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass == 0) {
// Large object.
if(base)
*base = p;
if(size)
*size = s->npages<<PageShift;
return 1;
}
n = s->elemsize;
if(base) {
i = ((byte*)v - p)/n;
*base = p + i*n;
}
if(size)
*size = n;
return 1;
}
#pragma textflag NOSPLIT
void
runtime·purgecachedstats(MCache *c)
{
MHeap *h;
int32 i;
// Protected by either heap or GC lock.
h = &runtime·mheap;
mstats.heap_alloc += c->local_cachealloc;
c->local_cachealloc = 0;
mstats.tinyallocs += c->local_tinyallocs;
c->local_tinyallocs = 0;
mstats.nlookup += c->local_nlookup;
c->local_nlookup = 0;
h->largefree += c->local_largefree;
c->local_largefree = 0;
h->nlargefree += c->local_nlargefree;
c->local_nlargefree = 0;
for(i=0; i<nelem(c->local_nsmallfree); i++) {
h->nsmallfree[i] += c->local_nsmallfree[i];
c->local_nsmallfree[i] = 0;
}
}
// Size of the trailing by_size array differs between Go and C,
// and all data after by_size is local to C, not exported to Go.
// NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
// sizeof_C_MStats is what C thinks about size of Go struct.
uintptr runtime·sizeof_C_MStats = offsetof(MStats, by_size[61]);
#define MaxArena32 (2U<<30)
// For use by Go. If it were a C enum it would be made available automatically,
// but the value of MaxMem is too large for enum.
uintptr runtime·maxmem = MaxMem;
void
runtime·mallocinit(void)
{
byte *p, *p1;
uintptr arena_size, bitmap_size, spans_size, p_size;
extern byte runtime·end[];
uintptr limit;
uint64 i;
bool reserved;
p = nil;
p_size = 0;
arena_size = 0;
bitmap_size = 0;
spans_size = 0;
reserved = false;
// for 64-bit build
USED(p);
USED(p_size);
USED(arena_size);
USED(bitmap_size);
USED(spans_size);
runtime·InitSizes();
if(runtime·class_to_size[TinySizeClass] != TinySize)
runtime·throw("bad TinySizeClass");
// limit = runtime·memlimit();
// See https://code.google.com/p/go/issues/detail?id=5049
// TODO(rsc): Fix after 1.1.
limit = 0;
// Set up the allocation arena, a contiguous area of memory where
// allocated data will be found. The arena begins with a bitmap large
// enough to hold 4 bits per allocated word.
if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) {
// On a 64-bit machine, allocate from a single contiguous reservation.
// 128 GB (MaxMem) should be big enough for now.
//
// The code will work with the reservation at any address, but ask
// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
// Allocating a 128 GB region takes away 37 bits, and the amd64
// doesn't let us choose the top 17 bits, so that leaves the 11 bits
// in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
// UTF-8 sequences, and they are otherwise as far away from
// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
// on OS X during thread allocations. 0x00c0 causes conflicts with
// AddressSanitizer which reserves all memory up to 0x0100.
// These choices are both for debuggability and to reduce the
// odds of the conservative garbage collector not collecting memory
// because some non-pointer block of memory had a bit pattern
// that matched a memory address.
//
// Actually we reserve 136 GB (because the bitmap ends up being 8 GB)
// but it hardly matters: e0 00 is not valid UTF-8 either.
//
// If this fails we fall back to the 32 bit memory mechanism
arena_size = MaxMem;
bitmap_size = arena_size / (sizeof(void*)*8/4);
spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
spans_size = ROUND(spans_size, PageSize);
for(i = 0; i <= 0x7f; i++) {
p = (void*)(i<<40 | 0x00c0ULL<<32);
p_size = bitmap_size + spans_size + arena_size + PageSize;
p = runtime·SysReserve(p, p_size, &reserved);
if(p != nil)
break;
}
}
if (p == nil) {
// On a 32-bit machine, we can't typically get away
// with a giant virtual address space reservation.
// Instead we map the memory information bitmap
// immediately after the data segment, large enough
// to handle another 2GB of mappings (256 MB),
// along with a reservation for another 512 MB of memory.
// When that gets used up, we'll start asking the kernel
// for any memory anywhere and hope it's in the 2GB
// following the bitmap (presumably the executable begins
// near the bottom of memory, so we'll have to use up
// most of memory before the kernel resorts to giving out
// memory before the beginning of the text segment).
//
// Alternatively we could reserve 512 MB bitmap, enough
// for 4GB of mappings, and then accept any memory the
// kernel threw at us, but normally that's a waste of 512 MB
// of address space, which is probably too much in a 32-bit world.
bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
arena_size = 512<<20;
spans_size = MaxArena32 / PageSize * sizeof(runtime·mheap.spans[0]);
if(limit > 0 && arena_size+bitmap_size+spans_size > limit) {
bitmap_size = (limit / 9) & ~((1<<PageShift) - 1);
arena_size = bitmap_size * 8;
spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
}
spans_size = ROUND(spans_size, PageSize);
// SysReserve treats the address we ask for, end, as a hint,
// not as an absolute requirement. If we ask for the end
// of the data segment but the operating system requires
// a little more space before we can start allocating, it will
// give out a slightly higher pointer. Except QEMU, which
// is buggy, as usual: it won't adjust the pointer upward.
// So adjust it upward a little bit ourselves: 1/4 MB to get
// away from the running binary image and then round up
// to a MB boundary.
p = (byte*)ROUND((uintptr)runtime·end + (1<<18), 1<<20);
p_size = bitmap_size + spans_size + arena_size + PageSize;
p = runtime·SysReserve(p, p_size, &reserved);
if(p == nil)
runtime·throw("runtime: cannot reserve arena virtual address space");
}
// PageSize can be larger than OS definition of page size,
// so SysReserve can give us a PageSize-unaligned pointer.
// To overcome this we ask for PageSize more and round up the pointer.
p1 = (byte*)ROUND((uintptr)p, PageSize);
runtime·mheap.spans = (MSpan**)p1;
runtime·mheap.bitmap = p1 + spans_size;
runtime·mheap.arena_start = p1 + spans_size + bitmap_size;
runtime·mheap.arena_used = runtime·mheap.arena_start;
runtime·mheap.arena_end = p + p_size;
runtime·mheap.arena_reserved = reserved;
if(((uintptr)runtime·mheap.arena_start & (PageSize-1)) != 0)
runtime·throw("misrounded allocation in mallocinit");
// Initialize the rest of the allocator.
runtime·MHeap_Init(&runtime·mheap);
g->m->mcache = runtime·allocmcache();
}
void*
runtime·MHeap_SysAlloc(MHeap *h, uintptr n)
{
byte *p, *p_end;
uintptr p_size;
bool reserved;
if(n > h->arena_end - h->arena_used) {
// We are in 32-bit mode, maybe we didn't use all possible address space yet.
// Reserve some more space.
byte *new_end;
p_size = ROUND(n + PageSize, 256<<20);
new_end = h->arena_end + p_size;
if(new_end <= h->arena_start + MaxArena32) {
// TODO: It would be bad if part of the arena
// is reserved and part is not.
p = runtime·SysReserve(h->arena_end, p_size, &reserved);
if(p == h->arena_end) {
h->arena_end = new_end;
h->arena_reserved = reserved;
}
else if(p+p_size <= h->arena_start + MaxArena32) {
// Keep everything page-aligned.
// Our pages are bigger than hardware pages.
h->arena_end = p+p_size;
h->arena_used = p + (-(uintptr)p&(PageSize-1));
h->arena_reserved = reserved;
} else {
uint64 stat;
stat = 0;
runtime·SysFree(p, p_size, &stat);
}
}
}
if(n <= h->arena_end - h->arena_used) {
// Keep taking from our reservation.
p = h->arena_used;
runtime·SysMap(p, n, h->arena_reserved, &mstats.heap_sys);
h->arena_used += n;
runtime·MHeap_MapBits(h);
runtime·MHeap_MapSpans(h);
if(raceenabled)
runtime·racemapshadow(p, n);
if(((uintptr)p & (PageSize-1)) != 0)
runtime·throw("misrounded allocation in MHeap_SysAlloc");
return p;
}
// If using 64-bit, our reservation is all we have.
if(h->arena_end - h->arena_start >= MaxArena32)
return nil;
// On 32-bit, once the reservation is gone we can
// try to get memory at a location chosen by the OS
// and hope that it is in the range we allocated bitmap for.
p_size = ROUND(n, PageSize) + PageSize;
p = runtime·sysAlloc(p_size, &mstats.heap_sys);
if(p == nil)
return nil;
if(p < h->arena_start || p+p_size - h->arena_start >= MaxArena32) {
runtime·printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
p, h->arena_start, h->arena_start+MaxArena32);
runtime·SysFree(p, p_size, &mstats.heap_sys);
return nil;
}
p_end = p + p_size;
p += -(uintptr)p & (PageSize-1);
if(p+n > h->arena_used) {
h->arena_used = p+n;
if(p_end > h->arena_end)
h->arena_end = p_end;
runtime·MHeap_MapBits(h);
runtime·MHeap_MapSpans(h);
if(raceenabled)
runtime·racemapshadow(p, n);
}
if(((uintptr)p & (PageSize-1)) != 0)
runtime·throw("misrounded allocation in MHeap_SysAlloc");
return p;
}
// Runtime stubs.
static void*
cnew(Type *typ, intgo n)
{
if(n < 0 || (typ->size > 0 && n > MaxMem/typ->size))
runtime·throw("runtime: allocation size out of range");
return runtime·mallocgc(typ->size*n, typ, typ->kind&KindNoPointers ? FlagNoScan : 0);
}
// same as runtime·new, but callable from C
void*
runtime·cnew(Type *typ)
{
return cnew(typ, 1);
}
void*
runtime·cnewarray(Type *typ, intgo n)
{
return cnew(typ, n);
}
void
runtime·setFinalizer_m(void)
{
FuncVal *fn;
void *arg;
uintptr nret;
Type *fint;
PtrType *ot;
fn = g->m->ptrarg[0];
arg = g->m->ptrarg[1];
nret = g->m->scalararg[0];
fint = g->m->ptrarg[2];
ot = g->m->ptrarg[3];
g->m->ptrarg[0] = nil;
g->m->ptrarg[1] = nil;
g->m->ptrarg[2] = nil;
g->m->ptrarg[3] = nil;
g->m->scalararg[0] = runtime·addfinalizer(arg, fn, nret, fint, ot);
}
void
runtime·removeFinalizer_m(void)
{
void *p;
p = g->m->ptrarg[0];
g->m->ptrarg[0] = nil;
runtime·removefinalizer(p);
}
// mcallable cache refill
void
runtime·mcacheRefill_m(void)
{
runtime·MCache_Refill(g->m->mcache, (int32)g->m->scalararg[0]);
}
void
runtime·largeAlloc_m(void)
{
uintptr npages, size;
MSpan *s;
void *v;
int32 flag;
//runtime·printf("largeAlloc size=%D\n", g->m->scalararg[0]);
// Allocate directly from heap.
size = g->m->scalararg[0];
flag = (int32)g->m->scalararg[1];
if(size + PageSize < size)
runtime·throw("out of memory");
npages = size >> PageShift;
if((size & PageMask) != 0)
npages++;
s = runtime·MHeap_Alloc(&runtime·mheap, npages, 0, 1, !(flag & FlagNoZero));
if(s == nil)
runtime·throw("out of memory");
s->limit = (byte*)(s->start<<PageShift) + size;
v = (void*)(s->start << PageShift);
// setup for mark sweep
runtime·markspan(v, 0, 0, true);
g->m->ptrarg[0] = s;
}