mirror of
https://github.com/golang/go.git
synced 2025-11-10 13:41:05 +00:00
An automated rewrite will add concrete type assertions after a test of n.Op(), when n can be safely type-asserted (meaning, n is not reassigned a different type, n is not reassigned and then used outside the scope of the type assertion, and so on). This sequence of CLs handles the code that the automated rewrite does not: adding specific types to function arguments, adjusting code not to call n.Left() etc when n may have multiple representations, and so on. This CL focuses on sinit.go. Passes buildall w/ toolstash -cmp. Change-Id: I3e9458e69a7a9b3f2fe139382bf961bc4473cc42 Reviewed-on: https://go-review.googlesource.com/c/go/+/277928 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
1368 lines
38 KiB
Go
1368 lines
38 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
//
|
|
// The inlining facility makes 2 passes: first caninl determines which
|
|
// functions are suitable for inlining, and for those that are it
|
|
// saves a copy of the body. Then inlcalls walks each function body to
|
|
// expand calls to inlinable functions.
|
|
//
|
|
// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
|
|
// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
|
|
// are not supported.
|
|
// 0: disabled
|
|
// 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
|
|
// 2: (unassigned)
|
|
// 3: (unassigned)
|
|
// 4: allow non-leaf functions
|
|
//
|
|
// At some point this may get another default and become switch-offable with -N.
|
|
//
|
|
// The -d typcheckinl flag enables early typechecking of all imported bodies,
|
|
// which is useful to flush out bugs.
|
|
//
|
|
// The Debug.m flag enables diagnostic output. a single -m is useful for verifying
|
|
// which calls get inlined or not, more is for debugging, and may go away at any point.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/logopt"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/src"
|
|
"errors"
|
|
"fmt"
|
|
"go/constant"
|
|
"strings"
|
|
)
|
|
|
|
// Inlining budget parameters, gathered in one place
|
|
const (
|
|
inlineMaxBudget = 80
|
|
inlineExtraAppendCost = 0
|
|
// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
|
|
inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
|
|
inlineExtraPanicCost = 1 // do not penalize inlining panics.
|
|
inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.
|
|
|
|
inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big".
|
|
inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function.
|
|
)
|
|
|
|
// Get the function's package. For ordinary functions it's on the ->sym, but for imported methods
|
|
// the ->sym can be re-used in the local package, so peel it off the receiver's type.
|
|
func fnpkg(fn *ir.Name) *types.Pkg {
|
|
if ir.IsMethod(fn) {
|
|
// method
|
|
rcvr := fn.Type().Recv().Type
|
|
|
|
if rcvr.IsPtr() {
|
|
rcvr = rcvr.Elem()
|
|
}
|
|
if rcvr.Sym() == nil {
|
|
base.Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym(), fn, rcvr)
|
|
}
|
|
return rcvr.Sym().Pkg
|
|
}
|
|
|
|
// non-method
|
|
return fn.Sym().Pkg
|
|
}
|
|
|
|
// Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck
|
|
// because they're a copy of an already checked body.
|
|
func typecheckinl(fn *ir.Func) {
|
|
lno := setlineno(fn.Nname)
|
|
|
|
expandInline(fn)
|
|
|
|
// typecheckinl is only for imported functions;
|
|
// their bodies may refer to unsafe as long as the package
|
|
// was marked safe during import (which was checked then).
|
|
// the ->inl of a local function has been typechecked before caninl copied it.
|
|
pkg := fnpkg(fn.Nname)
|
|
|
|
if pkg == types.LocalPkg || pkg == nil {
|
|
return // typecheckinl on local function
|
|
}
|
|
|
|
if base.Flag.LowerM > 2 || base.Debug.Export != 0 {
|
|
fmt.Printf("typecheck import [%v] %L { %v }\n", fn.Sym(), fn, ir.AsNodes(fn.Inl.Body))
|
|
}
|
|
|
|
savefn := Curfn
|
|
Curfn = fn
|
|
typecheckslice(fn.Inl.Body, ctxStmt)
|
|
Curfn = savefn
|
|
|
|
// During expandInline (which imports fn.Func.Inl.Body),
|
|
// declarations are added to fn.Func.Dcl by funcHdr(). Move them
|
|
// to fn.Func.Inl.Dcl for consistency with how local functions
|
|
// behave. (Append because typecheckinl may be called multiple
|
|
// times.)
|
|
fn.Inl.Dcl = append(fn.Inl.Dcl, fn.Dcl...)
|
|
fn.Dcl = nil
|
|
|
|
base.Pos = lno
|
|
}
|
|
|
|
// Caninl determines whether fn is inlineable.
|
|
// If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy.
|
|
// fn and ->nbody will already have been typechecked.
|
|
func caninl(fn *ir.Func) {
|
|
if fn.Nname == nil {
|
|
base.Fatalf("caninl no nname %+v", fn)
|
|
}
|
|
|
|
var reason string // reason, if any, that the function was not inlined
|
|
if base.Flag.LowerM > 1 || logopt.Enabled() {
|
|
defer func() {
|
|
if reason != "" {
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// If marked "go:noinline", don't inline
|
|
if fn.Pragma&ir.Noinline != 0 {
|
|
reason = "marked go:noinline"
|
|
return
|
|
}
|
|
|
|
// If marked "go:norace" and -race compilation, don't inline.
|
|
if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
|
|
reason = "marked go:norace with -race compilation"
|
|
return
|
|
}
|
|
|
|
// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
|
|
if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
|
|
reason = "marked go:nocheckptr"
|
|
return
|
|
}
|
|
|
|
// If marked "go:cgo_unsafe_args", don't inline, since the
|
|
// function makes assumptions about its argument frame layout.
|
|
if fn.Pragma&ir.CgoUnsafeArgs != 0 {
|
|
reason = "marked go:cgo_unsafe_args"
|
|
return
|
|
}
|
|
|
|
// If marked as "go:uintptrescapes", don't inline, since the
|
|
// escape information is lost during inlining.
|
|
if fn.Pragma&ir.UintptrEscapes != 0 {
|
|
reason = "marked as having an escaping uintptr argument"
|
|
return
|
|
}
|
|
|
|
// The nowritebarrierrec checker currently works at function
|
|
// granularity, so inlining yeswritebarrierrec functions can
|
|
// confuse it (#22342). As a workaround, disallow inlining
|
|
// them for now.
|
|
if fn.Pragma&ir.Yeswritebarrierrec != 0 {
|
|
reason = "marked go:yeswritebarrierrec"
|
|
return
|
|
}
|
|
|
|
// If fn has no body (is defined outside of Go), cannot inline it.
|
|
if fn.Body().Len() == 0 {
|
|
reason = "no function body"
|
|
return
|
|
}
|
|
|
|
if fn.Typecheck() == 0 {
|
|
base.Fatalf("caninl on non-typechecked function %v", fn)
|
|
}
|
|
|
|
n := fn.Nname
|
|
if n.Func().InlinabilityChecked() {
|
|
return
|
|
}
|
|
defer n.Func().SetInlinabilityChecked(true)
|
|
|
|
cc := int32(inlineExtraCallCost)
|
|
if base.Flag.LowerL == 4 {
|
|
cc = 1 // this appears to yield better performance than 0.
|
|
}
|
|
|
|
// At this point in the game the function we're looking at may
|
|
// have "stale" autos, vars that still appear in the Dcl list, but
|
|
// which no longer have any uses in the function body (due to
|
|
// elimination by deadcode). We'd like to exclude these dead vars
|
|
// when creating the "Inline.Dcl" field below; to accomplish this,
|
|
// the hairyVisitor below builds up a map of used/referenced
|
|
// locals, and we use this map to produce a pruned Inline.Dcl
|
|
// list. See issue 25249 for more context.
|
|
|
|
visitor := hairyVisitor{
|
|
budget: inlineMaxBudget,
|
|
extraCallCost: cc,
|
|
usedLocals: make(map[*ir.Name]bool),
|
|
}
|
|
if visitor.tooHairy(fn) {
|
|
reason = visitor.reason
|
|
return
|
|
}
|
|
|
|
n.Func().Inl = &ir.Inline{
|
|
Cost: inlineMaxBudget - visitor.budget,
|
|
Dcl: pruneUnusedAutos(n.Defn.Func().Dcl, &visitor),
|
|
Body: ir.DeepCopyList(src.NoXPos, fn.Body().Slice()),
|
|
}
|
|
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, inlineMaxBudget-visitor.budget, fn.Type(), ir.AsNodes(n.Func().Inl.Body))
|
|
} else if base.Flag.LowerM != 0 {
|
|
fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", inlineMaxBudget-visitor.budget))
|
|
}
|
|
}
|
|
|
|
// inlFlood marks n's inline body for export and recursively ensures
|
|
// all called functions are marked too.
|
|
func inlFlood(n *ir.Name) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
if n.Op() != ir.ONAME || n.Class() != ir.PFUNC {
|
|
base.Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op(), n.Class())
|
|
}
|
|
fn := n.Func()
|
|
if fn == nil {
|
|
base.Fatalf("inlFlood: missing Func on %v", n)
|
|
}
|
|
if fn.Inl == nil {
|
|
return
|
|
}
|
|
|
|
if fn.ExportInline() {
|
|
return
|
|
}
|
|
fn.SetExportInline(true)
|
|
|
|
typecheckinl(fn)
|
|
|
|
// Recursively identify all referenced functions for
|
|
// reexport. We want to include even non-called functions,
|
|
// because after inlining they might be callable.
|
|
ir.VisitList(ir.AsNodes(fn.Inl.Body), func(n ir.Node) {
|
|
switch n.Op() {
|
|
case ir.OMETHEXPR, ir.ODOTMETH:
|
|
inlFlood(methodExprName(n))
|
|
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
switch n.Class() {
|
|
case ir.PFUNC:
|
|
inlFlood(n)
|
|
exportsym(n)
|
|
case ir.PEXTERN:
|
|
exportsym(n)
|
|
}
|
|
|
|
case ir.OCALLPART:
|
|
// Okay, because we don't yet inline indirect
|
|
// calls to method values.
|
|
case ir.OCLOSURE:
|
|
// If the closure is inlinable, we'll need to
|
|
// flood it too. But today we don't support
|
|
// inlining functions that contain closures.
|
|
//
|
|
// When we do, we'll probably want:
|
|
// inlFlood(n.Func.Closure.Func.Nname)
|
|
base.Fatalf("unexpected closure in inlinable function")
|
|
}
|
|
})
|
|
}
|
|
|
|
// hairyVisitor visits a function body to determine its inlining
|
|
// hairiness and whether or not it can be inlined.
|
|
type hairyVisitor struct {
|
|
budget int32
|
|
reason string
|
|
extraCallCost int32
|
|
usedLocals map[*ir.Name]bool
|
|
do func(ir.Node) error
|
|
}
|
|
|
|
var errBudget = errors.New("too expensive")
|
|
|
|
func (v *hairyVisitor) tooHairy(fn *ir.Func) bool {
|
|
v.do = v.doNode // cache closure
|
|
|
|
err := ir.DoChildren(fn, v.do)
|
|
if err != nil {
|
|
v.reason = err.Error()
|
|
return true
|
|
}
|
|
if v.budget < 0 {
|
|
v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", inlineMaxBudget-v.budget, inlineMaxBudget)
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (v *hairyVisitor) doNode(n ir.Node) error {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op() {
|
|
// Call is okay if inlinable and we have the budget for the body.
|
|
case ir.OCALLFUNC:
|
|
n := n.(*ir.CallExpr)
|
|
// Functions that call runtime.getcaller{pc,sp} can not be inlined
|
|
// because getcaller{pc,sp} expect a pointer to the caller's first argument.
|
|
//
|
|
// runtime.throw is a "cheap call" like panic in normal code.
|
|
if n.Left().Op() == ir.ONAME {
|
|
name := n.Left().(*ir.Name)
|
|
if name.Class() == ir.PFUNC && isRuntimePkg(name.Sym().Pkg) {
|
|
fn := name.Sym().Name
|
|
if fn == "getcallerpc" || fn == "getcallersp" {
|
|
return errors.New("call to " + fn)
|
|
}
|
|
if fn == "throw" {
|
|
v.budget -= inlineExtraThrowCost
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if isIntrinsicCall(n) {
|
|
// Treat like any other node.
|
|
break
|
|
}
|
|
|
|
if fn := inlCallee(n.Left()); fn != nil && fn.Inl != nil {
|
|
v.budget -= fn.Inl.Cost
|
|
break
|
|
}
|
|
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
// Call is okay if inlinable and we have the budget for the body.
|
|
case ir.OCALLMETH:
|
|
t := n.Left().Type()
|
|
if t == nil {
|
|
base.Fatalf("no function type for [%p] %+v\n", n.Left(), n.Left())
|
|
}
|
|
if isRuntimePkg(n.Left().Sym().Pkg) {
|
|
fn := n.Left().Sym().Name
|
|
if fn == "heapBits.nextArena" {
|
|
// Special case: explicitly allow
|
|
// mid-stack inlining of
|
|
// runtime.heapBits.next even though
|
|
// it calls slow-path
|
|
// runtime.heapBits.nextArena.
|
|
break
|
|
}
|
|
}
|
|
if inlfn := methodExprName(n.Left()).Func(); inlfn.Inl != nil {
|
|
v.budget -= inlfn.Inl.Cost
|
|
break
|
|
}
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
// Things that are too hairy, irrespective of the budget
|
|
case ir.OCALL, ir.OCALLINTER:
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
case ir.OPANIC:
|
|
v.budget -= inlineExtraPanicCost
|
|
|
|
case ir.ORECOVER:
|
|
// recover matches the argument frame pointer to find
|
|
// the right panic value, so it needs an argument frame.
|
|
return errors.New("call to recover")
|
|
|
|
case ir.OCLOSURE,
|
|
ir.ORANGE,
|
|
ir.OSELECT,
|
|
ir.OGO,
|
|
ir.ODEFER,
|
|
ir.ODCLTYPE, // can't print yet
|
|
ir.ORETJMP:
|
|
return errors.New("unhandled op " + n.Op().String())
|
|
|
|
case ir.OAPPEND:
|
|
v.budget -= inlineExtraAppendCost
|
|
|
|
case ir.ODCLCONST, ir.OFALL:
|
|
// These nodes don't produce code; omit from inlining budget.
|
|
return nil
|
|
|
|
case ir.OFOR, ir.OFORUNTIL:
|
|
if n.Sym() != nil {
|
|
return errors.New("labeled control")
|
|
}
|
|
case ir.OSWITCH:
|
|
if n.Sym() != nil {
|
|
return errors.New("labeled control")
|
|
}
|
|
// case ir.ORANGE, ir.OSELECT in "unhandled" above
|
|
|
|
case ir.OBREAK, ir.OCONTINUE:
|
|
if n.Sym() != nil {
|
|
// Should have short-circuited due to labeled control error above.
|
|
base.Fatalf("unexpected labeled break/continue: %v", n)
|
|
}
|
|
|
|
case ir.OIF:
|
|
if ir.IsConst(n.Left(), constant.Bool) {
|
|
// This if and the condition cost nothing.
|
|
// TODO(rsc): It seems strange that we visit the dead branch.
|
|
if err := ir.DoList(n.Init(), v.do); err != nil {
|
|
return err
|
|
}
|
|
if err := ir.DoList(n.Body(), v.do); err != nil {
|
|
return err
|
|
}
|
|
if err := ir.DoList(n.Rlist(), v.do); err != nil {
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
if n.Class() == ir.PAUTO {
|
|
v.usedLocals[n] = true
|
|
}
|
|
|
|
case ir.OBLOCK:
|
|
// The only OBLOCK we should see at this point is an empty one.
|
|
// In any event, let the visitList(n.List()) below take care of the statements,
|
|
// and don't charge for the OBLOCK itself. The ++ undoes the -- below.
|
|
v.budget++
|
|
|
|
case ir.OCALLPART:
|
|
v.budget-- // Hack for toolstash -cmp.
|
|
}
|
|
|
|
v.budget--
|
|
|
|
// When debugging, don't stop early, to get full cost of inlining this function
|
|
if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
|
|
return errBudget
|
|
}
|
|
|
|
return ir.DoChildren(n, v.do)
|
|
}
|
|
|
|
func isBigFunc(fn *ir.Func) bool {
|
|
budget := inlineBigFunctionNodes
|
|
return ir.Any(fn, func(n ir.Node) bool {
|
|
budget--
|
|
return budget <= 0
|
|
})
|
|
}
|
|
|
|
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
|
|
// calls made to inlineable functions. This is the external entry point.
|
|
func inlcalls(fn *ir.Func) {
|
|
savefn := Curfn
|
|
Curfn = fn
|
|
maxCost := int32(inlineMaxBudget)
|
|
if isBigFunc(fn) {
|
|
maxCost = inlineBigFunctionMaxCost
|
|
}
|
|
// Map to keep track of functions that have been inlined at a particular
|
|
// call site, in order to stop inlining when we reach the beginning of a
|
|
// recursion cycle again. We don't inline immediately recursive functions,
|
|
// but allow inlining if there is a recursion cycle of many functions.
|
|
// Most likely, the inlining will stop before we even hit the beginning of
|
|
// the cycle again, but the map catches the unusual case.
|
|
inlMap := make(map[*ir.Func]bool)
|
|
var edit func(ir.Node) ir.Node
|
|
edit = func(n ir.Node) ir.Node {
|
|
return inlnode(n, maxCost, inlMap, edit)
|
|
}
|
|
ir.EditChildren(fn, edit)
|
|
Curfn = savefn
|
|
}
|
|
|
|
// Turn an OINLCALL into a statement.
|
|
func inlconv2stmt(inlcall *ir.InlinedCallExpr) ir.Node {
|
|
n := ir.NodAt(inlcall.Pos(), ir.OBLOCK, nil, nil)
|
|
n.SetList(inlcall.Init())
|
|
n.PtrList().AppendNodes(inlcall.PtrBody())
|
|
return n
|
|
}
|
|
|
|
// Turn an OINLCALL into a single valued expression.
|
|
// The result of inlconv2expr MUST be assigned back to n, e.g.
|
|
// n.Left = inlconv2expr(n.Left)
|
|
func inlconv2expr(n *ir.InlinedCallExpr) ir.Node {
|
|
r := n.Rlist().First()
|
|
return initExpr(append(n.Init().Slice(), n.Body().Slice()...), r)
|
|
}
|
|
|
|
// Turn the rlist (with the return values) of the OINLCALL in
|
|
// n into an expression list lumping the ninit and body
|
|
// containing the inlined statements on the first list element so
|
|
// order will be preserved. Used in return, oas2func and call
|
|
// statements.
|
|
func inlconv2list(n *ir.InlinedCallExpr) []ir.Node {
|
|
if n.Op() != ir.OINLCALL || n.Rlist().Len() == 0 {
|
|
base.Fatalf("inlconv2list %+v\n", n)
|
|
}
|
|
|
|
s := n.Rlist().Slice()
|
|
s[0] = initExpr(append(n.Init().Slice(), n.Body().Slice()...), s[0])
|
|
return s
|
|
}
|
|
|
|
// inlnode recurses over the tree to find inlineable calls, which will
|
|
// be turned into OINLCALLs by mkinlcall. When the recursion comes
|
|
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
|
|
// nbody and nelse and use one of the 4 inlconv/glue functions above
|
|
// to turn the OINLCALL into an expression, a statement, or patch it
|
|
// in to this nodes list or rlist as appropriate.
|
|
// NOTE it makes no sense to pass the glue functions down the
|
|
// recursion to the level where the OINLCALL gets created because they
|
|
// have to edit /this/ n, so you'd have to push that one down as well,
|
|
// but then you may as well do it here. so this is cleaner and
|
|
// shorter and less complicated.
|
|
// The result of inlnode MUST be assigned back to n, e.g.
|
|
// n.Left = inlnode(n.Left)
|
|
func inlnode(n ir.Node, maxCost int32, inlMap map[*ir.Func]bool, edit func(ir.Node) ir.Node) ir.Node {
|
|
if n == nil {
|
|
return n
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.ODEFER, ir.OGO:
|
|
switch call := n.Left(); call.Op() {
|
|
case ir.OCALLFUNC, ir.OCALLMETH:
|
|
call.SetNoInline(true)
|
|
}
|
|
|
|
// TODO do them here (or earlier),
|
|
// so escape analysis can avoid more heapmoves.
|
|
case ir.OCLOSURE:
|
|
return n
|
|
case ir.OCALLMETH:
|
|
// Prevent inlining some reflect.Value methods when using checkptr,
|
|
// even when package reflect was compiled without it (#35073).
|
|
if s := n.Left().Sym(); base.Debug.Checkptr != 0 && isReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
|
|
return n
|
|
}
|
|
}
|
|
|
|
lno := setlineno(n)
|
|
|
|
ir.EditChildren(n, edit)
|
|
|
|
if as := n; as.Op() == ir.OAS2FUNC {
|
|
if as.Rlist().First().Op() == ir.OINLCALL {
|
|
as.PtrRlist().Set(inlconv2list(as.Rlist().First().(*ir.InlinedCallExpr)))
|
|
as.SetOp(ir.OAS2)
|
|
as.SetTypecheck(0)
|
|
n = typecheck(as, ctxStmt)
|
|
}
|
|
}
|
|
|
|
// with all the branches out of the way, it is now time to
|
|
// transmogrify this node itself unless inhibited by the
|
|
// switch at the top of this function.
|
|
switch n.Op() {
|
|
case ir.OCALLFUNC, ir.OCALLMETH:
|
|
if n.NoInline() {
|
|
return n
|
|
}
|
|
}
|
|
|
|
var call *ir.CallExpr
|
|
switch n.Op() {
|
|
case ir.OCALLFUNC:
|
|
call = n.(*ir.CallExpr)
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("%v:call to func %+v\n", ir.Line(n), call.Left())
|
|
}
|
|
if isIntrinsicCall(call) {
|
|
break
|
|
}
|
|
if fn := inlCallee(call.Left()); fn != nil && fn.Inl != nil {
|
|
n = mkinlcall(call, fn, maxCost, inlMap, edit)
|
|
}
|
|
|
|
case ir.OCALLMETH:
|
|
call = n.(*ir.CallExpr)
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("%v:call to meth %v\n", ir.Line(n), call.Left().(*ir.SelectorExpr).Sel)
|
|
}
|
|
|
|
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
|
|
if call.Left().Type() == nil {
|
|
base.Fatalf("no function type for [%p] %+v\n", call.Left(), call.Left())
|
|
}
|
|
|
|
n = mkinlcall(call, methodExprName(call.Left()).Func(), maxCost, inlMap, edit)
|
|
}
|
|
|
|
base.Pos = lno
|
|
|
|
if n.Op() == ir.OINLCALL {
|
|
ic := n.(*ir.InlinedCallExpr)
|
|
switch call.Use {
|
|
default:
|
|
ir.Dump("call", call)
|
|
base.Fatalf("call missing use")
|
|
case ir.CallUseExpr:
|
|
n = inlconv2expr(ic)
|
|
case ir.CallUseStmt:
|
|
n = inlconv2stmt(ic)
|
|
case ir.CallUseList:
|
|
// leave for caller to convert
|
|
}
|
|
}
|
|
|
|
return n
|
|
}
|
|
|
|
// inlCallee takes a function-typed expression and returns the underlying function ONAME
|
|
// that it refers to if statically known. Otherwise, it returns nil.
|
|
func inlCallee(fn ir.Node) *ir.Func {
|
|
fn = staticValue(fn)
|
|
switch fn.Op() {
|
|
case ir.OMETHEXPR:
|
|
fn := fn.(*ir.MethodExpr)
|
|
n := methodExprName(fn)
|
|
// Check that receiver type matches fn.Left.
|
|
// TODO(mdempsky): Handle implicit dereference
|
|
// of pointer receiver argument?
|
|
if n == nil || !types.Identical(n.Type().Recv().Type, fn.T) {
|
|
return nil
|
|
}
|
|
return n.Func()
|
|
case ir.ONAME:
|
|
if fn.Class() == ir.PFUNC {
|
|
return fn.Func()
|
|
}
|
|
case ir.OCLOSURE:
|
|
c := fn.Func()
|
|
caninl(c)
|
|
return c
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func staticValue(n ir.Node) ir.Node {
|
|
for {
|
|
if n.Op() == ir.OCONVNOP {
|
|
n = n.(*ir.ConvExpr).Left()
|
|
continue
|
|
}
|
|
|
|
n1 := staticValue1(n)
|
|
if n1 == nil {
|
|
return n
|
|
}
|
|
n = n1
|
|
}
|
|
}
|
|
|
|
// staticValue1 implements a simple SSA-like optimization. If n is a local variable
|
|
// that is initialized and never reassigned, staticValue1 returns the initializer
|
|
// expression. Otherwise, it returns nil.
|
|
func staticValue1(nn ir.Node) ir.Node {
|
|
if nn.Op() != ir.ONAME {
|
|
return nil
|
|
}
|
|
n := nn.(*ir.Name)
|
|
if n.Class() != ir.PAUTO || n.Name().Addrtaken() {
|
|
return nil
|
|
}
|
|
|
|
defn := n.Name().Defn
|
|
if defn == nil {
|
|
return nil
|
|
}
|
|
|
|
var rhs ir.Node
|
|
FindRHS:
|
|
switch defn.Op() {
|
|
case ir.OAS:
|
|
rhs = defn.Right()
|
|
case ir.OAS2:
|
|
for i, lhs := range defn.List().Slice() {
|
|
if lhs == n {
|
|
rhs = defn.Rlist().Index(i)
|
|
break FindRHS
|
|
}
|
|
}
|
|
base.Fatalf("%v missing from LHS of %v", n, defn)
|
|
default:
|
|
return nil
|
|
}
|
|
if rhs == nil {
|
|
base.Fatalf("RHS is nil: %v", defn)
|
|
}
|
|
|
|
if reassigned(n) {
|
|
return nil
|
|
}
|
|
|
|
return rhs
|
|
}
|
|
|
|
// reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean
|
|
// indicating whether the name has any assignments other than its declaration.
|
|
// The second return value is the first such assignment encountered in the walk, if any. It is mostly
|
|
// useful for -m output documenting the reason for inhibited optimizations.
|
|
// NB: global variables are always considered to be re-assigned.
|
|
// TODO: handle initial declaration not including an assignment and followed by a single assignment?
|
|
func reassigned(name *ir.Name) bool {
|
|
if name.Op() != ir.ONAME {
|
|
base.Fatalf("reassigned %v", name)
|
|
}
|
|
// no way to reliably check for no-reassignment of globals, assume it can be
|
|
if name.Curfn == nil {
|
|
return true
|
|
}
|
|
return ir.Any(name.Curfn, func(n ir.Node) bool {
|
|
switch n.Op() {
|
|
case ir.OAS:
|
|
if n.Left() == name && n != name.Defn {
|
|
return true
|
|
}
|
|
case ir.OAS2, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2DOTTYPE:
|
|
for _, p := range n.List().Slice() {
|
|
if p == name && n != name.Defn {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
})
|
|
}
|
|
|
|
func inlParam(t *types.Field, as ir.Node, inlvars map[*ir.Name]ir.Node) ir.Node {
|
|
n := ir.AsNode(t.Nname)
|
|
if n == nil || ir.IsBlank(n) {
|
|
return ir.BlankNode
|
|
}
|
|
|
|
inlvar := inlvars[n.(*ir.Name)]
|
|
if inlvar == nil {
|
|
base.Fatalf("missing inlvar for %v", n)
|
|
}
|
|
as.PtrInit().Append(ir.Nod(ir.ODCL, inlvar, nil))
|
|
inlvar.Name().Defn = as
|
|
return inlvar
|
|
}
|
|
|
|
var inlgen int
|
|
|
|
// If n is a call node (OCALLFUNC or OCALLMETH), and fn is an ONAME node for a
|
|
// function with an inlinable body, return an OINLCALL node that can replace n.
|
|
// The returned node's Ninit has the parameter assignments, the Nbody is the
|
|
// inlined function body, and (List, Rlist) contain the (input, output)
|
|
// parameters.
|
|
// The result of mkinlcall MUST be assigned back to n, e.g.
|
|
// n.Left = mkinlcall(n.Left, fn, isddd)
|
|
func mkinlcall(n *ir.CallExpr, fn *ir.Func, maxCost int32, inlMap map[*ir.Func]bool, edit func(ir.Node) ir.Node) ir.Node {
|
|
if fn.Inl == nil {
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(Curfn),
|
|
fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(fn)))
|
|
}
|
|
return n
|
|
}
|
|
if fn.Inl.Cost > maxCost {
|
|
// The inlined function body is too big. Typically we use this check to restrict
|
|
// inlining into very big functions. See issue 26546 and 17566.
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(Curfn),
|
|
fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), maxCost))
|
|
}
|
|
return n
|
|
}
|
|
|
|
if fn == Curfn {
|
|
// Can't recursively inline a function into itself.
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(Curfn)))
|
|
}
|
|
return n
|
|
}
|
|
|
|
if instrumenting && isRuntimePkg(fn.Sym().Pkg) {
|
|
// Runtime package must not be instrumented.
|
|
// Instrument skips runtime package. However, some runtime code can be
|
|
// inlined into other packages and instrumented there. To avoid this,
|
|
// we disable inlining of runtime functions when instrumenting.
|
|
// The example that we observed is inlining of LockOSThread,
|
|
// which lead to false race reports on m contents.
|
|
return n
|
|
}
|
|
|
|
if inlMap[fn] {
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), fn, ir.FuncName(Curfn))
|
|
}
|
|
return n
|
|
}
|
|
inlMap[fn] = true
|
|
defer func() {
|
|
inlMap[fn] = false
|
|
}()
|
|
if base.Debug.TypecheckInl == 0 {
|
|
typecheckinl(fn)
|
|
}
|
|
|
|
// We have a function node, and it has an inlineable body.
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: inlining call to %v %v { %v }\n", ir.Line(n), fn.Sym(), fn.Type(), ir.AsNodes(fn.Inl.Body))
|
|
} else if base.Flag.LowerM != 0 {
|
|
fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
|
|
}
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
|
|
}
|
|
|
|
if ssaDump != "" && ssaDump == ir.FuncName(Curfn) {
|
|
ssaDumpInlined = append(ssaDumpInlined, fn)
|
|
}
|
|
|
|
ninit := n.Init()
|
|
|
|
// For normal function calls, the function callee expression
|
|
// may contain side effects (e.g., added by addinit during
|
|
// inlconv2expr or inlconv2list). Make sure to preserve these,
|
|
// if necessary (#42703).
|
|
if n.Op() == ir.OCALLFUNC {
|
|
callee := n.Left()
|
|
for callee.Op() == ir.OCONVNOP {
|
|
conv := callee.(*ir.ConvExpr)
|
|
ninit.AppendNodes(conv.PtrInit())
|
|
callee = conv.Left()
|
|
}
|
|
if callee.Op() != ir.ONAME && callee.Op() != ir.OCLOSURE && callee.Op() != ir.OMETHEXPR {
|
|
base.Fatalf("unexpected callee expression: %v", callee)
|
|
}
|
|
}
|
|
|
|
// Make temp names to use instead of the originals.
|
|
inlvars := make(map[*ir.Name]ir.Node)
|
|
|
|
// record formals/locals for later post-processing
|
|
var inlfvars []ir.Node
|
|
|
|
// Handle captured variables when inlining closures.
|
|
if c := fn.OClosure; c != nil {
|
|
for _, v := range fn.ClosureVars {
|
|
if v.Op() == ir.OXXX {
|
|
continue
|
|
}
|
|
|
|
o := v.Outer
|
|
// make sure the outer param matches the inlining location
|
|
// NB: if we enabled inlining of functions containing OCLOSURE or refined
|
|
// the reassigned check via some sort of copy propagation this would most
|
|
// likely need to be changed to a loop to walk up to the correct Param
|
|
if o == nil || o.Curfn != Curfn {
|
|
base.Fatalf("%v: unresolvable capture %v %v\n", ir.Line(n), fn, v)
|
|
}
|
|
|
|
if v.Byval() {
|
|
iv := typecheck(inlvar(v), ctxExpr)
|
|
ninit.Append(ir.Nod(ir.ODCL, iv, nil))
|
|
ninit.Append(typecheck(ir.Nod(ir.OAS, iv, o), ctxStmt))
|
|
inlvars[v] = iv
|
|
} else {
|
|
addr := NewName(lookup("&" + v.Sym().Name))
|
|
addr.SetType(types.NewPtr(v.Type()))
|
|
ia := typecheck(inlvar(addr), ctxExpr)
|
|
ninit.Append(ir.Nod(ir.ODCL, ia, nil))
|
|
ninit.Append(typecheck(ir.Nod(ir.OAS, ia, nodAddr(o)), ctxStmt))
|
|
inlvars[addr] = ia
|
|
|
|
// When capturing by reference, all occurrence of the captured var
|
|
// must be substituted with dereference of the temporary address
|
|
inlvars[v] = typecheck(ir.Nod(ir.ODEREF, ia, nil), ctxExpr)
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, ln := range fn.Inl.Dcl {
|
|
if ln.Op() != ir.ONAME {
|
|
continue
|
|
}
|
|
if ln.Class() == ir.PPARAMOUT { // return values handled below.
|
|
continue
|
|
}
|
|
if isParamStackCopy(ln) { // ignore the on-stack copy of a parameter that moved to the heap
|
|
// TODO(mdempsky): Remove once I'm confident
|
|
// this never actually happens. We currently
|
|
// perform inlining before escape analysis, so
|
|
// nothing should have moved to the heap yet.
|
|
base.Fatalf("impossible: %v", ln)
|
|
}
|
|
inlf := typecheck(inlvar(ln), ctxExpr)
|
|
inlvars[ln] = inlf
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
if ln.Class() == ir.PPARAM {
|
|
inlf.Name().SetInlFormal(true)
|
|
} else {
|
|
inlf.Name().SetInlLocal(true)
|
|
}
|
|
inlf.SetPos(ln.Pos())
|
|
inlfvars = append(inlfvars, inlf)
|
|
}
|
|
}
|
|
|
|
nreturns := 0
|
|
ir.VisitList(ir.AsNodes(fn.Inl.Body), func(n ir.Node) {
|
|
if n != nil && n.Op() == ir.ORETURN {
|
|
nreturns++
|
|
}
|
|
})
|
|
|
|
// We can delay declaring+initializing result parameters if:
|
|
// (1) there's only one "return" statement in the inlined
|
|
// function, and (2) the result parameters aren't named.
|
|
delayretvars := nreturns == 1
|
|
|
|
// temporaries for return values.
|
|
var retvars []ir.Node
|
|
for i, t := range fn.Type().Results().Fields().Slice() {
|
|
var m ir.Node
|
|
if n := ir.AsNode(t.Nname); n != nil && !ir.IsBlank(n) && !strings.HasPrefix(n.Sym().Name, "~r") {
|
|
n := n.(*ir.Name)
|
|
m = inlvar(n)
|
|
m = typecheck(m, ctxExpr)
|
|
inlvars[n] = m
|
|
delayretvars = false // found a named result parameter
|
|
} else {
|
|
// anonymous return values, synthesize names for use in assignment that replaces return
|
|
m = retvar(t, i)
|
|
}
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
// Don't update the src.Pos on a return variable if it
|
|
// was manufactured by the inliner (e.g. "~R2"); such vars
|
|
// were not part of the original callee.
|
|
if !strings.HasPrefix(m.Sym().Name, "~R") {
|
|
m.Name().SetInlFormal(true)
|
|
m.SetPos(t.Pos)
|
|
inlfvars = append(inlfvars, m)
|
|
}
|
|
}
|
|
|
|
retvars = append(retvars, m)
|
|
}
|
|
|
|
// Assign arguments to the parameters' temp names.
|
|
as := ir.Nod(ir.OAS2, nil, nil)
|
|
as.SetColas(true)
|
|
if n.Op() == ir.OCALLMETH {
|
|
sel := n.Left().(*ir.SelectorExpr)
|
|
if sel.Left() == nil {
|
|
base.Fatalf("method call without receiver: %+v", n)
|
|
}
|
|
as.PtrRlist().Append(sel.Left())
|
|
}
|
|
as.PtrRlist().Append(n.List().Slice()...)
|
|
|
|
// For non-dotted calls to variadic functions, we assign the
|
|
// variadic parameter's temp name separately.
|
|
var vas *ir.AssignStmt
|
|
|
|
if recv := fn.Type().Recv(); recv != nil {
|
|
as.PtrList().Append(inlParam(recv, as, inlvars))
|
|
}
|
|
for _, param := range fn.Type().Params().Fields().Slice() {
|
|
// For ordinary parameters or variadic parameters in
|
|
// dotted calls, just add the variable to the
|
|
// assignment list, and we're done.
|
|
if !param.IsDDD() || n.IsDDD() {
|
|
as.PtrList().Append(inlParam(param, as, inlvars))
|
|
continue
|
|
}
|
|
|
|
// Otherwise, we need to collect the remaining values
|
|
// to pass as a slice.
|
|
|
|
x := as.List().Len()
|
|
for as.List().Len() < as.Rlist().Len() {
|
|
as.PtrList().Append(argvar(param.Type, as.List().Len()))
|
|
}
|
|
varargs := as.List().Slice()[x:]
|
|
|
|
vas = ir.NewAssignStmt(base.Pos, nil, nil)
|
|
vas.SetLeft(inlParam(param, vas, inlvars))
|
|
if len(varargs) == 0 {
|
|
vas.SetRight(nodnil())
|
|
vas.Right().SetType(param.Type)
|
|
} else {
|
|
lit := ir.Nod(ir.OCOMPLIT, nil, ir.TypeNode(param.Type))
|
|
lit.PtrList().Set(varargs)
|
|
vas.SetRight(lit)
|
|
}
|
|
}
|
|
|
|
if as.Rlist().Len() != 0 {
|
|
ninit.Append(typecheck(as, ctxStmt))
|
|
}
|
|
|
|
if vas != nil {
|
|
ninit.Append(typecheck(vas, ctxStmt))
|
|
}
|
|
|
|
if !delayretvars {
|
|
// Zero the return parameters.
|
|
for _, n := range retvars {
|
|
ninit.Append(ir.Nod(ir.ODCL, n, nil))
|
|
ras := ir.Nod(ir.OAS, n, nil)
|
|
ninit.Append(typecheck(ras, ctxStmt))
|
|
}
|
|
}
|
|
|
|
retlabel := autolabel(".i")
|
|
|
|
inlgen++
|
|
|
|
parent := -1
|
|
if b := base.Ctxt.PosTable.Pos(n.Pos()).Base(); b != nil {
|
|
parent = b.InliningIndex()
|
|
}
|
|
|
|
sym := fn.Sym().Linksym()
|
|
newIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym)
|
|
|
|
// Add an inline mark just before the inlined body.
|
|
// This mark is inline in the code so that it's a reasonable spot
|
|
// to put a breakpoint. Not sure if that's really necessary or not
|
|
// (in which case it could go at the end of the function instead).
|
|
// Note issue 28603.
|
|
inlMark := ir.Nod(ir.OINLMARK, nil, nil)
|
|
inlMark.SetPos(n.Pos().WithIsStmt())
|
|
inlMark.SetOffset(int64(newIndex))
|
|
ninit.Append(inlMark)
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
if !sym.WasInlined() {
|
|
base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
|
|
sym.Set(obj.AttrWasInlined, true)
|
|
}
|
|
}
|
|
|
|
subst := inlsubst{
|
|
retlabel: retlabel,
|
|
retvars: retvars,
|
|
delayretvars: delayretvars,
|
|
inlvars: inlvars,
|
|
bases: make(map[*src.PosBase]*src.PosBase),
|
|
newInlIndex: newIndex,
|
|
}
|
|
subst.edit = subst.node
|
|
|
|
body := subst.list(ir.AsNodes(fn.Inl.Body))
|
|
|
|
lab := nodSym(ir.OLABEL, nil, retlabel)
|
|
body = append(body, lab)
|
|
|
|
typecheckslice(body, ctxStmt)
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
for _, v := range inlfvars {
|
|
v.SetPos(subst.updatedPos(v.Pos()))
|
|
}
|
|
}
|
|
|
|
//dumplist("ninit post", ninit);
|
|
|
|
call := ir.Nod(ir.OINLCALL, nil, nil)
|
|
call.PtrInit().Set(ninit.Slice())
|
|
call.PtrBody().Set(body)
|
|
call.PtrRlist().Set(retvars)
|
|
call.SetType(n.Type())
|
|
call.SetTypecheck(1)
|
|
|
|
// transitive inlining
|
|
// might be nice to do this before exporting the body,
|
|
// but can't emit the body with inlining expanded.
|
|
// instead we emit the things that the body needs
|
|
// and each use must redo the inlining.
|
|
// luckily these are small.
|
|
ir.EditChildren(call, edit)
|
|
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("%v: After inlining %+v\n\n", ir.Line(call), call)
|
|
}
|
|
|
|
return call
|
|
}
|
|
|
|
// Every time we expand a function we generate a new set of tmpnames,
|
|
// PAUTO's in the calling functions, and link them off of the
|
|
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
|
|
func inlvar(var_ ir.Node) ir.Node {
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("inlvar %+v\n", var_)
|
|
}
|
|
|
|
n := NewName(var_.Sym())
|
|
n.SetType(var_.Type())
|
|
n.SetClass(ir.PAUTO)
|
|
n.SetUsed(true)
|
|
n.Curfn = Curfn // the calling function, not the called one
|
|
n.SetAddrtaken(var_.Name().Addrtaken())
|
|
|
|
Curfn.Dcl = append(Curfn.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// Synthesize a variable to store the inlined function's results in.
|
|
func retvar(t *types.Field, i int) ir.Node {
|
|
n := NewName(lookupN("~R", i))
|
|
n.SetType(t.Type)
|
|
n.SetClass(ir.PAUTO)
|
|
n.SetUsed(true)
|
|
n.Curfn = Curfn // the calling function, not the called one
|
|
Curfn.Dcl = append(Curfn.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// Synthesize a variable to store the inlined function's arguments
|
|
// when they come from a multiple return call.
|
|
func argvar(t *types.Type, i int) ir.Node {
|
|
n := NewName(lookupN("~arg", i))
|
|
n.SetType(t.Elem())
|
|
n.SetClass(ir.PAUTO)
|
|
n.SetUsed(true)
|
|
n.Curfn = Curfn // the calling function, not the called one
|
|
Curfn.Dcl = append(Curfn.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// The inlsubst type implements the actual inlining of a single
|
|
// function call.
|
|
type inlsubst struct {
|
|
// Target of the goto substituted in place of a return.
|
|
retlabel *types.Sym
|
|
|
|
// Temporary result variables.
|
|
retvars []ir.Node
|
|
|
|
// Whether result variables should be initialized at the
|
|
// "return" statement.
|
|
delayretvars bool
|
|
|
|
inlvars map[*ir.Name]ir.Node
|
|
|
|
// bases maps from original PosBase to PosBase with an extra
|
|
// inlined call frame.
|
|
bases map[*src.PosBase]*src.PosBase
|
|
|
|
// newInlIndex is the index of the inlined call frame to
|
|
// insert for inlined nodes.
|
|
newInlIndex int
|
|
|
|
edit func(ir.Node) ir.Node // cached copy of subst.node method value closure
|
|
}
|
|
|
|
// list inlines a list of nodes.
|
|
func (subst *inlsubst) list(ll ir.Nodes) []ir.Node {
|
|
s := make([]ir.Node, 0, ll.Len())
|
|
for _, n := range ll.Slice() {
|
|
s = append(s, subst.node(n))
|
|
}
|
|
return s
|
|
}
|
|
|
|
// node recursively copies a node from the saved pristine body of the
|
|
// inlined function, substituting references to input/output
|
|
// parameters with ones to the tmpnames, and substituting returns with
|
|
// assignments to the output.
|
|
func (subst *inlsubst) node(n ir.Node) ir.Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("substituting name %+v -> %+v\n", n, inlvar)
|
|
}
|
|
return inlvar
|
|
}
|
|
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("not substituting name %+v\n", n)
|
|
}
|
|
return n
|
|
|
|
case ir.OMETHEXPR:
|
|
return n
|
|
|
|
case ir.OLITERAL, ir.ONIL, ir.OTYPE:
|
|
// If n is a named constant or type, we can continue
|
|
// using it in the inline copy. Otherwise, make a copy
|
|
// so we can update the line number.
|
|
if n.Sym() != nil {
|
|
return n
|
|
}
|
|
|
|
// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function.
|
|
|
|
// dump("Return before substitution", n);
|
|
case ir.ORETURN:
|
|
init := subst.list(n.Init())
|
|
if len(subst.retvars) != 0 && n.List().Len() != 0 {
|
|
as := ir.Nod(ir.OAS2, nil, nil)
|
|
|
|
// Make a shallow copy of retvars.
|
|
// Otherwise OINLCALL.Rlist will be the same list,
|
|
// and later walk and typecheck may clobber it.
|
|
for _, n := range subst.retvars {
|
|
as.PtrList().Append(n)
|
|
}
|
|
as.PtrRlist().Set(subst.list(n.List()))
|
|
|
|
if subst.delayretvars {
|
|
for _, n := range as.List().Slice() {
|
|
as.PtrInit().Append(ir.Nod(ir.ODCL, n, nil))
|
|
n.Name().Defn = as
|
|
}
|
|
}
|
|
|
|
init = append(init, typecheck(as, ctxStmt))
|
|
}
|
|
init = append(init, nodSym(ir.OGOTO, nil, subst.retlabel))
|
|
typecheckslice(init, ctxStmt)
|
|
return ir.NewBlockStmt(base.Pos, init)
|
|
|
|
case ir.OGOTO:
|
|
m := ir.Copy(n).(*ir.BranchStmt)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
m.PtrInit().Set(nil)
|
|
p := fmt.Sprintf("%s·%d", n.Sym().Name, inlgen)
|
|
m.SetSym(lookup(p))
|
|
return m
|
|
|
|
case ir.OLABEL:
|
|
m := ir.Copy(n).(*ir.LabelStmt)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
m.PtrInit().Set(nil)
|
|
p := fmt.Sprintf("%s·%d", n.Sym().Name, inlgen)
|
|
m.SetSym(lookup(p))
|
|
return m
|
|
}
|
|
|
|
if n.Op() == ir.OCLOSURE {
|
|
base.Fatalf("cannot inline function containing closure: %+v", n)
|
|
}
|
|
|
|
m := ir.Copy(n)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
ir.EditChildren(m, subst.edit)
|
|
return m
|
|
}
|
|
|
|
func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
|
|
pos := base.Ctxt.PosTable.Pos(xpos)
|
|
oldbase := pos.Base() // can be nil
|
|
newbase := subst.bases[oldbase]
|
|
if newbase == nil {
|
|
newbase = src.NewInliningBase(oldbase, subst.newInlIndex)
|
|
subst.bases[oldbase] = newbase
|
|
}
|
|
pos.SetBase(newbase)
|
|
return base.Ctxt.PosTable.XPos(pos)
|
|
}
|
|
|
|
func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
|
|
s := make([]*ir.Name, 0, len(ll))
|
|
for _, n := range ll {
|
|
if n.Class() == ir.PAUTO {
|
|
if _, found := vis.usedLocals[n]; !found {
|
|
continue
|
|
}
|
|
}
|
|
s = append(s, n)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// devirtualize replaces interface method calls within fn with direct
|
|
// concrete-type method calls where applicable.
|
|
func devirtualize(fn *ir.Func) {
|
|
Curfn = fn
|
|
ir.VisitList(fn.Body(), func(n ir.Node) {
|
|
if n.Op() == ir.OCALLINTER {
|
|
devirtualizeCall(n.(*ir.CallExpr))
|
|
}
|
|
})
|
|
}
|
|
|
|
func devirtualizeCall(call *ir.CallExpr) {
|
|
sel := call.Left().(*ir.SelectorExpr)
|
|
r := staticValue(sel.Left())
|
|
if r.Op() != ir.OCONVIFACE {
|
|
return
|
|
}
|
|
recv := r.(*ir.ConvExpr)
|
|
|
|
typ := recv.Left().Type()
|
|
if typ.IsInterface() {
|
|
return
|
|
}
|
|
|
|
dt := ir.NodAt(sel.Pos(), ir.ODOTTYPE, sel.Left(), nil)
|
|
dt.SetType(typ)
|
|
x := typecheck(nodlSym(sel.Pos(), ir.OXDOT, dt, sel.Sym()), ctxExpr|ctxCallee)
|
|
switch x.Op() {
|
|
case ir.ODOTMETH:
|
|
if base.Flag.LowerM != 0 {
|
|
base.WarnfAt(call.Pos(), "devirtualizing %v to %v", sel, typ)
|
|
}
|
|
call.SetOp(ir.OCALLMETH)
|
|
call.SetLeft(x)
|
|
case ir.ODOTINTER:
|
|
// Promoted method from embedded interface-typed field (#42279).
|
|
if base.Flag.LowerM != 0 {
|
|
base.WarnfAt(call.Pos(), "partially devirtualizing %v to %v", sel, typ)
|
|
}
|
|
call.SetOp(ir.OCALLINTER)
|
|
call.SetLeft(x)
|
|
default:
|
|
// TODO(mdempsky): Turn back into Fatalf after more testing.
|
|
if base.Flag.LowerM != 0 {
|
|
base.WarnfAt(call.Pos(), "failed to devirtualize %v (%v)", x, x.Op())
|
|
}
|
|
return
|
|
}
|
|
|
|
// Duplicated logic from typecheck for function call return
|
|
// value types.
|
|
//
|
|
// Receiver parameter size may have changed; need to update
|
|
// call.Type to get correct stack offsets for result
|
|
// parameters.
|
|
checkwidth(x.Type())
|
|
switch ft := x.Type(); ft.NumResults() {
|
|
case 0:
|
|
case 1:
|
|
call.SetType(ft.Results().Field(0).Type)
|
|
default:
|
|
call.SetType(ft.Results())
|
|
}
|
|
}
|