go/src/cmd/compile/internal/gc/sinit.go
Martin Möhrmann 098126103e cmd/compile: preserve escape information for map literals
While some map literals were marked non-escaping that information
was lost when creating the corresponding OMAKE node which made map
literals always heap allocated.

Copying the escape information to the corresponding OMAKE node allows
stack allocation of hmap and a map bucket for non escaping map literals.

Fixes #21830

Change-Id: Ife0b020fffbc513f1ac009352f2ecb110d6889c9
Reviewed-on: https://go-review.googlesource.com/62790
Run-TryBot: Martin Möhrmann <moehrmann@google.com>
Reviewed-by: Daniel Martí <mvdan@mvdan.cc>
Reviewed-by: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2017-09-11 05:54:46 +00:00

1370 lines
30 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/types"
"fmt"
)
// Static initialization ordering state.
// These values are stored in two bits in Node.flags.
const (
InitNotStarted = iota
InitDone
InitPending
)
type InitEntry struct {
Xoffset int64 // struct, array only
Expr *Node // bytes of run-time computed expressions
}
type InitPlan struct {
E []InitEntry
}
var (
initlist []*Node
initplans map[*Node]*InitPlan
inittemps = make(map[*Node]*Node)
)
// init1 walks the AST starting at n, and accumulates in out
// the list of definitions needing init code in dependency order.
func init1(n *Node, out *[]*Node) {
if n == nil {
return
}
init1(n.Left, out)
init1(n.Right, out)
for _, n1 := range n.List.Slice() {
init1(n1, out)
}
if n.Left != nil && n.Type != nil && n.Left.Op == OTYPE && n.Class() == PFUNC {
// Methods called as Type.Method(receiver, ...).
// Definitions for method expressions are stored in type->nname.
init1(asNode(n.Type.FuncType().Nname), out)
}
if n.Op != ONAME {
return
}
switch n.Class() {
case PEXTERN, PFUNC:
default:
if isblank(n) && n.Name.Curfn == nil && n.Name.Defn != nil && n.Name.Defn.Initorder() == InitNotStarted {
// blank names initialization is part of init() but not
// when they are inside a function.
break
}
return
}
if n.Initorder() == InitDone {
return
}
if n.Initorder() == InitPending {
// Since mutually recursive sets of functions are allowed,
// we don't necessarily raise an error if n depends on a node
// which is already waiting for its dependencies to be visited.
//
// initlist contains a cycle of identifiers referring to each other.
// If this cycle contains a variable, then this variable refers to itself.
// Conversely, if there exists an initialization cycle involving
// a variable in the program, the tree walk will reach a cycle
// involving that variable.
if n.Class() != PFUNC {
foundinitloop(n, n)
}
for i := len(initlist) - 1; i >= 0; i-- {
x := initlist[i]
if x == n {
break
}
if x.Class() != PFUNC {
foundinitloop(n, x)
}
}
// The loop involves only functions, ok.
return
}
// reached a new unvisited node.
n.SetInitorder(InitPending)
initlist = append(initlist, n)
// make sure that everything n depends on is initialized.
// n->defn is an assignment to n
if defn := n.Name.Defn; defn != nil {
switch defn.Op {
default:
Dump("defn", defn)
Fatalf("init1: bad defn")
case ODCLFUNC:
init2list(defn.Nbody, out)
case OAS:
if defn.Left != n {
Dump("defn", defn)
Fatalf("init1: bad defn")
}
if isblank(defn.Left) && candiscard(defn.Right) {
defn.Op = OEMPTY
defn.Left = nil
defn.Right = nil
break
}
init2(defn.Right, out)
if Debug['j'] != 0 {
fmt.Printf("%v\n", n.Sym)
}
if isblank(n) || !staticinit(n, out) {
if Debug['%'] != 0 {
Dump("nonstatic", defn)
}
*out = append(*out, defn)
}
case OAS2FUNC, OAS2MAPR, OAS2DOTTYPE, OAS2RECV:
if defn.Initorder() == InitDone {
break
}
defn.SetInitorder(InitPending)
for _, n2 := range defn.Rlist.Slice() {
init1(n2, out)
}
if Debug['%'] != 0 {
Dump("nonstatic", defn)
}
*out = append(*out, defn)
defn.SetInitorder(InitDone)
}
}
last := len(initlist) - 1
if initlist[last] != n {
Fatalf("bad initlist %v", initlist)
}
initlist[last] = nil // allow GC
initlist = initlist[:last]
n.SetInitorder(InitDone)
return
}
// foundinitloop prints an init loop error and exits.
func foundinitloop(node, visited *Node) {
// If there have already been errors printed,
// those errors probably confused us and
// there might not be a loop. Let the user
// fix those first.
flusherrors()
if nerrors > 0 {
errorexit()
}
// Find the index of node and visited in the initlist.
var nodeindex, visitedindex int
for ; initlist[nodeindex] != node; nodeindex++ {
}
for ; initlist[visitedindex] != visited; visitedindex++ {
}
// There is a loop involving visited. We know about node and
// initlist = n1 <- ... <- visited <- ... <- node <- ...
fmt.Printf("%v: initialization loop:\n", visited.Line())
// Print visited -> ... -> n1 -> node.
for _, n := range initlist[visitedindex:] {
fmt.Printf("\t%v %v refers to\n", n.Line(), n.Sym)
}
// Print node -> ... -> visited.
for _, n := range initlist[nodeindex:visitedindex] {
fmt.Printf("\t%v %v refers to\n", n.Line(), n.Sym)
}
fmt.Printf("\t%v %v\n", visited.Line(), visited.Sym)
errorexit()
}
// recurse over n, doing init1 everywhere.
func init2(n *Node, out *[]*Node) {
if n == nil || n.Initorder() == InitDone {
return
}
if n.Op == ONAME && n.Ninit.Len() != 0 {
Fatalf("name %v with ninit: %+v\n", n.Sym, n)
}
init1(n, out)
init2(n.Left, out)
init2(n.Right, out)
init2list(n.Ninit, out)
init2list(n.List, out)
init2list(n.Rlist, out)
init2list(n.Nbody, out)
if n.Op == OCLOSURE {
init2list(n.Func.Closure.Nbody, out)
}
if n.Op == ODOTMETH || n.Op == OCALLPART {
init2(asNode(n.Type.FuncType().Nname), out)
}
}
func init2list(l Nodes, out *[]*Node) {
for _, n := range l.Slice() {
init2(n, out)
}
}
func initreorder(l []*Node, out *[]*Node) {
var n *Node
for _, n = range l {
switch n.Op {
case ODCLFUNC, ODCLCONST, ODCLTYPE:
continue
}
initreorder(n.Ninit.Slice(), out)
n.Ninit.Set(nil)
init1(n, out)
}
}
// initfix computes initialization order for a list l of top-level
// declarations and outputs the corresponding list of statements
// to include in the init() function body.
func initfix(l []*Node) []*Node {
var lout []*Node
initplans = make(map[*Node]*InitPlan)
lno := lineno
initreorder(l, &lout)
lineno = lno
initplans = nil
return lout
}
// compilation of top-level (static) assignments
// into DATA statements if at all possible.
func staticinit(n *Node, out *[]*Node) bool {
if n.Op != ONAME || n.Class() != PEXTERN || n.Name.Defn == nil || n.Name.Defn.Op != OAS {
Fatalf("staticinit")
}
lineno = n.Pos
l := n.Name.Defn.Left
r := n.Name.Defn.Right
return staticassign(l, r, out)
}
// like staticassign but we are copying an already
// initialized value r.
func staticcopy(l *Node, r *Node, out *[]*Node) bool {
if r.Op != ONAME {
return false
}
if r.Class() == PFUNC {
gdata(l, r, Widthptr)
return true
}
if r.Class() != PEXTERN || r.Sym.Pkg != localpkg {
return false
}
if r.Name.Defn == nil { // probably zeroed but perhaps supplied externally and of unknown value
return false
}
if r.Name.Defn.Op != OAS {
return false
}
orig := r
r = r.Name.Defn.Right
for r.Op == OCONVNOP && !eqtype(r.Type, l.Type) {
r = r.Left
}
switch r.Op {
case ONAME:
if staticcopy(l, r, out) {
return true
}
// We may have skipped past one or more OCONVNOPs, so
// use conv to ensure r is assignable to l (#13263).
*out = append(*out, nod(OAS, l, conv(r, l.Type)))
return true
case OLITERAL:
if iszero(r) {
return true
}
gdata(l, r, int(l.Type.Width))
return true
case OADDR:
switch r.Left.Op {
case ONAME:
gdata(l, r, int(l.Type.Width))
return true
}
case OPTRLIT:
switch r.Left.Op {
case OARRAYLIT, OSLICELIT, OSTRUCTLIT, OMAPLIT:
// copy pointer
gdata(l, nod(OADDR, inittemps[r], nil), int(l.Type.Width))
return true
}
case OSLICELIT:
// copy slice
a := inittemps[r]
n := *l
n.Xoffset = l.Xoffset + int64(array_array)
gdata(&n, nod(OADDR, a, nil), Widthptr)
n.Xoffset = l.Xoffset + int64(array_nel)
gdata(&n, r.Right, Widthptr)
n.Xoffset = l.Xoffset + int64(array_cap)
gdata(&n, r.Right, Widthptr)
return true
case OARRAYLIT, OSTRUCTLIT:
p := initplans[r]
n := *l
for i := range p.E {
e := &p.E[i]
n.Xoffset = l.Xoffset + e.Xoffset
n.Type = e.Expr.Type
if e.Expr.Op == OLITERAL {
gdata(&n, e.Expr, int(n.Type.Width))
} else {
ll := nod(OXXX, nil, nil)
*ll = n
ll.Orig = ll // completely separate copy
if !staticassign(ll, e.Expr, out) {
// Requires computation, but we're
// copying someone else's computation.
rr := nod(OXXX, nil, nil)
*rr = *orig
rr.Orig = rr // completely separate copy
rr.Type = ll.Type
rr.Xoffset += e.Xoffset
setlineno(rr)
*out = append(*out, nod(OAS, ll, rr))
}
}
}
return true
}
return false
}
func staticassign(l *Node, r *Node, out *[]*Node) bool {
for r.Op == OCONVNOP {
r = r.Left
}
switch r.Op {
case ONAME:
return staticcopy(l, r, out)
case OLITERAL:
if iszero(r) {
return true
}
gdata(l, r, int(l.Type.Width))
return true
case OADDR:
var nam Node
if stataddr(&nam, r.Left) {
n := *r
n.Left = &nam
gdata(l, &n, int(l.Type.Width))
return true
}
fallthrough
case OPTRLIT:
switch r.Left.Op {
case OARRAYLIT, OSLICELIT, OMAPLIT, OSTRUCTLIT:
// Init pointer.
a := staticname(r.Left.Type)
inittemps[r] = a
gdata(l, nod(OADDR, a, nil), int(l.Type.Width))
// Init underlying literal.
if !staticassign(a, r.Left, out) {
*out = append(*out, nod(OAS, a, r.Left))
}
return true
}
//dump("not static ptrlit", r);
case OSTRARRAYBYTE:
if l.Class() == PEXTERN && r.Left.Op == OLITERAL {
sval := r.Left.Val().U.(string)
slicebytes(l, sval, len(sval))
return true
}
case OSLICELIT:
initplan(r)
// Init slice.
bound := r.Right.Int64()
ta := types.NewArray(r.Type.Elem(), bound)
a := staticname(ta)
inittemps[r] = a
n := *l
n.Xoffset = l.Xoffset + int64(array_array)
gdata(&n, nod(OADDR, a, nil), Widthptr)
n.Xoffset = l.Xoffset + int64(array_nel)
gdata(&n, r.Right, Widthptr)
n.Xoffset = l.Xoffset + int64(array_cap)
gdata(&n, r.Right, Widthptr)
// Fall through to init underlying array.
l = a
fallthrough
case OARRAYLIT, OSTRUCTLIT:
initplan(r)
p := initplans[r]
n := *l
for i := range p.E {
e := &p.E[i]
n.Xoffset = l.Xoffset + e.Xoffset
n.Type = e.Expr.Type
if e.Expr.Op == OLITERAL {
gdata(&n, e.Expr, int(n.Type.Width))
} else {
setlineno(e.Expr)
a := nod(OXXX, nil, nil)
*a = n
a.Orig = a // completely separate copy
if !staticassign(a, e.Expr, out) {
*out = append(*out, nod(OAS, a, e.Expr))
}
}
}
return true
case OMAPLIT:
break
case OCLOSURE:
if hasemptycvars(r) {
if Debug_closure > 0 {
Warnl(r.Pos, "closure converted to global")
}
// Closures with no captured variables are globals,
// so the assignment can be done at link time.
n := *l
gdata(&n, r.Func.Closure.Func.Nname, Widthptr)
return true
}
closuredebugruntimecheck(r)
case OCONVIFACE:
// This logic is mirrored in isStaticCompositeLiteral.
// If you change something here, change it there, and vice versa.
// Determine the underlying concrete type and value we are converting from.
val := r
for val.Op == OCONVIFACE {
val = val.Left
}
if val.Type.IsInterface() {
// val is an interface type.
// If val is nil, we can statically initialize l;
// both words are zero and so there no work to do, so report success.
// If val is non-nil, we have no concrete type to record,
// and we won't be able to statically initialize its value, so report failure.
return Isconst(val, CTNIL)
}
var itab *Node
if l.Type.IsEmptyInterface() {
itab = typename(val.Type)
} else {
itab = itabname(val.Type, l.Type)
}
// Create a copy of l to modify while we emit data.
n := *l
// Emit itab, advance offset.
gdata(&n, itab, Widthptr)
n.Xoffset += int64(Widthptr)
// Emit data.
if isdirectiface(val.Type) {
if Isconst(val, CTNIL) {
// Nil is zero, nothing to do.
return true
}
// Copy val directly into n.
n.Type = val.Type
setlineno(val)
a := nod(OXXX, nil, nil)
*a = n
a.Orig = a
if !staticassign(a, val, out) {
*out = append(*out, nod(OAS, a, val))
}
} else {
// Construct temp to hold val, write pointer to temp into n.
a := staticname(val.Type)
inittemps[val] = a
if !staticassign(a, val, out) {
*out = append(*out, nod(OAS, a, val))
}
ptr := nod(OADDR, a, nil)
n.Type = types.NewPtr(val.Type)
gdata(&n, ptr, Widthptr)
}
return true
}
//dump("not static", r);
return false
}
// initContext is the context in which static data is populated.
// It is either in an init function or in any other function.
// Static data populated in an init function will be written either
// zero times (as a readonly, static data symbol) or
// one time (during init function execution).
// Either way, there is no opportunity for races or further modification,
// so the data can be written to a (possibly readonly) data symbol.
// Static data populated in any other function needs to be local to
// that function to allow multiple instances of that function
// to execute concurrently without clobbering each others' data.
type initContext uint8
const (
inInitFunction initContext = iota
inNonInitFunction
)
// from here down is the walk analysis
// of composite literals.
// most of the work is to generate
// data statements for the constant
// part of the composite literal.
var statuniqgen int // name generator for static temps
// staticname returns a name backed by a static data symbol.
// Callers should call n.Name.SetReadonly(true) on the
// returned node for readonly nodes.
func staticname(t *types.Type) *Node {
// Don't use lookupN; it interns the resulting string, but these are all unique.
n := newname(lookup(fmt.Sprintf("statictmp_%d", statuniqgen)))
statuniqgen++
addvar(n, t, PEXTERN)
return n
}
func isliteral(n *Node) bool {
// Treat nils as zeros rather than literals.
return n.Op == OLITERAL && n.Val().Ctype() != CTNIL
}
func (n *Node) isSimpleName() bool {
return n.Op == ONAME && n.Addable() && n.Class() != PAUTOHEAP && n.Class() != PEXTERN
}
func litas(l *Node, r *Node, init *Nodes) {
a := nod(OAS, l, r)
a = typecheck(a, Etop)
a = walkexpr(a, init)
init.Append(a)
}
// initGenType is a bitmap indicating the types of generation that will occur for a static value.
type initGenType uint8
const (
initDynamic initGenType = 1 << iota // contains some dynamic values, for which init code will be generated
initConst // contains some constant values, which may be written into data symbols
)
// getdyn calculates the initGenType for n.
// If top is false, getdyn is recursing.
func getdyn(n *Node, top bool) initGenType {
switch n.Op {
default:
if isliteral(n) {
return initConst
}
return initDynamic
case OSLICELIT:
if !top {
return initDynamic
}
case OARRAYLIT, OSTRUCTLIT:
}
var mode initGenType
for _, n1 := range n.List.Slice() {
switch n1.Op {
case OKEY:
n1 = n1.Right
case OSTRUCTKEY:
n1 = n1.Left
}
mode |= getdyn(n1, false)
if mode == initDynamic|initConst {
break
}
}
return mode
}
// isStaticCompositeLiteral reports whether n is a compile-time constant.
func isStaticCompositeLiteral(n *Node) bool {
switch n.Op {
case OSLICELIT:
return false
case OARRAYLIT:
for _, r := range n.List.Slice() {
if r.Op == OKEY {
r = r.Right
}
if !isStaticCompositeLiteral(r) {
return false
}
}
return true
case OSTRUCTLIT:
for _, r := range n.List.Slice() {
if r.Op != OSTRUCTKEY {
Fatalf("isStaticCompositeLiteral: rhs not OSTRUCTKEY: %v", r)
}
if !isStaticCompositeLiteral(r.Left) {
return false
}
}
return true
case OLITERAL:
return true
case OCONVIFACE:
// See staticassign's OCONVIFACE case for comments.
val := n
for val.Op == OCONVIFACE {
val = val.Left
}
if val.Type.IsInterface() {
return Isconst(val, CTNIL)
}
if isdirectiface(val.Type) && Isconst(val, CTNIL) {
return true
}
return isStaticCompositeLiteral(val)
}
return false
}
// initKind is a kind of static initialization: static, dynamic, or local.
// Static initialization represents literals and
// literal components of composite literals.
// Dynamic initialization represents non-literals and
// non-literal components of composite literals.
// LocalCode initializion represents initialization
// that occurs purely in generated code local to the function of use.
// Initialization code is sometimes generated in passes,
// first static then dynamic.
type initKind uint8
const (
initKindStatic initKind = iota + 1
initKindDynamic
initKindLocalCode
)
// fixedlit handles struct, array, and slice literals.
// TODO: expand documentation.
func fixedlit(ctxt initContext, kind initKind, n *Node, var_ *Node, init *Nodes) {
var splitnode func(*Node) (a *Node, value *Node)
switch n.Op {
case OARRAYLIT, OSLICELIT:
var k int64
splitnode = func(r *Node) (*Node, *Node) {
if r.Op == OKEY {
k = nonnegintconst(r.Left)
r = r.Right
}
a := nod(OINDEX, var_, nodintconst(k))
k++
return a, r
}
case OSTRUCTLIT:
splitnode = func(r *Node) (*Node, *Node) {
if r.Op != OSTRUCTKEY {
Fatalf("fixedlit: rhs not OSTRUCTKEY: %v", r)
}
if r.Sym.IsBlank() {
return nblank, r.Left
}
return nodSym(ODOT, var_, r.Sym), r.Left
}
default:
Fatalf("fixedlit bad op: %v", n.Op)
}
for _, r := range n.List.Slice() {
a, value := splitnode(r)
switch value.Op {
case OSLICELIT:
if (kind == initKindStatic && ctxt == inNonInitFunction) || (kind == initKindDynamic && ctxt == inInitFunction) {
slicelit(ctxt, value, a, init)
continue
}
case OARRAYLIT, OSTRUCTLIT:
fixedlit(ctxt, kind, value, a, init)
continue
}
islit := isliteral(value)
if (kind == initKindStatic && !islit) || (kind == initKindDynamic && islit) {
continue
}
// build list of assignments: var[index] = expr
setlineno(value)
a = nod(OAS, a, value)
a = typecheck(a, Etop)
switch kind {
case initKindStatic:
genAsStatic(a)
case initKindDynamic, initKindLocalCode:
a = orderstmtinplace(a)
a = walkstmt(a)
init.Append(a)
default:
Fatalf("fixedlit: bad kind %d", kind)
}
}
}
func slicelit(ctxt initContext, n *Node, var_ *Node, init *Nodes) {
// make an array type corresponding the number of elements we have
t := types.NewArray(n.Type.Elem(), n.Right.Int64())
dowidth(t)
if ctxt == inNonInitFunction {
// put everything into static array
vstat := staticname(t)
fixedlit(ctxt, initKindStatic, n, vstat, init)
fixedlit(ctxt, initKindDynamic, n, vstat, init)
// copy static to slice
var_ = typecheck(var_, Erv|Easgn)
var nam Node
if !stataddr(&nam, var_) || nam.Class() != PEXTERN {
Fatalf("slicelit: %v", var_)
}
var v Node
nodconst(&v, types.Types[TINT], t.NumElem())
nam.Xoffset += int64(array_array)
gdata(&nam, nod(OADDR, vstat, nil), Widthptr)
nam.Xoffset += int64(array_nel) - int64(array_array)
gdata(&nam, &v, Widthptr)
nam.Xoffset += int64(array_cap) - int64(array_nel)
gdata(&nam, &v, Widthptr)
return
}
// recipe for var = []t{...}
// 1. make a static array
// var vstat [...]t
// 2. assign (data statements) the constant part
// vstat = constpart{}
// 3. make an auto pointer to array and allocate heap to it
// var vauto *[...]t = new([...]t)
// 4. copy the static array to the auto array
// *vauto = vstat
// 5. for each dynamic part assign to the array
// vauto[i] = dynamic part
// 6. assign slice of allocated heap to var
// var = vauto[:]
//
// an optimization is done if there is no constant part
// 3. var vauto *[...]t = new([...]t)
// 5. vauto[i] = dynamic part
// 6. var = vauto[:]
// if the literal contains constants,
// make static initialized array (1),(2)
var vstat *Node
mode := getdyn(n, true)
if mode&initConst != 0 {
vstat = staticname(t)
if ctxt == inInitFunction {
vstat.Name.SetReadonly(true)
}
fixedlit(ctxt, initKindStatic, n, vstat, init)
}
// make new auto *array (3 declare)
vauto := temp(types.NewPtr(t))
// set auto to point at new temp or heap (3 assign)
var a *Node
if x := prealloc[n]; x != nil {
// temp allocated during order.go for dddarg
x.Type = t
if vstat == nil {
a = nod(OAS, x, nil)
a = typecheck(a, Etop)
init.Append(a) // zero new temp
}
a = nod(OADDR, x, nil)
} else if n.Esc == EscNone {
a = temp(t)
if vstat == nil {
a = nod(OAS, temp(t), nil)
a = typecheck(a, Etop)
init.Append(a) // zero new temp
a = a.Left
}
a = nod(OADDR, a, nil)
} else {
a = nod(ONEW, nil, nil)
a.List.Set1(typenod(t))
}
a = nod(OAS, vauto, a)
a = typecheck(a, Etop)
a = walkexpr(a, init)
init.Append(a)
if vstat != nil {
// copy static to heap (4)
a = nod(OIND, vauto, nil)
a = nod(OAS, a, vstat)
a = typecheck(a, Etop)
a = walkexpr(a, init)
init.Append(a)
}
// put dynamics into array (5)
var index int64
for _, r := range n.List.Slice() {
value := r
if r.Op == OKEY {
index = nonnegintconst(r.Left)
value = r.Right
}
a := nod(OINDEX, vauto, nodintconst(index))
a.SetBounded(true)
index++
// TODO need to check bounds?
switch value.Op {
case OSLICELIT:
break
case OARRAYLIT, OSTRUCTLIT:
fixedlit(ctxt, initKindDynamic, value, a, init)
continue
}
if isliteral(value) {
continue
}
// build list of vauto[c] = expr
setlineno(value)
a = nod(OAS, a, value)
a = typecheck(a, Etop)
a = orderstmtinplace(a)
a = walkstmt(a)
init.Append(a)
}
// make slice out of heap (6)
a = nod(OAS, var_, nod(OSLICE, vauto, nil))
a = typecheck(a, Etop)
a = orderstmtinplace(a)
a = walkstmt(a)
init.Append(a)
}
func maplit(n *Node, m *Node, init *Nodes) {
// make the map var
a := nod(OMAKE, nil, nil)
a.Esc = n.Esc
a.List.Set2(typenod(n.Type), nodintconst(int64(n.List.Len())))
litas(m, a, init)
// Split the initializers into static and dynamic.
var stat, dyn []*Node
for _, r := range n.List.Slice() {
if r.Op != OKEY {
Fatalf("maplit: rhs not OKEY: %v", r)
}
if isliteral(r.Left) && isliteral(r.Right) {
stat = append(stat, r)
} else {
dyn = append(dyn, r)
}
}
// Add static entries.
if len(stat) > 25 {
// For a large number of static entries, put them in an array and loop.
// build types [count]Tindex and [count]Tvalue
tk := types.NewArray(n.Type.Key(), int64(len(stat)))
tv := types.NewArray(n.Type.Val(), int64(len(stat)))
// TODO(josharian): suppress alg generation for these types?
dowidth(tk)
dowidth(tv)
// make and initialize static arrays
vstatk := staticname(tk)
vstatk.Name.SetReadonly(true)
vstatv := staticname(tv)
vstatv.Name.SetReadonly(true)
for i, r := range stat {
index := r.Left
value := r.Right
// build vstatk[b] = index
setlineno(index)
lhs := nod(OINDEX, vstatk, nodintconst(int64(i)))
as := nod(OAS, lhs, index)
as = typecheck(as, Etop)
genAsStatic(as)
// build vstatv[b] = value
setlineno(value)
lhs = nod(OINDEX, vstatv, nodintconst(int64(i)))
as = nod(OAS, lhs, value)
as = typecheck(as, Etop)
genAsStatic(as)
}
// loop adding structure elements to map
// for i = 0; i < len(vstatk); i++ {
// map[vstatk[i]] = vstatv[i]
// }
i := temp(types.Types[TINT])
rhs := nod(OINDEX, vstatv, i)
rhs.SetBounded(true)
kidx := nod(OINDEX, vstatk, i)
kidx.SetBounded(true)
lhs := nod(OINDEX, m, kidx)
zero := nod(OAS, i, nodintconst(0))
cond := nod(OLT, i, nodintconst(tk.NumElem()))
incr := nod(OAS, i, nod(OADD, i, nodintconst(1)))
body := nod(OAS, lhs, rhs)
loop := nod(OFOR, cond, incr)
loop.Nbody.Set1(body)
loop.Ninit.Set1(zero)
loop = typecheck(loop, Etop)
loop = walkstmt(loop)
init.Append(loop)
} else {
// For a small number of static entries, just add them directly.
addMapEntries(m, stat, init)
}
// Add dynamic entries.
addMapEntries(m, dyn, init)
}
func addMapEntries(m *Node, dyn []*Node, init *Nodes) {
if len(dyn) == 0 {
return
}
nerr := nerrors
// Build list of var[c] = expr.
// Use temporaries so that mapassign1 can have addressable key, val.
// TODO(josharian): avoid map key temporaries for mapfast_* assignments with literal keys.
key := temp(m.Type.Key())
val := temp(m.Type.Val())
for _, r := range dyn {
index, value := r.Left, r.Right
setlineno(index)
a := nod(OAS, key, index)
a = typecheck(a, Etop)
a = walkstmt(a)
init.Append(a)
setlineno(value)
a = nod(OAS, val, value)
a = typecheck(a, Etop)
a = walkstmt(a)
init.Append(a)
setlineno(val)
a = nod(OAS, nod(OINDEX, m, key), val)
a = typecheck(a, Etop)
a = walkstmt(a)
init.Append(a)
if nerr != nerrors {
break
}
}
a := nod(OVARKILL, key, nil)
a = typecheck(a, Etop)
init.Append(a)
a = nod(OVARKILL, val, nil)
a = typecheck(a, Etop)
init.Append(a)
}
func anylit(n *Node, var_ *Node, init *Nodes) {
t := n.Type
switch n.Op {
default:
Fatalf("anylit: not lit, op=%v node=%v", n.Op, n)
case OPTRLIT:
if !t.IsPtr() {
Fatalf("anylit: not ptr")
}
var r *Node
if n.Right != nil {
// n.Right is stack temporary used as backing store.
init.Append(nod(OAS, n.Right, nil)) // zero backing store, just in case (#18410)
r = nod(OADDR, n.Right, nil)
r = typecheck(r, Erv)
} else {
r = nod(ONEW, nil, nil)
r.SetTypecheck(1)
r.Type = t
r.Esc = n.Esc
}
r = walkexpr(r, init)
a := nod(OAS, var_, r)
a = typecheck(a, Etop)
init.Append(a)
var_ = nod(OIND, var_, nil)
var_ = typecheck(var_, Erv|Easgn)
anylit(n.Left, var_, init)
case OSTRUCTLIT, OARRAYLIT:
if !t.IsStruct() && !t.IsArray() {
Fatalf("anylit: not struct/array")
}
if var_.isSimpleName() && n.List.Len() > 4 {
// lay out static data
vstat := staticname(t)
vstat.Name.SetReadonly(true)
ctxt := inInitFunction
if n.Op == OARRAYLIT {
ctxt = inNonInitFunction
}
fixedlit(ctxt, initKindStatic, n, vstat, init)
// copy static to var
a := nod(OAS, var_, vstat)
a = typecheck(a, Etop)
a = walkexpr(a, init)
init.Append(a)
// add expressions to automatic
fixedlit(inInitFunction, initKindDynamic, n, var_, init)
break
}
var components int64
if n.Op == OARRAYLIT {
components = t.NumElem()
} else {
components = int64(t.NumFields())
}
// initialization of an array or struct with unspecified components (missing fields or arrays)
if var_.isSimpleName() || int64(n.List.Len()) < components {
a := nod(OAS, var_, nil)
a = typecheck(a, Etop)
a = walkexpr(a, init)
init.Append(a)
}
fixedlit(inInitFunction, initKindLocalCode, n, var_, init)
case OSLICELIT:
slicelit(inInitFunction, n, var_, init)
case OMAPLIT:
if !t.IsMap() {
Fatalf("anylit: not map")
}
maplit(n, var_, init)
}
}
func oaslit(n *Node, init *Nodes) bool {
if n.Left == nil || n.Right == nil {
// not a special composite literal assignment
return false
}
if n.Left.Type == nil || n.Right.Type == nil {
// not a special composite literal assignment
return false
}
if !n.Left.isSimpleName() {
// not a special composite literal assignment
return false
}
if !eqtype(n.Left.Type, n.Right.Type) {
// not a special composite literal assignment
return false
}
switch n.Right.Op {
default:
// not a special composite literal assignment
return false
case OSTRUCTLIT, OARRAYLIT, OSLICELIT, OMAPLIT:
if vmatch1(n.Left, n.Right) {
// not a special composite literal assignment
return false
}
anylit(n.Right, n.Left, init)
}
n.Op = OEMPTY
n.Right = nil
return true
}
func getlit(lit *Node) int {
if smallintconst(lit) {
return int(lit.Int64())
}
return -1
}
// stataddr sets nam to the static address of n and reports whether it succeeded.
func stataddr(nam *Node, n *Node) bool {
if n == nil {
return false
}
switch n.Op {
case ONAME:
*nam = *n
return n.Addable()
case ODOT:
if !stataddr(nam, n.Left) {
break
}
nam.Xoffset += n.Xoffset
nam.Type = n.Type
return true
case OINDEX:
if n.Left.Type.IsSlice() {
break
}
if !stataddr(nam, n.Left) {
break
}
l := getlit(n.Right)
if l < 0 {
break
}
// Check for overflow.
if n.Type.Width != 0 && thearch.MAXWIDTH/n.Type.Width <= int64(l) {
break
}
nam.Xoffset += int64(l) * n.Type.Width
nam.Type = n.Type
return true
}
return false
}
func initplan(n *Node) {
if initplans[n] != nil {
return
}
p := new(InitPlan)
initplans[n] = p
switch n.Op {
default:
Fatalf("initplan")
case OARRAYLIT, OSLICELIT:
var k int64
for _, a := range n.List.Slice() {
if a.Op == OKEY {
k = nonnegintconst(a.Left)
a = a.Right
}
addvalue(p, k*n.Type.Elem().Width, a)
k++
}
case OSTRUCTLIT:
for _, a := range n.List.Slice() {
if a.Op != OSTRUCTKEY {
Fatalf("initplan fixedlit")
}
addvalue(p, a.Xoffset, a.Left)
}
case OMAPLIT:
for _, a := range n.List.Slice() {
if a.Op != OKEY {
Fatalf("initplan maplit")
}
addvalue(p, -1, a.Right)
}
}
}
func addvalue(p *InitPlan, xoffset int64, n *Node) {
// special case: zero can be dropped entirely
if iszero(n) {
return
}
// special case: inline struct and array (not slice) literals
if isvaluelit(n) {
initplan(n)
q := initplans[n]
for _, qe := range q.E {
// qe is a copy; we are not modifying entries in q.E
qe.Xoffset += xoffset
p.E = append(p.E, qe)
}
return
}
// add to plan
p.E = append(p.E, InitEntry{Xoffset: xoffset, Expr: n})
}
func iszero(n *Node) bool {
switch n.Op {
case OLITERAL:
switch u := n.Val().U.(type) {
default:
Dump("unexpected literal", n)
Fatalf("iszero")
case *NilVal:
return true
case string:
return u == ""
case bool:
return !u
case *Mpint:
return u.CmpInt64(0) == 0
case *Mpflt:
return u.CmpFloat64(0) == 0
case *Mpcplx:
return u.Real.CmpFloat64(0) == 0 && u.Imag.CmpFloat64(0) == 0
}
case OARRAYLIT:
for _, n1 := range n.List.Slice() {
if n1.Op == OKEY {
n1 = n1.Right
}
if !iszero(n1) {
return false
}
}
return true
case OSTRUCTLIT:
for _, n1 := range n.List.Slice() {
if !iszero(n1.Left) {
return false
}
}
return true
}
return false
}
func isvaluelit(n *Node) bool {
return n.Op == OARRAYLIT || n.Op == OSTRUCTLIT
}
func genAsStatic(as *Node) {
if as.Left.Type == nil {
Fatalf("genAsStatic as.Left not typechecked")
}
var nam Node
if !stataddr(&nam, as.Left) || (nam.Class() != PEXTERN && as.Left != nblank) {
Fatalf("genAsStatic: lhs %v", as.Left)
}
switch {
case as.Right.Op == OLITERAL:
case as.Right.Op == ONAME && as.Right.Class() == PFUNC:
default:
Fatalf("genAsStatic: rhs %v", as.Right)
}
gdata(&nam, as.Right, int(as.Right.Type.Width))
}