mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Change-Id: I69065f8adf101fdb28682c55997f503013a50e29 Reviewed-on: https://go-review.googlesource.com/c/go/+/449757 Auto-Submit: Ian Lance Taylor <iant@google.com> Reviewed-by: Joedian Reid <joedian@golang.org> Reviewed-by: Keith Randall <khr@google.com> Reviewed-by: Keith Randall <khr@golang.org> TryBot-Result: Gopher Robot <gobot@golang.org> Run-TryBot: Joedian Reid <joedian@golang.org> Run-TryBot: Ian Lance Taylor <iant@google.com> Reviewed-by: Ian Lance Taylor <iant@google.com>
242 lines
8.1 KiB
Go
242 lines
8.1 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssa
|
|
|
|
import (
|
|
"fmt"
|
|
"strings"
|
|
)
|
|
|
|
type SparseTreeNode struct {
|
|
child *Block
|
|
sibling *Block
|
|
parent *Block
|
|
|
|
// Every block has 6 numbers associated with it:
|
|
// entry-1, entry, entry+1, exit-1, and exit, exit+1.
|
|
// entry and exit are conceptually the top of the block (phi functions)
|
|
// entry+1 and exit-1 are conceptually the bottom of the block (ordinary defs)
|
|
// entry-1 and exit+1 are conceptually "just before" the block (conditions flowing in)
|
|
//
|
|
// This simplifies life if we wish to query information about x
|
|
// when x is both an input to and output of a block.
|
|
entry, exit int32
|
|
}
|
|
|
|
func (s *SparseTreeNode) String() string {
|
|
return fmt.Sprintf("[%d,%d]", s.entry, s.exit)
|
|
}
|
|
|
|
func (s *SparseTreeNode) Entry() int32 {
|
|
return s.entry
|
|
}
|
|
|
|
func (s *SparseTreeNode) Exit() int32 {
|
|
return s.exit
|
|
}
|
|
|
|
const (
|
|
// When used to lookup up definitions in a sparse tree,
|
|
// these adjustments to a block's entry (+adjust) and
|
|
// exit (-adjust) numbers allow a distinction to be made
|
|
// between assignments (typically branch-dependent
|
|
// conditionals) occurring "before" the block (e.g., as inputs
|
|
// to the block and its phi functions), "within" the block,
|
|
// and "after" the block.
|
|
AdjustBefore = -1 // defined before phi
|
|
AdjustWithin = 0 // defined by phi
|
|
AdjustAfter = 1 // defined within block
|
|
)
|
|
|
|
// A SparseTree is a tree of Blocks.
|
|
// It allows rapid ancestor queries,
|
|
// such as whether one block dominates another.
|
|
type SparseTree []SparseTreeNode
|
|
|
|
// newSparseTree creates a SparseTree from a block-to-parent map (array indexed by Block.ID).
|
|
func newSparseTree(f *Func, parentOf []*Block) SparseTree {
|
|
t := make(SparseTree, f.NumBlocks())
|
|
for _, b := range f.Blocks {
|
|
n := &t[b.ID]
|
|
if p := parentOf[b.ID]; p != nil {
|
|
n.parent = p
|
|
n.sibling = t[p.ID].child
|
|
t[p.ID].child = b
|
|
}
|
|
}
|
|
t.numberBlock(f.Entry, 1)
|
|
return t
|
|
}
|
|
|
|
// newSparseOrderedTree creates a SparseTree from a block-to-parent map (array indexed by Block.ID)
|
|
// children will appear in the reverse of their order in reverseOrder
|
|
// in particular, if reverseOrder is a dfs-reversePostOrder, then the root-to-children
|
|
// walk of the tree will yield a pre-order.
|
|
func newSparseOrderedTree(f *Func, parentOf, reverseOrder []*Block) SparseTree {
|
|
t := make(SparseTree, f.NumBlocks())
|
|
for _, b := range reverseOrder {
|
|
n := &t[b.ID]
|
|
if p := parentOf[b.ID]; p != nil {
|
|
n.parent = p
|
|
n.sibling = t[p.ID].child
|
|
t[p.ID].child = b
|
|
}
|
|
}
|
|
t.numberBlock(f.Entry, 1)
|
|
return t
|
|
}
|
|
|
|
// treestructure provides a string description of the dominator
|
|
// tree and flow structure of block b and all blocks that it
|
|
// dominates.
|
|
func (t SparseTree) treestructure(b *Block) string {
|
|
return t.treestructure1(b, 0)
|
|
}
|
|
func (t SparseTree) treestructure1(b *Block, i int) string {
|
|
s := "\n" + strings.Repeat("\t", i) + b.String() + "->["
|
|
for i, e := range b.Succs {
|
|
if i > 0 {
|
|
s += ","
|
|
}
|
|
s += e.b.String()
|
|
}
|
|
s += "]"
|
|
if c0 := t[b.ID].child; c0 != nil {
|
|
s += "("
|
|
for c := c0; c != nil; c = t[c.ID].sibling {
|
|
if c != c0 {
|
|
s += " "
|
|
}
|
|
s += t.treestructure1(c, i+1)
|
|
}
|
|
s += ")"
|
|
}
|
|
return s
|
|
}
|
|
|
|
// numberBlock assigns entry and exit numbers for b and b's
|
|
// children in an in-order walk from a gappy sequence, where n
|
|
// is the first number not yet assigned or reserved. N should
|
|
// be larger than zero. For each entry and exit number, the
|
|
// values one larger and smaller are reserved to indicate
|
|
// "strictly above" and "strictly below". numberBlock returns
|
|
// the smallest number not yet assigned or reserved (i.e., the
|
|
// exit number of the last block visited, plus two, because
|
|
// last.exit+1 is a reserved value.)
|
|
//
|
|
// examples:
|
|
//
|
|
// single node tree Root, call with n=1
|
|
// entry=2 Root exit=5; returns 7
|
|
//
|
|
// two node tree, Root->Child, call with n=1
|
|
// entry=2 Root exit=11; returns 13
|
|
// entry=5 Child exit=8
|
|
//
|
|
// three node tree, Root->(Left, Right), call with n=1
|
|
// entry=2 Root exit=17; returns 19
|
|
// entry=5 Left exit=8; entry=11 Right exit=14
|
|
//
|
|
// This is the in-order sequence of assigned and reserved numbers
|
|
// for the last example:
|
|
// root left left right right root
|
|
// 1 2e 3 | 4 5e 6 | 7 8x 9 | 10 11e 12 | 13 14x 15 | 16 17x 18
|
|
|
|
func (t SparseTree) numberBlock(b *Block, n int32) int32 {
|
|
// reserve n for entry-1, assign n+1 to entry
|
|
n++
|
|
t[b.ID].entry = n
|
|
// reserve n+1 for entry+1, n+2 is next free number
|
|
n += 2
|
|
for c := t[b.ID].child; c != nil; c = t[c.ID].sibling {
|
|
n = t.numberBlock(c, n) // preserves n = next free number
|
|
}
|
|
// reserve n for exit-1, assign n+1 to exit
|
|
n++
|
|
t[b.ID].exit = n
|
|
// reserve n+1 for exit+1, n+2 is next free number, returned.
|
|
return n + 2
|
|
}
|
|
|
|
// Sibling returns a sibling of x in the dominator tree (i.e.,
|
|
// a node with the same immediate dominator) or nil if there
|
|
// are no remaining siblings in the arbitrary but repeatable
|
|
// order chosen. Because the Child-Sibling order is used
|
|
// to assign entry and exit numbers in the treewalk, those
|
|
// numbers are also consistent with this order (i.e.,
|
|
// Sibling(x) has entry number larger than x's exit number).
|
|
func (t SparseTree) Sibling(x *Block) *Block {
|
|
return t[x.ID].sibling
|
|
}
|
|
|
|
// Child returns a child of x in the dominator tree, or
|
|
// nil if there are none. The choice of first child is
|
|
// arbitrary but repeatable.
|
|
func (t SparseTree) Child(x *Block) *Block {
|
|
return t[x.ID].child
|
|
}
|
|
|
|
// Parent returns the parent of x in the dominator tree, or
|
|
// nil if x is the function's entry.
|
|
func (t SparseTree) Parent(x *Block) *Block {
|
|
return t[x.ID].parent
|
|
}
|
|
|
|
// IsAncestorEq reports whether x is an ancestor of or equal to y.
|
|
func (t SparseTree) IsAncestorEq(x, y *Block) bool {
|
|
if x == y {
|
|
return true
|
|
}
|
|
xx := &t[x.ID]
|
|
yy := &t[y.ID]
|
|
return xx.entry <= yy.entry && yy.exit <= xx.exit
|
|
}
|
|
|
|
// isAncestor reports whether x is a strict ancestor of y.
|
|
func (t SparseTree) isAncestor(x, y *Block) bool {
|
|
if x == y {
|
|
return false
|
|
}
|
|
xx := &t[x.ID]
|
|
yy := &t[y.ID]
|
|
return xx.entry < yy.entry && yy.exit < xx.exit
|
|
}
|
|
|
|
// domorder returns a value for dominator-oriented sorting.
|
|
// Block domination does not provide a total ordering,
|
|
// but domorder two has useful properties.
|
|
// 1. If domorder(x) > domorder(y) then x does not dominate y.
|
|
// 2. If domorder(x) < domorder(y) and domorder(y) < domorder(z) and x does not dominate y,
|
|
// then x does not dominate z.
|
|
//
|
|
// Property (1) means that blocks sorted by domorder always have a maximal dominant block first.
|
|
// Property (2) allows searches for dominated blocks to exit early.
|
|
func (t SparseTree) domorder(x *Block) int32 {
|
|
// Here is an argument that entry(x) provides the properties documented above.
|
|
//
|
|
// Entry and exit values are assigned in a depth-first dominator tree walk.
|
|
// For all blocks x and y, one of the following holds:
|
|
//
|
|
// (x-dom-y) x dominates y => entry(x) < entry(y) < exit(y) < exit(x)
|
|
// (y-dom-x) y dominates x => entry(y) < entry(x) < exit(x) < exit(y)
|
|
// (x-then-y) neither x nor y dominates the other and x walked before y => entry(x) < exit(x) < entry(y) < exit(y)
|
|
// (y-then-x) neither x nor y dominates the other and y walked before y => entry(y) < exit(y) < entry(x) < exit(x)
|
|
//
|
|
// entry(x) > entry(y) eliminates case x-dom-y. This provides property (1) above.
|
|
//
|
|
// For property (2), assume entry(x) < entry(y) and entry(y) < entry(z) and x does not dominate y.
|
|
// entry(x) < entry(y) allows cases x-dom-y and x-then-y.
|
|
// But by supposition, x does not dominate y. So we have x-then-y.
|
|
//
|
|
// For contradiction, assume x dominates z.
|
|
// Then entry(x) < entry(z) < exit(z) < exit(x).
|
|
// But we know x-then-y, so entry(x) < exit(x) < entry(y) < exit(y).
|
|
// Combining those, entry(x) < entry(z) < exit(z) < exit(x) < entry(y) < exit(y).
|
|
// By supposition, entry(y) < entry(z), which allows cases y-dom-z and y-then-z.
|
|
// y-dom-z requires entry(y) < entry(z), but we have entry(z) < entry(y).
|
|
// y-then-z requires exit(y) < entry(z), but we have entry(z) < exit(y).
|
|
// We have a contradiction, so x does not dominate z, as required.
|
|
return t[x.ID].entry
|
|
}
|