mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
This patch detects at which index position profiling samples that have the value-type samples count are, instead of the previously hard-coded position of index 1. Runtime generated profiles always generate CPU profiling data with the 0 index being CPU nanoseconds, and samples count at index 1, which is why this previously hasn't come up.
Fixes #58292
Change-Id: Idde761d53b02259f3076c4e5dcb4a96a9d53df0e
GitHub-Last-Rev: dabbf9f88c
GitHub-Pull-Request: golang/go#58294
Reviewed-on: https://go-review.googlesource.com/c/go/+/465135
Auto-Submit: Michael Pratt <mpratt@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Michael Pratt <mpratt@google.com>
Run-TryBot: Michael Pratt <mpratt@google.com>
Reviewed-by: Cherry Mui <cherryyz@google.com>
542 lines
17 KiB
Go
542 lines
17 KiB
Go
// Copyright 2022 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// WORK IN PROGRESS
|
|
|
|
// A note on line numbers: when working with line numbers, we always use the
|
|
// binary-visible relative line number. i.e., the line number as adjusted by
|
|
// //line directives (ctxt.InnermostPos(ir.Node.Pos()).RelLine()). Use
|
|
// NodeLineOffset to compute line offsets.
|
|
//
|
|
// If you are thinking, "wait, doesn't that just make things more complex than
|
|
// using the real line number?", then you are 100% correct. Unfortunately,
|
|
// pprof profiles generated by the runtime always contain line numbers as
|
|
// adjusted by //line directives (because that is what we put in pclntab). Thus
|
|
// for the best behavior when attempting to match the source with the profile
|
|
// it makes sense to use the same line number space.
|
|
//
|
|
// Some of the effects of this to keep in mind:
|
|
//
|
|
// - For files without //line directives there is no impact, as RelLine() ==
|
|
// Line().
|
|
// - For functions entirely covered by the same //line directive (i.e., a
|
|
// directive before the function definition and no directives within the
|
|
// function), there should also be no impact, as line offsets within the
|
|
// function should be the same as the real line offsets.
|
|
// - Functions containing //line directives may be impacted. As fake line
|
|
// numbers need not be monotonic, we may compute negative line offsets. We
|
|
// should accept these and attempt to use them for best-effort matching, as
|
|
// these offsets should still match if the source is unchanged, and may
|
|
// continue to match with changed source depending on the impact of the
|
|
// changes on fake line numbers.
|
|
// - Functions containing //line directives may also contain duplicate lines,
|
|
// making it ambiguous which call the profile is referencing. This is a
|
|
// similar problem to multiple calls on a single real line, as we don't
|
|
// currently track column numbers.
|
|
//
|
|
// Long term it would be best to extend pprof profiles to include real line
|
|
// numbers. Until then, we have to live with these complexities. Luckily,
|
|
// //line directives that change line numbers in strange ways should be rare,
|
|
// and failing PGO matching on these files is not too big of a loss.
|
|
|
|
package pgo
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"fmt"
|
|
"internal/profile"
|
|
"log"
|
|
"os"
|
|
)
|
|
|
|
// IRGraph is the key data structure that is built from profile. It is
|
|
// essentially a call graph with nodes pointing to IRs of functions and edges
|
|
// carrying weights and callsite information. The graph is bidirectional that
|
|
// helps in removing nodes efficiently.
|
|
type IRGraph struct {
|
|
// Nodes of the graph
|
|
IRNodes map[string]*IRNode
|
|
OutEdges IREdgeMap
|
|
InEdges IREdgeMap
|
|
}
|
|
|
|
// IRNode represents a node in the IRGraph.
|
|
type IRNode struct {
|
|
// Pointer to the IR of the Function represented by this node.
|
|
AST *ir.Func
|
|
// Flat weight of the IRNode, obtained from profile.
|
|
Flat int64
|
|
// Cumulative weight of the IRNode.
|
|
Cum int64
|
|
}
|
|
|
|
// IREdgeMap maps an IRNode to its successors.
|
|
type IREdgeMap map[*IRNode][]*IREdge
|
|
|
|
// IREdge represents a call edge in the IRGraph with source, destination,
|
|
// weight, callsite, and line number information.
|
|
type IREdge struct {
|
|
// Source and destination of the edge in IRNode.
|
|
Src, Dst *IRNode
|
|
Weight int64
|
|
CallSiteOffset int // Line offset from function start line.
|
|
}
|
|
|
|
// NodeMapKey represents a hash key to identify unique call-edges in profile
|
|
// and in IR. Used for deduplication of call edges found in profile.
|
|
type NodeMapKey struct {
|
|
CallerName string
|
|
CalleeName string
|
|
CallSiteOffset int // Line offset from function start line.
|
|
}
|
|
|
|
// Weights capture both node weight and edge weight.
|
|
type Weights struct {
|
|
NFlat int64
|
|
NCum int64
|
|
EWeight int64
|
|
}
|
|
|
|
// CallSiteInfo captures call-site information and its caller/callee.
|
|
type CallSiteInfo struct {
|
|
LineOffset int // Line offset from function start line.
|
|
Caller *ir.Func
|
|
Callee *ir.Func
|
|
}
|
|
|
|
// Profile contains the processed PGO profile and weighted call graph used for
|
|
// PGO optimizations.
|
|
type Profile struct {
|
|
// Aggregated NodeWeights and EdgeWeights across the profile. This
|
|
// helps us determine the percentage threshold for hot/cold
|
|
// partitioning.
|
|
TotalNodeWeight int64
|
|
TotalEdgeWeight int64
|
|
|
|
// NodeMap contains all unique call-edges in the profile and their
|
|
// aggregated weight.
|
|
NodeMap map[NodeMapKey]*Weights
|
|
|
|
// WeightedCG represents the IRGraph built from profile, which we will
|
|
// update as part of inlining.
|
|
WeightedCG *IRGraph
|
|
}
|
|
|
|
// New generates a profile-graph from the profile.
|
|
func New(profileFile string) *Profile {
|
|
f, err := os.Open(profileFile)
|
|
if err != nil {
|
|
log.Fatal("failed to open file " + profileFile)
|
|
return nil
|
|
}
|
|
defer f.Close()
|
|
profile, err := profile.Parse(f)
|
|
if err != nil {
|
|
log.Fatal("failed to Parse profile file.")
|
|
return nil
|
|
}
|
|
|
|
samplesCountIndex := -1
|
|
for i, s := range profile.SampleType {
|
|
// Samples count is the raw data collected, and CPU nanoseconds is just
|
|
// a scaled version of it, so either one we can find is fine.
|
|
if (s.Type == "samples" && s.Unit == "count") ||
|
|
(s.Type == "cpu" && s.Unit == "nanoseconds") {
|
|
samplesCountIndex = i
|
|
break
|
|
}
|
|
}
|
|
|
|
if samplesCountIndex == -1 {
|
|
log.Fatal("failed to find CPU samples count or CPU nanoseconds value-types in profile.")
|
|
return nil
|
|
}
|
|
|
|
g := newGraph(profile, &Options{
|
|
CallTree: false,
|
|
SampleValue: func(v []int64) int64 { return v[samplesCountIndex] },
|
|
})
|
|
|
|
p := &Profile{
|
|
NodeMap: make(map[NodeMapKey]*Weights),
|
|
WeightedCG: &IRGraph{
|
|
IRNodes: make(map[string]*IRNode),
|
|
},
|
|
}
|
|
|
|
// Build the node map and totals from the profile graph.
|
|
if !p.processprofileGraph(g) {
|
|
return nil
|
|
}
|
|
|
|
// Create package-level call graph with weights from profile and IR.
|
|
p.initializeIRGraph()
|
|
|
|
return p
|
|
}
|
|
|
|
// processprofileGraph builds various maps from the profile-graph.
|
|
//
|
|
// It initializes NodeMap and Total{Node,Edge}Weight based on the name and
|
|
// callsite to compute node and edge weights which will be used later on to
|
|
// create edges for WeightedCG.
|
|
// Returns whether it successfully processed the profile.
|
|
func (p *Profile) processprofileGraph(g *Graph) bool {
|
|
nFlat := make(map[string]int64)
|
|
nCum := make(map[string]int64)
|
|
seenStartLine := false
|
|
|
|
// Accummulate weights for the same node.
|
|
for _, n := range g.Nodes {
|
|
canonicalName := n.Info.Name
|
|
nFlat[canonicalName] += n.FlatValue()
|
|
nCum[canonicalName] += n.CumValue()
|
|
}
|
|
|
|
// Process graph and build various node and edge maps which will
|
|
// be consumed by AST walk.
|
|
for _, n := range g.Nodes {
|
|
seenStartLine = seenStartLine || n.Info.StartLine != 0
|
|
|
|
p.TotalNodeWeight += n.FlatValue()
|
|
canonicalName := n.Info.Name
|
|
// Create the key to the nodeMapKey.
|
|
nodeinfo := NodeMapKey{
|
|
CallerName: canonicalName,
|
|
CallSiteOffset: n.Info.Lineno - n.Info.StartLine,
|
|
}
|
|
|
|
for _, e := range n.Out {
|
|
p.TotalEdgeWeight += e.WeightValue()
|
|
nodeinfo.CalleeName = e.Dest.Info.Name
|
|
if w, ok := p.NodeMap[nodeinfo]; ok {
|
|
w.EWeight += e.WeightValue()
|
|
} else {
|
|
weights := new(Weights)
|
|
weights.NFlat = nFlat[canonicalName]
|
|
weights.NCum = nCum[canonicalName]
|
|
weights.EWeight = e.WeightValue()
|
|
p.NodeMap[nodeinfo] = weights
|
|
}
|
|
}
|
|
}
|
|
|
|
if p.TotalNodeWeight == 0 || p.TotalEdgeWeight == 0 {
|
|
return false // accept but ignore profile with no sample
|
|
}
|
|
|
|
if !seenStartLine {
|
|
// TODO(prattic): If Function.start_line is missing we could
|
|
// fall back to using absolute line numbers, which is better
|
|
// than nothing.
|
|
log.Fatal("PGO profile missing Function.start_line data (Go version of profiled application too old? Go 1.20+ automatically adds this to profiles)")
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// initializeIRGraph builds the IRGraph by visiting all the ir.Func in decl list
|
|
// of a package.
|
|
func (p *Profile) initializeIRGraph() {
|
|
// Bottomup walk over the function to create IRGraph.
|
|
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
|
|
for _, n := range list {
|
|
p.VisitIR(n, recursive)
|
|
}
|
|
})
|
|
}
|
|
|
|
// VisitIR traverses the body of each ir.Func and use NodeMap to determine if
|
|
// we need to add an edge from ir.Func and any node in the ir.Func body.
|
|
func (p *Profile) VisitIR(fn *ir.Func, recursive bool) {
|
|
g := p.WeightedCG
|
|
|
|
if g.IRNodes == nil {
|
|
g.IRNodes = make(map[string]*IRNode)
|
|
}
|
|
if g.OutEdges == nil {
|
|
g.OutEdges = make(map[*IRNode][]*IREdge)
|
|
}
|
|
if g.InEdges == nil {
|
|
g.InEdges = make(map[*IRNode][]*IREdge)
|
|
}
|
|
name := ir.PkgFuncName(fn)
|
|
node := new(IRNode)
|
|
node.AST = fn
|
|
if g.IRNodes[name] == nil {
|
|
g.IRNodes[name] = node
|
|
}
|
|
// Create the key for the NodeMapKey.
|
|
nodeinfo := NodeMapKey{
|
|
CallerName: name,
|
|
CalleeName: "",
|
|
CallSiteOffset: 0,
|
|
}
|
|
// If the node exists, then update its node weight.
|
|
if weights, ok := p.NodeMap[nodeinfo]; ok {
|
|
g.IRNodes[name].Flat = weights.NFlat
|
|
g.IRNodes[name].Cum = weights.NCum
|
|
}
|
|
|
|
// Recursively walk over the body of the function to create IRGraph edges.
|
|
p.createIRGraphEdge(fn, g.IRNodes[name], name)
|
|
}
|
|
|
|
// NodeLineOffset returns the line offset of n in fn.
|
|
func NodeLineOffset(n ir.Node, fn *ir.Func) int {
|
|
// See "A note on line numbers" at the top of the file.
|
|
line := int(base.Ctxt.InnermostPos(n.Pos()).RelLine())
|
|
startLine := int(base.Ctxt.InnermostPos(fn.Pos()).RelLine())
|
|
return line - startLine
|
|
}
|
|
|
|
// addIREdge adds an edge between caller and new node that points to `callee`
|
|
// based on the profile-graph and NodeMap.
|
|
func (p *Profile) addIREdge(caller *IRNode, callername string, call ir.Node, callee *ir.Func) {
|
|
g := p.WeightedCG
|
|
|
|
// Create an IRNode for the callee.
|
|
calleenode := new(IRNode)
|
|
calleenode.AST = callee
|
|
calleename := ir.PkgFuncName(callee)
|
|
|
|
// Create key for NodeMapKey.
|
|
nodeinfo := NodeMapKey{
|
|
CallerName: callername,
|
|
CalleeName: calleename,
|
|
CallSiteOffset: NodeLineOffset(call, caller.AST),
|
|
}
|
|
|
|
// Create the callee node with node weight.
|
|
if g.IRNodes[calleename] == nil {
|
|
g.IRNodes[calleename] = calleenode
|
|
nodeinfo2 := NodeMapKey{
|
|
CallerName: calleename,
|
|
CalleeName: "",
|
|
CallSiteOffset: 0,
|
|
}
|
|
if weights, ok := p.NodeMap[nodeinfo2]; ok {
|
|
g.IRNodes[calleename].Flat = weights.NFlat
|
|
g.IRNodes[calleename].Cum = weights.NCum
|
|
}
|
|
}
|
|
|
|
if weights, ok := p.NodeMap[nodeinfo]; ok {
|
|
caller.Flat = weights.NFlat
|
|
caller.Cum = weights.NCum
|
|
|
|
// Add edge in the IRGraph from caller to callee.
|
|
info := &IREdge{Src: caller, Dst: g.IRNodes[calleename], Weight: weights.EWeight, CallSiteOffset: nodeinfo.CallSiteOffset}
|
|
g.OutEdges[caller] = append(g.OutEdges[caller], info)
|
|
g.InEdges[g.IRNodes[calleename]] = append(g.InEdges[g.IRNodes[calleename]], info)
|
|
} else {
|
|
nodeinfo.CalleeName = ""
|
|
nodeinfo.CallSiteOffset = 0
|
|
if weights, ok := p.NodeMap[nodeinfo]; ok {
|
|
caller.Flat = weights.NFlat
|
|
caller.Cum = weights.NCum
|
|
info := &IREdge{Src: caller, Dst: g.IRNodes[calleename], Weight: 0, CallSiteOffset: nodeinfo.CallSiteOffset}
|
|
g.OutEdges[caller] = append(g.OutEdges[caller], info)
|
|
g.InEdges[g.IRNodes[calleename]] = append(g.InEdges[g.IRNodes[calleename]], info)
|
|
} else {
|
|
info := &IREdge{Src: caller, Dst: g.IRNodes[calleename], Weight: 0, CallSiteOffset: nodeinfo.CallSiteOffset}
|
|
g.OutEdges[caller] = append(g.OutEdges[caller], info)
|
|
g.InEdges[g.IRNodes[calleename]] = append(g.InEdges[g.IRNodes[calleename]], info)
|
|
}
|
|
}
|
|
}
|
|
|
|
// createIRGraphEdge traverses the nodes in the body of ir.Func and add edges between callernode which points to the ir.Func and the nodes in the body.
|
|
func (p *Profile) createIRGraphEdge(fn *ir.Func, callernode *IRNode, name string) {
|
|
var doNode func(ir.Node) bool
|
|
doNode = func(n ir.Node) bool {
|
|
switch n.Op() {
|
|
default:
|
|
ir.DoChildren(n, doNode)
|
|
case ir.OCALLFUNC:
|
|
call := n.(*ir.CallExpr)
|
|
// Find the callee function from the call site and add the edge.
|
|
callee := inlCallee(call.X)
|
|
if callee != nil {
|
|
p.addIREdge(callernode, name, n, callee)
|
|
}
|
|
case ir.OCALLMETH:
|
|
call := n.(*ir.CallExpr)
|
|
// Find the callee method from the call site and add the edge.
|
|
callee := ir.MethodExprName(call.X).Func
|
|
p.addIREdge(callernode, name, n, callee)
|
|
}
|
|
return false
|
|
}
|
|
doNode(fn)
|
|
}
|
|
|
|
// WeightInPercentage converts profile weights to a percentage.
|
|
func WeightInPercentage(value int64, total int64) float64 {
|
|
return (float64(value) / float64(total)) * 100
|
|
}
|
|
|
|
// PrintWeightedCallGraphDOT prints IRGraph in DOT format.
|
|
func (p *Profile) PrintWeightedCallGraphDOT(edgeThreshold float64) {
|
|
fmt.Printf("\ndigraph G {\n")
|
|
fmt.Printf("forcelabels=true;\n")
|
|
|
|
// List of functions in this package.
|
|
funcs := make(map[string]struct{})
|
|
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
|
|
for _, f := range list {
|
|
name := ir.PkgFuncName(f)
|
|
funcs[name] = struct{}{}
|
|
}
|
|
})
|
|
|
|
// Determine nodes of DOT.
|
|
nodes := make(map[string]*ir.Func)
|
|
for name := range funcs {
|
|
if n, ok := p.WeightedCG.IRNodes[name]; ok {
|
|
for _, e := range p.WeightedCG.OutEdges[n] {
|
|
if _, ok := nodes[ir.PkgFuncName(e.Src.AST)]; !ok {
|
|
nodes[ir.PkgFuncName(e.Src.AST)] = e.Src.AST
|
|
}
|
|
if _, ok := nodes[ir.PkgFuncName(e.Dst.AST)]; !ok {
|
|
nodes[ir.PkgFuncName(e.Dst.AST)] = e.Dst.AST
|
|
}
|
|
}
|
|
if _, ok := nodes[ir.PkgFuncName(n.AST)]; !ok {
|
|
nodes[ir.PkgFuncName(n.AST)] = n.AST
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print nodes.
|
|
for name, ast := range nodes {
|
|
if n, ok := p.WeightedCG.IRNodes[name]; ok {
|
|
nodeweight := WeightInPercentage(n.Flat, p.TotalNodeWeight)
|
|
color := "black"
|
|
if ast.Inl != nil {
|
|
fmt.Printf("\"%v\" [color=%v,label=\"%v,freq=%.2f,inl_cost=%d\"];\n", ir.PkgFuncName(ast), color, ir.PkgFuncName(ast), nodeweight, ast.Inl.Cost)
|
|
} else {
|
|
fmt.Printf("\"%v\" [color=%v, label=\"%v,freq=%.2f\"];\n", ir.PkgFuncName(ast), color, ir.PkgFuncName(ast), nodeweight)
|
|
}
|
|
}
|
|
}
|
|
// Print edges.
|
|
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
|
|
for _, f := range list {
|
|
name := ir.PkgFuncName(f)
|
|
if n, ok := p.WeightedCG.IRNodes[name]; ok {
|
|
for _, e := range p.WeightedCG.OutEdges[n] {
|
|
edgepercent := WeightInPercentage(e.Weight, p.TotalEdgeWeight)
|
|
if edgepercent > edgeThreshold {
|
|
fmt.Printf("edge [color=red, style=solid];\n")
|
|
} else {
|
|
fmt.Printf("edge [color=black, style=solid];\n")
|
|
}
|
|
|
|
fmt.Printf("\"%v\" -> \"%v\" [label=\"%.2f\"];\n", ir.PkgFuncName(n.AST), ir.PkgFuncName(e.Dst.AST), edgepercent)
|
|
}
|
|
}
|
|
}
|
|
})
|
|
fmt.Printf("}\n")
|
|
}
|
|
|
|
// RedirectEdges deletes and redirects out-edges from node cur based on
|
|
// inlining information via inlinedCallSites.
|
|
//
|
|
// CallSiteInfo.Callee must be nil.
|
|
func (p *Profile) RedirectEdges(cur *IRNode, inlinedCallSites map[CallSiteInfo]struct{}) {
|
|
g := p.WeightedCG
|
|
|
|
for i, outEdge := range g.OutEdges[cur] {
|
|
if _, found := inlinedCallSites[CallSiteInfo{LineOffset: outEdge.CallSiteOffset, Caller: cur.AST}]; !found {
|
|
for _, InEdge := range g.InEdges[cur] {
|
|
if _, ok := inlinedCallSites[CallSiteInfo{LineOffset: InEdge.CallSiteOffset, Caller: InEdge.Src.AST}]; ok {
|
|
weight := g.calculateWeight(InEdge.Src, cur)
|
|
g.redirectEdge(InEdge.Src, cur, outEdge, weight, i)
|
|
}
|
|
}
|
|
} else {
|
|
g.remove(cur, i)
|
|
}
|
|
}
|
|
}
|
|
|
|
// redirectEdges deletes the cur node out-edges and redirect them so now these
|
|
// edges are the parent node out-edges.
|
|
func (g *IRGraph) redirectEdges(parent *IRNode, cur *IRNode) {
|
|
for _, outEdge := range g.OutEdges[cur] {
|
|
outEdge.Src = parent
|
|
g.OutEdges[parent] = append(g.OutEdges[parent], outEdge)
|
|
}
|
|
delete(g.OutEdges, cur)
|
|
}
|
|
|
|
// redirectEdge deletes the cur-node's out-edges and redirect them so now these
|
|
// edges are the parent node out-edges.
|
|
func (g *IRGraph) redirectEdge(parent *IRNode, cur *IRNode, outEdge *IREdge, weight int64, idx int) {
|
|
outEdge.Src = parent
|
|
outEdge.Weight = weight * outEdge.Weight
|
|
g.OutEdges[parent] = append(g.OutEdges[parent], outEdge)
|
|
g.remove(cur, idx)
|
|
}
|
|
|
|
// remove deletes the cur-node's out-edges at index idx.
|
|
func (g *IRGraph) remove(cur *IRNode, i int) {
|
|
if len(g.OutEdges[cur]) >= 2 {
|
|
g.OutEdges[cur][i] = g.OutEdges[cur][len(g.OutEdges[cur])-1]
|
|
g.OutEdges[cur] = g.OutEdges[cur][:len(g.OutEdges[cur])-1]
|
|
} else {
|
|
delete(g.OutEdges, cur)
|
|
}
|
|
}
|
|
|
|
// calculateWeight calculates the weight of the new redirected edge.
|
|
func (g *IRGraph) calculateWeight(parent *IRNode, cur *IRNode) int64 {
|
|
sum := int64(0)
|
|
pw := int64(0)
|
|
for _, InEdge := range g.InEdges[cur] {
|
|
sum += InEdge.Weight
|
|
if InEdge.Src == parent {
|
|
pw = InEdge.Weight
|
|
}
|
|
}
|
|
weight := int64(0)
|
|
if sum != 0 {
|
|
weight = pw / sum
|
|
} else {
|
|
weight = pw
|
|
}
|
|
return weight
|
|
}
|
|
|
|
// inlCallee is same as the implementation for inl.go with one change. The change is that we do not invoke CanInline on a closure.
|
|
func inlCallee(fn ir.Node) *ir.Func {
|
|
fn = ir.StaticValue(fn)
|
|
switch fn.Op() {
|
|
case ir.OMETHEXPR:
|
|
fn := fn.(*ir.SelectorExpr)
|
|
n := ir.MethodExprName(fn)
|
|
// Check that receiver type matches fn.X.
|
|
// TODO(mdempsky): Handle implicit dereference
|
|
// of pointer receiver argument?
|
|
if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
|
|
return nil
|
|
}
|
|
return n.Func
|
|
case ir.ONAME:
|
|
fn := fn.(*ir.Name)
|
|
if fn.Class == ir.PFUNC {
|
|
return fn.Func
|
|
}
|
|
case ir.OCLOSURE:
|
|
fn := fn.(*ir.ClosureExpr)
|
|
c := fn.Func
|
|
return c
|
|
}
|
|
return nil
|
|
}
|