go/src/cmd/cgo/gcc.go
Keith Randall d162a297ed cmd/cgo: rewrite CFTypeRef and subytes on Darwin to uintptr
Cgo currently maps CFTypeRef and its subtypes to unsafe.Pointer
or a pointer to a named empty struct.

However, Darwin sometimes encodes some of CFTypeRef's subtypes as a
few int fields packed in a pointer wrapper. This hackery confuses the
Go runtime as the pointers can look like they point to things that
shouldn't be pointed at.

Switch CFTypeRef and its subtypes to map to uintptr.

Detecting the affected set of types is tricky, there are over 200 of
them, and the set isn't static across Darwin versions. Fortunately,
downcasting from CFTypeRef to a subtype requires calling CFGetTypeID,
getting a CFTypeID token, and comparing that with a known id from a
*GetTypeID() call. So we can find all the type names by detecting all
the *GetTypeID() prototypes and rewriting the corresponding *Ref types
to uintptr. This strategy covers all the cases I've checked and is
unlikely to have a false positive.

Update #23091.

Change-Id: I487eb4105c9b4785ba564de9c38d472c8c9a76ac
Reviewed-on: https://go-review.googlesource.com/87615
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-01-17 06:38:57 +00:00

2727 lines
75 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Annotate Ref in Prog with C types by parsing gcc debug output.
// Conversion of debug output to Go types.
package main
import (
"bytes"
"debug/dwarf"
"debug/elf"
"debug/macho"
"debug/pe"
"encoding/binary"
"errors"
"flag"
"fmt"
"go/ast"
"go/parser"
"go/token"
"math"
"os"
"strconv"
"strings"
"unicode"
"unicode/utf8"
)
var debugDefine = flag.Bool("debug-define", false, "print relevant #defines")
var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations")
var nameToC = map[string]string{
"schar": "signed char",
"uchar": "unsigned char",
"ushort": "unsigned short",
"uint": "unsigned int",
"ulong": "unsigned long",
"longlong": "long long",
"ulonglong": "unsigned long long",
"complexfloat": "float _Complex",
"complexdouble": "double _Complex",
}
// cname returns the C name to use for C.s.
// The expansions are listed in nameToC and also
// struct_foo becomes "struct foo", and similarly for
// union and enum.
func cname(s string) string {
if t, ok := nameToC[s]; ok {
return t
}
if strings.HasPrefix(s, "struct_") {
return "struct " + s[len("struct_"):]
}
if strings.HasPrefix(s, "union_") {
return "union " + s[len("union_"):]
}
if strings.HasPrefix(s, "enum_") {
return "enum " + s[len("enum_"):]
}
if strings.HasPrefix(s, "sizeof_") {
return "sizeof(" + cname(s[len("sizeof_"):]) + ")"
}
return s
}
// DiscardCgoDirectives processes the import C preamble, and discards
// all #cgo CFLAGS and LDFLAGS directives, so they don't make their
// way into _cgo_export.h.
func (f *File) DiscardCgoDirectives() {
linesIn := strings.Split(f.Preamble, "\n")
linesOut := make([]string, 0, len(linesIn))
for _, line := range linesIn {
l := strings.TrimSpace(line)
if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(rune(l[4])) {
linesOut = append(linesOut, line)
} else {
linesOut = append(linesOut, "")
}
}
f.Preamble = strings.Join(linesOut, "\n")
}
// addToFlag appends args to flag. All flags are later written out onto the
// _cgo_flags file for the build system to use.
func (p *Package) addToFlag(flag string, args []string) {
p.CgoFlags[flag] = append(p.CgoFlags[flag], args...)
if flag == "CFLAGS" {
// We'll also need these when preprocessing for dwarf information.
p.GccOptions = append(p.GccOptions, args...)
}
}
// splitQuoted splits the string s around each instance of one or more consecutive
// white space characters while taking into account quotes and escaping, and
// returns an array of substrings of s or an empty list if s contains only white space.
// Single quotes and double quotes are recognized to prevent splitting within the
// quoted region, and are removed from the resulting substrings. If a quote in s
// isn't closed err will be set and r will have the unclosed argument as the
// last element. The backslash is used for escaping.
//
// For example, the following string:
//
// `a b:"c d" 'e''f' "g\""`
//
// Would be parsed as:
//
// []string{"a", "b:c d", "ef", `g"`}
//
func splitQuoted(s string) (r []string, err error) {
var args []string
arg := make([]rune, len(s))
escaped := false
quoted := false
quote := '\x00'
i := 0
for _, r := range s {
switch {
case escaped:
escaped = false
case r == '\\':
escaped = true
continue
case quote != 0:
if r == quote {
quote = 0
continue
}
case r == '"' || r == '\'':
quoted = true
quote = r
continue
case unicode.IsSpace(r):
if quoted || i > 0 {
quoted = false
args = append(args, string(arg[:i]))
i = 0
}
continue
}
arg[i] = r
i++
}
if quoted || i > 0 {
args = append(args, string(arg[:i]))
}
if quote != 0 {
err = errors.New("unclosed quote")
} else if escaped {
err = errors.New("unfinished escaping")
}
return args, err
}
// Translate rewrites f.AST, the original Go input, to remove
// references to the imported package C, replacing them with
// references to the equivalent Go types, functions, and variables.
func (p *Package) Translate(f *File) {
for _, cref := range f.Ref {
// Convert C.ulong to C.unsigned long, etc.
cref.Name.C = cname(cref.Name.Go)
}
p.loadDefines(f)
needType := p.guessKinds(f)
if len(needType) > 0 {
p.loadDWARF(f, needType)
}
if p.rewriteCalls(f) {
// Add `import _cgo_unsafe "unsafe"` after the package statement.
f.Edit.Insert(f.offset(f.AST.Name.End()), "; import _cgo_unsafe \"unsafe\"")
}
p.rewriteRef(f)
}
// loadDefines coerces gcc into spitting out the #defines in use
// in the file f and saves relevant renamings in f.Name[name].Define.
func (p *Package) loadDefines(f *File) {
var b bytes.Buffer
b.WriteString(builtinProlog)
b.WriteString(f.Preamble)
stdout := p.gccDefines(b.Bytes())
for _, line := range strings.Split(stdout, "\n") {
if len(line) < 9 || line[0:7] != "#define" {
continue
}
line = strings.TrimSpace(line[8:])
var key, val string
spaceIndex := strings.Index(line, " ")
tabIndex := strings.Index(line, "\t")
if spaceIndex == -1 && tabIndex == -1 {
continue
} else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) {
key = line[0:spaceIndex]
val = strings.TrimSpace(line[spaceIndex:])
} else {
key = line[0:tabIndex]
val = strings.TrimSpace(line[tabIndex:])
}
if key == "__clang__" {
p.GccIsClang = true
}
if n := f.Name[key]; n != nil {
if *debugDefine {
fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val)
}
n.Define = val
}
}
}
// guessKinds tricks gcc into revealing the kind of each
// name xxx for the references C.xxx in the Go input.
// The kind is either a constant, type, or variable.
func (p *Package) guessKinds(f *File) []*Name {
// Determine kinds for names we already know about,
// like #defines or 'struct foo', before bothering with gcc.
var names, needType []*Name
optional := map[*Name]bool{}
for _, key := range nameKeys(f.Name) {
n := f.Name[key]
// If we've already found this name as a #define
// and we can translate it as a constant value, do so.
if n.Define != "" {
if i, err := strconv.ParseInt(n.Define, 0, 64); err == nil {
n.Kind = "iconst"
// Turn decimal into hex, just for consistency
// with enum-derived constants. Otherwise
// in the cgo -godefs output half the constants
// are in hex and half are in whatever the #define used.
n.Const = fmt.Sprintf("%#x", i)
} else if n.Define[0] == '\'' {
if _, err := parser.ParseExpr(n.Define); err == nil {
n.Kind = "iconst"
n.Const = n.Define
}
} else if n.Define[0] == '"' {
if _, err := parser.ParseExpr(n.Define); err == nil {
n.Kind = "sconst"
n.Const = n.Define
}
}
if n.IsConst() {
continue
}
}
// If this is a struct, union, or enum type name, no need to guess the kind.
if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") {
n.Kind = "type"
needType = append(needType, n)
continue
}
if goos == "darwin" && strings.HasSuffix(n.C, "Ref") {
// For FooRef, find out if FooGetTypeID exists.
s := n.C[:len(n.C)-3] + "GetTypeID"
n := &Name{Go: s, C: s}
names = append(names, n)
optional[n] = true
}
// Otherwise, we'll need to find out from gcc.
names = append(names, n)
}
// Bypass gcc if there's nothing left to find out.
if len(names) == 0 {
return needType
}
// Coerce gcc into telling us whether each name is a type, a value, or undeclared.
// For names, find out whether they are integer constants.
// We used to look at specific warning or error messages here, but that tied the
// behavior too closely to specific versions of the compilers.
// Instead, arrange that we can infer what we need from only the presence or absence
// of an error on a specific line.
//
// For each name, we generate these lines, where xxx is the index in toSniff plus one.
//
// #line xxx "not-declared"
// void __cgo_f_xxx_1(void) { __typeof__(name) *__cgo_undefined__1; }
// #line xxx "not-type"
// void __cgo_f_xxx_2(void) { name *__cgo_undefined__2; }
// #line xxx "not-int-const"
// void __cgo_f_xxx_3(void) { enum { __cgo_undefined__3 = (name)*1 }; }
// #line xxx "not-num-const"
// void __cgo_f_xxx_4(void) { static const double __cgo_undefined__4 = (name); }
// #line xxx "not-str-lit"
// void __cgo_f_xxx_5(void) { static const char __cgo_undefined__5[] = (name); }
//
// If we see an error at not-declared:xxx, the corresponding name is not declared.
// If we see an error at not-type:xxx, the corresponding name is a type.
// If we see an error at not-int-const:xxx, the corresponding name is not an integer constant.
// If we see an error at not-num-const:xxx, the corresponding name is not a number constant.
// If we see an error at not-str-lit:xxx, the corresponding name is not a string literal.
//
// The specific input forms are chosen so that they are valid C syntax regardless of
// whether name denotes a type or an expression.
var b bytes.Buffer
b.WriteString(builtinProlog)
b.WriteString(f.Preamble)
for i, n := range names {
fmt.Fprintf(&b, "#line %d \"not-declared\"\n"+
"void __cgo_f_%d_1(void) { __typeof__(%s) *__cgo_undefined__1; }\n"+
"#line %d \"not-type\"\n"+
"void __cgo_f_%d_2(void) { %s *__cgo_undefined__2; }\n"+
"#line %d \"not-int-const\"\n"+
"void __cgo_f_%d_3(void) { enum { __cgo_undefined__3 = (%s)*1 }; }\n"+
"#line %d \"not-num-const\"\n"+
"void __cgo_f_%d_4(void) { static const double __cgo_undefined__4 = (%s); }\n"+
"#line %d \"not-str-lit\"\n"+
"void __cgo_f_%d_5(void) { static const char __cgo_undefined__5[] = (%s); }\n",
i+1, i+1, n.C,
i+1, i+1, n.C,
i+1, i+1, n.C,
i+1, i+1, n.C,
i+1, i+1, n.C,
)
}
fmt.Fprintf(&b, "#line 1 \"completed\"\n"+
"int __cgo__1 = __cgo__2;\n")
stderr := p.gccErrors(b.Bytes())
if stderr == "" {
fatalf("%s produced no output\non input:\n%s", p.gccBaseCmd()[0], b.Bytes())
}
completed := false
sniff := make([]int, len(names))
const (
notType = 1 << iota
notIntConst
notNumConst
notStrLiteral
notDeclared
)
sawUnmatchedErrors := false
for _, line := range strings.Split(stderr, "\n") {
// Ignore warnings and random comments, with one
// exception: newer GCC versions will sometimes emit
// an error on a macro #define with a note referring
// to where the expansion occurs. We care about where
// the expansion occurs, so in that case treat the note
// as an error.
isError := strings.Contains(line, ": error:")
isErrorNote := strings.Contains(line, ": note:") && sawUnmatchedErrors
if !isError && !isErrorNote {
continue
}
c1 := strings.Index(line, ":")
if c1 < 0 {
continue
}
c2 := strings.Index(line[c1+1:], ":")
if c2 < 0 {
continue
}
c2 += c1 + 1
filename := line[:c1]
i, _ := strconv.Atoi(line[c1+1 : c2])
i--
if i < 0 || i >= len(names) {
if isError {
sawUnmatchedErrors = true
}
continue
}
switch filename {
case "completed":
// Strictly speaking, there is no guarantee that seeing the error at completed:1
// (at the end of the file) means we've seen all the errors from earlier in the file,
// but usually it does. Certainly if we don't see the completed:1 error, we did
// not get all the errors we expected.
completed = true
case "not-declared":
sniff[i] |= notDeclared
case "not-type":
sniff[i] |= notType
case "not-int-const":
sniff[i] |= notIntConst
case "not-num-const":
sniff[i] |= notNumConst
case "not-str-lit":
sniff[i] |= notStrLiteral
default:
if isError {
sawUnmatchedErrors = true
}
continue
}
sawUnmatchedErrors = false
}
if !completed {
fatalf("%s did not produce error at completed:1\non input:\n%s\nfull error output:\n%s", p.gccBaseCmd()[0], b.Bytes(), stderr)
}
for i, n := range names {
switch sniff[i] {
default:
if sniff[i]&notDeclared != 0 && optional[n] {
// Ignore optional undeclared identifiers.
// Don't report an error, and skip adding n to the needType array.
continue
}
error_(f.NamePos[n], "could not determine kind of name for C.%s", fixGo(n.Go))
case notStrLiteral | notType:
n.Kind = "iconst"
case notIntConst | notStrLiteral | notType:
n.Kind = "fconst"
case notIntConst | notNumConst | notType:
n.Kind = "sconst"
case notIntConst | notNumConst | notStrLiteral:
n.Kind = "type"
case notIntConst | notNumConst | notStrLiteral | notType:
n.Kind = "not-type"
}
needType = append(needType, n)
}
if nerrors > 0 {
// Check if compiling the preamble by itself causes any errors,
// because the messages we've printed out so far aren't helpful
// to users debugging preamble mistakes. See issue 8442.
preambleErrors := p.gccErrors([]byte(f.Preamble))
if len(preambleErrors) > 0 {
error_(token.NoPos, "\n%s errors for preamble:\n%s", p.gccBaseCmd()[0], preambleErrors)
}
fatalf("unresolved names")
}
return needType
}
// loadDWARF parses the DWARF debug information generated
// by gcc to learn the details of the constants, variables, and types
// being referred to as C.xxx.
func (p *Package) loadDWARF(f *File, names []*Name) {
// Extract the types from the DWARF section of an object
// from a well-formed C program. Gcc only generates DWARF info
// for symbols in the object file, so it is not enough to print the
// preamble and hope the symbols we care about will be there.
// Instead, emit
// __typeof__(names[i]) *__cgo__i;
// for each entry in names and then dereference the type we
// learn for __cgo__i.
var b bytes.Buffer
b.WriteString(builtinProlog)
b.WriteString(f.Preamble)
b.WriteString("#line 1 \"cgo-dwarf-inference\"\n")
for i, n := range names {
fmt.Fprintf(&b, "__typeof__(%s) *__cgo__%d;\n", n.C, i)
if n.Kind == "iconst" {
fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C)
}
}
// We create a data block initialized with the values,
// so we can read them out of the object file.
fmt.Fprintf(&b, "long long __cgodebug_ints[] = {\n")
for _, n := range names {
if n.Kind == "iconst" {
fmt.Fprintf(&b, "\t%s,\n", n.C)
} else {
fmt.Fprintf(&b, "\t0,\n")
}
}
// for the last entry, we cannot use 0, otherwise
// in case all __cgodebug_data is zero initialized,
// LLVM-based gcc will place the it in the __DATA.__common
// zero-filled section (our debug/macho doesn't support
// this)
fmt.Fprintf(&b, "\t1\n")
fmt.Fprintf(&b, "};\n")
// do the same work for floats.
fmt.Fprintf(&b, "double __cgodebug_floats[] = {\n")
for _, n := range names {
if n.Kind == "fconst" {
fmt.Fprintf(&b, "\t%s,\n", n.C)
} else {
fmt.Fprintf(&b, "\t0,\n")
}
}
fmt.Fprintf(&b, "\t1\n")
fmt.Fprintf(&b, "};\n")
// do the same work for strings.
for i, n := range names {
if n.Kind == "sconst" {
fmt.Fprintf(&b, "const char __cgodebug_str__%d[] = %s;\n", i, n.C)
fmt.Fprintf(&b, "const unsigned long long __cgodebug_strlen__%d = sizeof(%s)-1;\n", i, n.C)
}
}
d, ints, floats, strs := p.gccDebug(b.Bytes(), len(names))
// Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i.
types := make([]dwarf.Type, len(names))
r := d.Reader()
for {
e, err := r.Next()
if err != nil {
fatalf("reading DWARF entry: %s", err)
}
if e == nil {
break
}
switch e.Tag {
case dwarf.TagVariable:
name, _ := e.Val(dwarf.AttrName).(string)
typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset)
if name == "" || typOff == 0 {
if e.Val(dwarf.AttrSpecification) != nil {
// Since we are reading all the DWARF,
// assume we will see the variable elsewhere.
break
}
fatalf("malformed DWARF TagVariable entry")
}
if !strings.HasPrefix(name, "__cgo__") {
break
}
typ, err := d.Type(typOff)
if err != nil {
fatalf("loading DWARF type: %s", err)
}
t, ok := typ.(*dwarf.PtrType)
if !ok || t == nil {
fatalf("internal error: %s has non-pointer type", name)
}
i, err := strconv.Atoi(name[7:])
if err != nil {
fatalf("malformed __cgo__ name: %s", name)
}
types[i] = t.Type
}
if e.Tag != dwarf.TagCompileUnit {
r.SkipChildren()
}
}
// Record types and typedef information.
var conv typeConv
conv.Init(p.PtrSize, p.IntSize)
for i, n := range names {
if strings.HasSuffix(n.Go, "GetTypeID") && types[i].String() == "func() CFTypeID" {
conv.getTypeIDs[n.Go[:len(n.Go)-9]] = true
}
}
for i, n := range names {
if types[i] == nil {
continue
}
pos := f.NamePos[n]
f, fok := types[i].(*dwarf.FuncType)
if n.Kind != "type" && fok {
n.Kind = "func"
n.FuncType = conv.FuncType(f, pos)
} else {
n.Type = conv.Type(types[i], pos)
switch n.Kind {
case "iconst":
if i < len(ints) {
if _, ok := types[i].(*dwarf.UintType); ok {
n.Const = fmt.Sprintf("%#x", uint64(ints[i]))
} else {
n.Const = fmt.Sprintf("%#x", ints[i])
}
}
case "fconst":
if i < len(floats) {
n.Const = fmt.Sprintf("%f", floats[i])
}
case "sconst":
if i < len(strs) {
n.Const = fmt.Sprintf("%q", strs[i])
}
}
}
conv.FinishType(pos)
}
}
// mangleName does name mangling to translate names
// from the original Go source files to the names
// used in the final Go files generated by cgo.
func (p *Package) mangleName(n *Name) {
// When using gccgo variables have to be
// exported so that they become global symbols
// that the C code can refer to.
prefix := "_C"
if *gccgo && n.IsVar() {
prefix = "C"
}
n.Mangle = prefix + n.Kind + "_" + n.Go
}
// rewriteCalls rewrites all calls that pass pointers to check that
// they follow the rules for passing pointers between Go and C.
// This returns whether the package needs to import unsafe as _cgo_unsafe.
func (p *Package) rewriteCalls(f *File) bool {
needsUnsafe := false
for _, call := range f.Calls {
// This is a call to C.xxx; set goname to "xxx".
goname := call.Call.Fun.(*ast.SelectorExpr).Sel.Name
if goname == "malloc" {
continue
}
name := f.Name[goname]
if name.Kind != "func" {
// Probably a type conversion.
continue
}
if p.rewriteCall(f, call, name) {
needsUnsafe = true
}
}
return needsUnsafe
}
// rewriteCall rewrites one call to add pointer checks.
// If any pointer checks are required, we rewrite the call into a
// function literal that calls _cgoCheckPointer for each pointer
// argument and then calls the original function.
// This returns whether the package needs to import unsafe as _cgo_unsafe.
func (p *Package) rewriteCall(f *File, call *Call, name *Name) bool {
// Avoid a crash if the number of arguments is
// less than the number of parameters.
// This will be caught when the generated file is compiled.
if len(call.Call.Args) < len(name.FuncType.Params) {
return false
}
any := false
for i, param := range name.FuncType.Params {
if p.needsPointerCheck(f, param.Go, call.Call.Args[i]) {
any = true
break
}
}
if !any {
return false
}
// We need to rewrite this call.
//
// We are going to rewrite C.f(p) to
// func (_cgo0 ptype) {
// _cgoCheckPointer(_cgo0)
// C.f(_cgo0)
// }(p)
// Using a function literal like this lets us do correct
// argument type checking, and works correctly if the call is
// deferred.
needsUnsafe := false
params := make([]*ast.Field, len(name.FuncType.Params))
nargs := make([]ast.Expr, len(name.FuncType.Params))
var stmts []ast.Stmt
for i, param := range name.FuncType.Params {
// params is going to become the parameters of the
// function literal.
// nargs is going to become the list of arguments made
// by the call within the function literal.
// nparam is the parameter of the function literal that
// corresponds to param.
origArg := call.Call.Args[i]
nparam := ast.NewIdent(fmt.Sprintf("_cgo%d", i))
nargs[i] = nparam
// The Go version of the C type might use unsafe.Pointer,
// but the file might not import unsafe.
// Rewrite the Go type if necessary to use _cgo_unsafe.
ptype := p.rewriteUnsafe(param.Go)
if ptype != param.Go {
needsUnsafe = true
}
params[i] = &ast.Field{
Names: []*ast.Ident{nparam},
Type: ptype,
}
if !p.needsPointerCheck(f, param.Go, origArg) {
continue
}
// Run the cgo pointer checks on nparam.
// Change the function literal to call the real function
// with the parameter passed through _cgoCheckPointer.
c := &ast.CallExpr{
Fun: ast.NewIdent("_cgoCheckPointer"),
Args: []ast.Expr{
nparam,
},
}
// Add optional additional arguments for an address
// expression.
c.Args = p.checkAddrArgs(f, c.Args, origArg)
stmt := &ast.ExprStmt{
X: c,
}
stmts = append(stmts, stmt)
}
const cgoMarker = "__cgo__###__marker__"
fcall := &ast.CallExpr{
Fun: ast.NewIdent(cgoMarker),
Args: nargs,
}
ftype := &ast.FuncType{
Params: &ast.FieldList{
List: params,
},
}
if name.FuncType.Result != nil {
rtype := p.rewriteUnsafe(name.FuncType.Result.Go)
if rtype != name.FuncType.Result.Go {
needsUnsafe = true
}
ftype.Results = &ast.FieldList{
List: []*ast.Field{
&ast.Field{
Type: rtype,
},
},
}
}
// If this call expects two results, we have to
// adjust the results of the function we generated.
for _, ref := range f.Ref {
if ref.Expr == &call.Call.Fun && ref.Context == ctxCall2 {
if ftype.Results == nil {
// An explicit void argument
// looks odd but it seems to
// be how cgo has worked historically.
ftype.Results = &ast.FieldList{
List: []*ast.Field{
&ast.Field{
Type: ast.NewIdent("_Ctype_void"),
},
},
}
}
ftype.Results.List = append(ftype.Results.List,
&ast.Field{
Type: ast.NewIdent("error"),
})
}
}
var fbody ast.Stmt
if ftype.Results == nil {
fbody = &ast.ExprStmt{
X: fcall,
}
} else {
fbody = &ast.ReturnStmt{
Results: []ast.Expr{fcall},
}
}
lit := &ast.FuncLit{
Type: ftype,
Body: &ast.BlockStmt{
List: append(stmts, fbody),
},
}
text := strings.Replace(gofmt(lit), "\n", ";", -1)
repl := strings.Split(text, cgoMarker)
f.Edit.Insert(f.offset(call.Call.Fun.Pos()), repl[0])
f.Edit.Insert(f.offset(call.Call.Fun.End()), repl[1])
return needsUnsafe
}
// needsPointerCheck returns whether the type t needs a pointer check.
// This is true if t is a pointer and if the value to which it points
// might contain a pointer.
func (p *Package) needsPointerCheck(f *File, t ast.Expr, arg ast.Expr) bool {
// An untyped nil does not need a pointer check, and when
// _cgoCheckPointer returns the untyped nil the type assertion we
// are going to insert will fail. Easier to just skip nil arguments.
// TODO: Note that this fails if nil is shadowed.
if id, ok := arg.(*ast.Ident); ok && id.Name == "nil" {
return false
}
return p.hasPointer(f, t, true)
}
// hasPointer is used by needsPointerCheck. If top is true it returns
// whether t is or contains a pointer that might point to a pointer.
// If top is false it returns whether t is or contains a pointer.
// f may be nil.
func (p *Package) hasPointer(f *File, t ast.Expr, top bool) bool {
switch t := t.(type) {
case *ast.ArrayType:
if t.Len == nil {
if !top {
return true
}
return p.hasPointer(f, t.Elt, false)
}
return p.hasPointer(f, t.Elt, top)
case *ast.StructType:
for _, field := range t.Fields.List {
if p.hasPointer(f, field.Type, top) {
return true
}
}
return false
case *ast.StarExpr: // Pointer type.
if !top {
return true
}
// Check whether this is a pointer to a C union (or class)
// type that contains a pointer.
if unionWithPointer[t.X] {
return true
}
return p.hasPointer(f, t.X, false)
case *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
return true
case *ast.Ident:
// TODO: Handle types defined within function.
for _, d := range p.Decl {
gd, ok := d.(*ast.GenDecl)
if !ok || gd.Tok != token.TYPE {
continue
}
for _, spec := range gd.Specs {
ts, ok := spec.(*ast.TypeSpec)
if !ok {
continue
}
if ts.Name.Name == t.Name {
return p.hasPointer(f, ts.Type, top)
}
}
}
if def := typedef[t.Name]; def != nil {
return p.hasPointer(f, def.Go, top)
}
if t.Name == "string" {
return !top
}
if t.Name == "error" {
return true
}
if goTypes[t.Name] != nil {
return false
}
// We can't figure out the type. Conservative
// approach is to assume it has a pointer.
return true
case *ast.SelectorExpr:
if l, ok := t.X.(*ast.Ident); !ok || l.Name != "C" {
// Type defined in a different package.
// Conservative approach is to assume it has a
// pointer.
return true
}
if f == nil {
// Conservative approach: assume pointer.
return true
}
name := f.Name[t.Sel.Name]
if name != nil && name.Kind == "type" && name.Type != nil && name.Type.Go != nil {
return p.hasPointer(f, name.Type.Go, top)
}
// We can't figure out the type. Conservative
// approach is to assume it has a pointer.
return true
default:
error_(t.Pos(), "could not understand type %s", gofmt(t))
return true
}
}
// checkAddrArgs tries to add arguments to the call of
// _cgoCheckPointer when the argument is an address expression. We
// pass true to mean that the argument is an address operation of
// something other than a slice index, which means that it's only
// necessary to check the specific element pointed to, not the entire
// object. This is for &s.f, where f is a field in a struct. We can
// pass a slice or array, meaning that we should check the entire
// slice or array but need not check any other part of the object.
// This is for &s.a[i], where we need to check all of a. However, we
// only pass the slice or array if we can refer to it without side
// effects.
func (p *Package) checkAddrArgs(f *File, args []ast.Expr, x ast.Expr) []ast.Expr {
// Strip type conversions.
for {
c, ok := x.(*ast.CallExpr)
if !ok || len(c.Args) != 1 || !p.isType(c.Fun) {
break
}
x = c.Args[0]
}
u, ok := x.(*ast.UnaryExpr)
if !ok || u.Op != token.AND {
return args
}
index, ok := u.X.(*ast.IndexExpr)
if !ok {
// This is the address of something that is not an
// index expression. We only need to examine the
// single value to which it points.
// TODO: what if true is shadowed?
return append(args, ast.NewIdent("true"))
}
if !p.hasSideEffects(f, index.X) {
// Examine the entire slice.
return append(args, index.X)
}
// Treat the pointer as unknown.
return args
}
// hasSideEffects returns whether the expression x has any side
// effects. x is an expression, not a statement, so the only side
// effect is a function call.
func (p *Package) hasSideEffects(f *File, x ast.Expr) bool {
found := false
f.walk(x, ctxExpr,
func(f *File, x interface{}, context astContext) {
switch x.(type) {
case *ast.CallExpr:
found = true
}
})
return found
}
// isType returns whether the expression is definitely a type.
// This is conservative--it returns false for an unknown identifier.
func (p *Package) isType(t ast.Expr) bool {
switch t := t.(type) {
case *ast.SelectorExpr:
id, ok := t.X.(*ast.Ident)
if !ok {
return false
}
if id.Name == "unsafe" && t.Sel.Name == "Pointer" {
return true
}
if id.Name == "C" && typedef["_Ctype_"+t.Sel.Name] != nil {
return true
}
return false
case *ast.Ident:
// TODO: This ignores shadowing.
switch t.Name {
case "unsafe.Pointer", "bool", "byte",
"complex64", "complex128",
"error",
"float32", "float64",
"int", "int8", "int16", "int32", "int64",
"rune", "string",
"uint", "uint8", "uint16", "uint32", "uint64", "uintptr":
return true
}
case *ast.StarExpr:
return p.isType(t.X)
case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType,
*ast.MapType, *ast.ChanType:
return true
}
return false
}
// rewriteUnsafe returns a version of t with references to unsafe.Pointer
// rewritten to use _cgo_unsafe.Pointer instead.
func (p *Package) rewriteUnsafe(t ast.Expr) ast.Expr {
switch t := t.(type) {
case *ast.Ident:
// We don't see a SelectorExpr for unsafe.Pointer;
// this is created by code in this file.
if t.Name == "unsafe.Pointer" {
return ast.NewIdent("_cgo_unsafe.Pointer")
}
case *ast.ArrayType:
t1 := p.rewriteUnsafe(t.Elt)
if t1 != t.Elt {
r := *t
r.Elt = t1
return &r
}
case *ast.StructType:
changed := false
fields := *t.Fields
fields.List = nil
for _, f := range t.Fields.List {
ft := p.rewriteUnsafe(f.Type)
if ft == f.Type {
fields.List = append(fields.List, f)
} else {
fn := *f
fn.Type = ft
fields.List = append(fields.List, &fn)
changed = true
}
}
if changed {
r := *t
r.Fields = &fields
return &r
}
case *ast.StarExpr: // Pointer type.
x1 := p.rewriteUnsafe(t.X)
if x1 != t.X {
r := *t
r.X = x1
return &r
}
}
return t
}
// rewriteRef rewrites all the C.xxx references in f.AST to refer to the
// Go equivalents, now that we have figured out the meaning of all
// the xxx. In *godefs mode, rewriteRef replaces the names
// with full definitions instead of mangled names.
func (p *Package) rewriteRef(f *File) {
// Keep a list of all the functions, to remove the ones
// only used as expressions and avoid generating bridge
// code for them.
functions := make(map[string]bool)
// Assign mangled names.
for _, n := range f.Name {
if n.Kind == "not-type" {
if n.Define == "" {
n.Kind = "var"
} else {
n.Kind = "macro"
n.FuncType = &FuncType{
Result: n.Type,
Go: &ast.FuncType{
Results: &ast.FieldList{List: []*ast.Field{{Type: n.Type.Go}}},
},
}
}
}
if n.Mangle == "" {
p.mangleName(n)
}
if n.Kind == "func" {
functions[n.Go] = false
}
}
// Now that we have all the name types filled in,
// scan through the Refs to identify the ones that
// are trying to do a ,err call. Also check that
// functions are only used in calls.
for _, r := range f.Ref {
if r.Name.IsConst() && r.Name.Const == "" {
error_(r.Pos(), "unable to find value of constant C.%s", fixGo(r.Name.Go))
}
var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default
switch r.Context {
case ctxCall, ctxCall2:
if r.Name.Kind != "func" {
if r.Name.Kind == "type" {
r.Context = ctxType
if r.Name.Type == nil {
error_(r.Pos(), "invalid conversion to C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
break
}
expr = r.Name.Type.Go
break
}
error_(r.Pos(), "call of non-function C.%s", fixGo(r.Name.Go))
break
}
functions[r.Name.Go] = true
if r.Context == ctxCall2 {
if r.Name.Go == "_CMalloc" {
error_(r.Pos(), "no two-result form for C.malloc")
break
}
// Invent new Name for the two-result function.
n := f.Name["2"+r.Name.Go]
if n == nil {
n = new(Name)
*n = *r.Name
n.AddError = true
n.Mangle = "_C2func_" + n.Go
f.Name["2"+r.Name.Go] = n
}
expr = ast.NewIdent(n.Mangle)
r.Name = n
break
}
case ctxExpr:
switch r.Name.Kind {
case "func":
if builtinDefs[r.Name.C] != "" {
error_(r.Pos(), "use of builtin '%s' not in function call", fixGo(r.Name.C))
}
// Function is being used in an expression, to e.g. pass around a C function pointer.
// Create a new Name for this Ref which causes the variable to be declared in Go land.
fpName := "fp_" + r.Name.Go
name := f.Name[fpName]
if name == nil {
name = &Name{
Go: fpName,
C: r.Name.C,
Kind: "fpvar",
Type: &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*"), Go: ast.NewIdent("unsafe.Pointer")},
}
p.mangleName(name)
f.Name[fpName] = name
}
r.Name = name
// Rewrite into call to _Cgo_ptr to prevent assignments. The _Cgo_ptr
// function is defined in out.go and simply returns its argument. See
// issue 7757.
expr = &ast.CallExpr{
Fun: &ast.Ident{NamePos: (*r.Expr).Pos(), Name: "_Cgo_ptr"},
Args: []ast.Expr{ast.NewIdent(name.Mangle)},
}
case "type":
// Okay - might be new(T)
if r.Name.Type == nil {
error_(r.Pos(), "expression C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
break
}
expr = r.Name.Type.Go
case "var":
expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr}
case "macro":
expr = &ast.CallExpr{Fun: expr}
}
case ctxSelector:
if r.Name.Kind == "var" {
expr = &ast.StarExpr{Star: (*r.Expr).Pos(), X: expr}
} else {
error_(r.Pos(), "only C variables allowed in selector expression %s", fixGo(r.Name.Go))
}
case ctxType:
if r.Name.Kind != "type" {
error_(r.Pos(), "expression C.%s used as type", fixGo(r.Name.Go))
} else if r.Name.Type == nil {
// Use of C.enum_x, C.struct_x or C.union_x without C definition.
// GCC won't raise an error when using pointers to such unknown types.
error_(r.Pos(), "type C.%s: undefined C type '%s'", fixGo(r.Name.Go), r.Name.C)
} else {
expr = r.Name.Type.Go
}
default:
if r.Name.Kind == "func" {
error_(r.Pos(), "must call C.%s", fixGo(r.Name.Go))
}
}
if *godefs {
// Substitute definition for mangled type name.
if id, ok := expr.(*ast.Ident); ok {
if t := typedef[id.Name]; t != nil {
expr = t.Go
}
if id.Name == r.Name.Mangle && r.Name.Const != "" {
expr = ast.NewIdent(r.Name.Const)
}
}
}
// Copy position information from old expr into new expr,
// in case expression being replaced is first on line.
// See golang.org/issue/6563.
pos := (*r.Expr).Pos()
switch x := expr.(type) {
case *ast.Ident:
expr = &ast.Ident{NamePos: pos, Name: x.Name}
}
// Change AST, because some later processing depends on it,
// and also because -godefs mode still prints the AST.
old := *r.Expr
*r.Expr = expr
// Record source-level edit for cgo output.
repl := gofmt(expr)
if r.Name.Kind != "type" {
repl = "(" + repl + ")"
}
f.Edit.Replace(f.offset(old.Pos()), f.offset(old.End()), repl)
}
// Remove functions only used as expressions, so their respective
// bridge functions are not generated.
for name, used := range functions {
if !used {
delete(f.Name, name)
}
}
}
// gccBaseCmd returns the start of the compiler command line.
// It uses $CC if set, or else $GCC, or else the compiler recorded
// during the initial build as defaultCC.
// defaultCC is defined in zdefaultcc.go, written by cmd/dist.
func (p *Package) gccBaseCmd() []string {
// Use $CC if set, since that's what the build uses.
if ret := strings.Fields(os.Getenv("CC")); len(ret) > 0 {
return ret
}
// Try $GCC if set, since that's what we used to use.
if ret := strings.Fields(os.Getenv("GCC")); len(ret) > 0 {
return ret
}
return strings.Fields(defaultCC(goos, goarch))
}
// gccMachine returns the gcc -m flag to use, either "-m32", "-m64" or "-marm".
func (p *Package) gccMachine() []string {
switch goarch {
case "amd64":
return []string{"-m64"}
case "386":
return []string{"-m32"}
case "arm":
return []string{"-marm"} // not thumb
case "s390":
return []string{"-m31"}
case "s390x":
return []string{"-m64"}
case "mips64", "mips64le":
return []string{"-mabi=64"}
case "mips", "mipsle":
return []string{"-mabi=32"}
}
return nil
}
func gccTmp() string {
return *objDir + "_cgo_.o"
}
// gccCmd returns the gcc command line to use for compiling
// the input.
func (p *Package) gccCmd() []string {
c := append(p.gccBaseCmd(),
"-w", // no warnings
"-Wno-error", // warnings are not errors
"-o"+gccTmp(), // write object to tmp
"-gdwarf-2", // generate DWARF v2 debugging symbols
"-c", // do not link
"-xc", // input language is C
)
if p.GccIsClang {
c = append(c,
"-ferror-limit=0",
// Apple clang version 1.7 (tags/Apple/clang-77) (based on LLVM 2.9svn)
// doesn't have -Wno-unneeded-internal-declaration, so we need yet another
// flag to disable the warning. Yes, really good diagnostics, clang.
"-Wno-unknown-warning-option",
"-Wno-unneeded-internal-declaration",
"-Wno-unused-function",
"-Qunused-arguments",
// Clang embeds prototypes for some builtin functions,
// like malloc and calloc, but all size_t parameters are
// incorrectly typed unsigned long. We work around that
// by disabling the builtin functions (this is safe as
// it won't affect the actual compilation of the C code).
// See: https://golang.org/issue/6506.
"-fno-builtin",
)
}
c = append(c, p.GccOptions...)
c = append(c, p.gccMachine()...)
c = append(c, "-") //read input from standard input
return c
}
// gccDebug runs gcc -gdwarf-2 over the C program stdin and
// returns the corresponding DWARF data and, if present, debug data block.
func (p *Package) gccDebug(stdin []byte, nnames int) (d *dwarf.Data, ints []int64, floats []float64, strs []string) {
runGcc(stdin, p.gccCmd())
isDebugInts := func(s string) bool {
// Some systems use leading _ to denote non-assembly symbols.
return s == "__cgodebug_ints" || s == "___cgodebug_ints"
}
isDebugFloats := func(s string) bool {
// Some systems use leading _ to denote non-assembly symbols.
return s == "__cgodebug_floats" || s == "___cgodebug_floats"
}
indexOfDebugStr := func(s string) int {
// Some systems use leading _ to denote non-assembly symbols.
if strings.HasPrefix(s, "___") {
s = s[1:]
}
if strings.HasPrefix(s, "__cgodebug_str__") {
if n, err := strconv.Atoi(s[len("__cgodebug_str__"):]); err == nil {
return n
}
}
return -1
}
indexOfDebugStrlen := func(s string) int {
// Some systems use leading _ to denote non-assembly symbols.
if strings.HasPrefix(s, "___") {
s = s[1:]
}
if strings.HasPrefix(s, "__cgodebug_strlen__") {
if n, err := strconv.Atoi(s[len("__cgodebug_strlen__"):]); err == nil {
return n
}
}
return -1
}
strs = make([]string, nnames)
strdata := make(map[int]string, nnames)
strlens := make(map[int]int, nnames)
buildStrings := func() {
for n, strlen := range strlens {
data := strdata[n]
if len(data) <= strlen {
fatalf("invalid string literal")
}
strs[n] = string(data[:strlen])
}
}
if f, err := macho.Open(gccTmp()); err == nil {
defer f.Close()
d, err := f.DWARF()
if err != nil {
fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
}
bo := f.ByteOrder
if f.Symtab != nil {
for i := range f.Symtab.Syms {
s := &f.Symtab.Syms[i]
switch {
case isDebugInts(s.Name):
// Found it. Now find data section.
if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value-sect.Addr:]
ints = make([]int64, len(data)/8)
for i := range ints {
ints[i] = int64(bo.Uint64(data[i*8:]))
}
}
}
}
case isDebugFloats(s.Name):
// Found it. Now find data section.
if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value-sect.Addr:]
floats = make([]float64, len(data)/8)
for i := range floats {
floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
}
}
}
}
default:
if n := indexOfDebugStr(s.Name); n != -1 {
// Found it. Now find data section.
if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value-sect.Addr:]
strdata[n] = string(data)
}
}
}
break
}
if n := indexOfDebugStrlen(s.Name); n != -1 {
// Found it. Now find data section.
if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value-sect.Addr:]
strlen := bo.Uint64(data[:8])
if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
fatalf("string literal too big")
}
strlens[n] = int(strlen)
}
}
}
break
}
}
}
buildStrings()
}
return d, ints, floats, strs
}
if f, err := elf.Open(gccTmp()); err == nil {
defer f.Close()
d, err := f.DWARF()
if err != nil {
fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
}
bo := f.ByteOrder
symtab, err := f.Symbols()
if err == nil {
for i := range symtab {
s := &symtab[i]
switch {
case isDebugInts(s.Name):
// Found it. Now find data section.
if i := int(s.Section); 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value-sect.Addr:]
ints = make([]int64, len(data)/8)
for i := range ints {
ints[i] = int64(bo.Uint64(data[i*8:]))
}
}
}
}
case isDebugFloats(s.Name):
// Found it. Now find data section.
if i := int(s.Section); 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value-sect.Addr:]
floats = make([]float64, len(data)/8)
for i := range floats {
floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
}
}
}
}
default:
if n := indexOfDebugStr(s.Name); n != -1 {
// Found it. Now find data section.
if i := int(s.Section); 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value-sect.Addr:]
strdata[n] = string(data)
}
}
}
break
}
if n := indexOfDebugStrlen(s.Name); n != -1 {
// Found it. Now find data section.
if i := int(s.Section); 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value-sect.Addr:]
strlen := bo.Uint64(data[:8])
if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
fatalf("string literal too big")
}
strlens[n] = int(strlen)
}
}
}
break
}
}
}
buildStrings()
}
return d, ints, floats, strs
}
if f, err := pe.Open(gccTmp()); err == nil {
defer f.Close()
d, err := f.DWARF()
if err != nil {
fatalf("cannot load DWARF output from %s: %v", gccTmp(), err)
}
bo := binary.LittleEndian
for _, s := range f.Symbols {
switch {
case isDebugInts(s.Name):
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if s.Value < sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value:]
ints = make([]int64, len(data)/8)
for i := range ints {
ints[i] = int64(bo.Uint64(data[i*8:]))
}
}
}
}
case isDebugFloats(s.Name):
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if s.Value < sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value:]
floats = make([]float64, len(data)/8)
for i := range floats {
floats[i] = math.Float64frombits(bo.Uint64(data[i*8:]))
}
}
}
}
default:
if n := indexOfDebugStr(s.Name); n != -1 {
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if s.Value < sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value:]
strdata[n] = string(data)
}
}
}
break
}
if n := indexOfDebugStrlen(s.Name); n != -1 {
if i := int(s.SectionNumber) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if s.Value < sect.Size {
if sdat, err := sect.Data(); err == nil {
data := sdat[s.Value:]
strlen := bo.Uint64(data[:8])
if strlen > (1<<(uint(p.IntSize*8)-1) - 1) { // greater than MaxInt?
fatalf("string literal too big")
}
strlens[n] = int(strlen)
}
}
}
break
}
}
}
buildStrings()
return d, ints, floats, strs
}
fatalf("cannot parse gcc output %s as ELF, Mach-O, PE object", gccTmp())
panic("not reached")
}
// gccDefines runs gcc -E -dM -xc - over the C program stdin
// and returns the corresponding standard output, which is the
// #defines that gcc encountered while processing the input
// and its included files.
func (p *Package) gccDefines(stdin []byte) string {
base := append(p.gccBaseCmd(), "-E", "-dM", "-xc")
base = append(base, p.gccMachine()...)
stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-"))
return stdout
}
// gccErrors runs gcc over the C program stdin and returns
// the errors that gcc prints. That is, this function expects
// gcc to fail.
func (p *Package) gccErrors(stdin []byte) string {
// TODO(rsc): require failure
args := p.gccCmd()
// Optimization options can confuse the error messages; remove them.
nargs := make([]string, 0, len(args))
for _, arg := range args {
if !strings.HasPrefix(arg, "-O") {
nargs = append(nargs, arg)
}
}
if *debugGcc {
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(nargs, " "))
os.Stderr.Write(stdin)
fmt.Fprint(os.Stderr, "EOF\n")
}
stdout, stderr, _ := run(stdin, nargs)
if *debugGcc {
os.Stderr.Write(stdout)
os.Stderr.Write(stderr)
}
return string(stderr)
}
// runGcc runs the gcc command line args with stdin on standard input.
// If the command exits with a non-zero exit status, runGcc prints
// details about what was run and exits.
// Otherwise runGcc returns the data written to standard output and standard error.
// Note that for some of the uses we expect useful data back
// on standard error, but for those uses gcc must still exit 0.
func runGcc(stdin []byte, args []string) (string, string) {
if *debugGcc {
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
os.Stderr.Write(stdin)
fmt.Fprint(os.Stderr, "EOF\n")
}
stdout, stderr, ok := run(stdin, args)
if *debugGcc {
os.Stderr.Write(stdout)
os.Stderr.Write(stderr)
}
if !ok {
os.Stderr.Write(stderr)
os.Exit(2)
}
return string(stdout), string(stderr)
}
// A typeConv is a translator from dwarf types to Go types
// with equivalent memory layout.
type typeConv struct {
// Cache of already-translated or in-progress types.
m map[dwarf.Type]*Type
// Map from types to incomplete pointers to those types.
ptrs map[dwarf.Type][]*Type
// Keys of ptrs in insertion order (deterministic worklist)
ptrKeys []dwarf.Type
// Type names X for which there exists an XGetTypeID function with type func() CFTypeID.
getTypeIDs map[string]bool
// Predeclared types.
bool ast.Expr
byte ast.Expr // denotes padding
int8, int16, int32, int64 ast.Expr
uint8, uint16, uint32, uint64, uintptr ast.Expr
float32, float64 ast.Expr
complex64, complex128 ast.Expr
void ast.Expr
string ast.Expr
goVoid ast.Expr // _Ctype_void, denotes C's void
goVoidPtr ast.Expr // unsafe.Pointer or *byte
ptrSize int64
intSize int64
}
var tagGen int
var typedef = make(map[string]*Type)
var goIdent = make(map[string]*ast.Ident)
// unionWithPointer is true for a Go type that represents a C union (or class)
// that may contain a pointer. This is used for cgo pointer checking.
var unionWithPointer = make(map[ast.Expr]bool)
func (c *typeConv) Init(ptrSize, intSize int64) {
c.ptrSize = ptrSize
c.intSize = intSize
c.m = make(map[dwarf.Type]*Type)
c.ptrs = make(map[dwarf.Type][]*Type)
c.getTypeIDs = make(map[string]bool)
c.bool = c.Ident("bool")
c.byte = c.Ident("byte")
c.int8 = c.Ident("int8")
c.int16 = c.Ident("int16")
c.int32 = c.Ident("int32")
c.int64 = c.Ident("int64")
c.uint8 = c.Ident("uint8")
c.uint16 = c.Ident("uint16")
c.uint32 = c.Ident("uint32")
c.uint64 = c.Ident("uint64")
c.uintptr = c.Ident("uintptr")
c.float32 = c.Ident("float32")
c.float64 = c.Ident("float64")
c.complex64 = c.Ident("complex64")
c.complex128 = c.Ident("complex128")
c.void = c.Ident("void")
c.string = c.Ident("string")
c.goVoid = c.Ident("_Ctype_void")
// Normally cgo translates void* to unsafe.Pointer,
// but for historical reasons -godefs uses *byte instead.
if *godefs {
c.goVoidPtr = &ast.StarExpr{X: c.byte}
} else {
c.goVoidPtr = c.Ident("unsafe.Pointer")
}
}
// base strips away qualifiers and typedefs to get the underlying type
func base(dt dwarf.Type) dwarf.Type {
for {
if d, ok := dt.(*dwarf.QualType); ok {
dt = d.Type
continue
}
if d, ok := dt.(*dwarf.TypedefType); ok {
dt = d.Type
continue
}
break
}
return dt
}
// unqual strips away qualifiers from a DWARF type.
// In general we don't care about top-level qualifiers.
func unqual(dt dwarf.Type) dwarf.Type {
for {
if d, ok := dt.(*dwarf.QualType); ok {
dt = d.Type
} else {
break
}
}
return dt
}
// Map from dwarf text names to aliases we use in package "C".
var dwarfToName = map[string]string{
"long int": "long",
"long unsigned int": "ulong",
"unsigned int": "uint",
"short unsigned int": "ushort",
"unsigned short": "ushort", // Used by Clang; issue 13129.
"short int": "short",
"long long int": "longlong",
"long long unsigned int": "ulonglong",
"signed char": "schar",
"unsigned char": "uchar",
}
const signedDelta = 64
// String returns the current type representation. Format arguments
// are assembled within this method so that any changes in mutable
// values are taken into account.
func (tr *TypeRepr) String() string {
if len(tr.Repr) == 0 {
return ""
}
if len(tr.FormatArgs) == 0 {
return tr.Repr
}
return fmt.Sprintf(tr.Repr, tr.FormatArgs...)
}
// Empty reports whether the result of String would be "".
func (tr *TypeRepr) Empty() bool {
return len(tr.Repr) == 0
}
// Set modifies the type representation.
// If fargs are provided, repr is used as a format for fmt.Sprintf.
// Otherwise, repr is used unprocessed as the type representation.
func (tr *TypeRepr) Set(repr string, fargs ...interface{}) {
tr.Repr = repr
tr.FormatArgs = fargs
}
// FinishType completes any outstanding type mapping work.
// In particular, it resolves incomplete pointer types.
func (c *typeConv) FinishType(pos token.Pos) {
// Completing one pointer type might produce more to complete.
// Keep looping until they're all done.
for len(c.ptrKeys) > 0 {
dtype := c.ptrKeys[0]
c.ptrKeys = c.ptrKeys[1:]
// Note Type might invalidate c.ptrs[dtype].
t := c.Type(dtype, pos)
for _, ptr := range c.ptrs[dtype] {
ptr.Go.(*ast.StarExpr).X = t.Go
ptr.C.Set("%s*", t.C)
}
c.ptrs[dtype] = nil // retain the map key
}
}
// Type returns a *Type with the same memory layout as
// dtype when used as the type of a variable or a struct field.
func (c *typeConv) Type(dtype dwarf.Type, pos token.Pos) *Type {
if t, ok := c.m[dtype]; ok {
if t.Go == nil {
fatalf("%s: type conversion loop at %s", lineno(pos), dtype)
}
return t
}
t := new(Type)
t.Size = dtype.Size() // note: wrong for array of pointers, corrected below
t.Align = -1
t.C = &TypeRepr{Repr: dtype.Common().Name}
c.m[dtype] = t
switch dt := dtype.(type) {
default:
fatalf("%s: unexpected type: %s", lineno(pos), dtype)
case *dwarf.AddrType:
if t.Size != c.ptrSize {
fatalf("%s: unexpected: %d-byte address type - %s", lineno(pos), t.Size, dtype)
}
t.Go = c.uintptr
t.Align = t.Size
case *dwarf.ArrayType:
if dt.StrideBitSize > 0 {
// Cannot represent bit-sized elements in Go.
t.Go = c.Opaque(t.Size)
break
}
count := dt.Count
if count == -1 {
// Indicates flexible array member, which Go doesn't support.
// Translate to zero-length array instead.
count = 0
}
sub := c.Type(dt.Type, pos)
t.Align = sub.Align
t.Go = &ast.ArrayType{
Len: c.intExpr(count),
Elt: sub.Go,
}
// Recalculate t.Size now that we know sub.Size.
t.Size = count * sub.Size
t.C.Set("__typeof__(%s[%d])", sub.C, dt.Count)
case *dwarf.BoolType:
t.Go = c.bool
t.Align = 1
case *dwarf.CharType:
if t.Size != 1 {
fatalf("%s: unexpected: %d-byte char type - %s", lineno(pos), t.Size, dtype)
}
t.Go = c.int8
t.Align = 1
case *dwarf.EnumType:
if t.Align = t.Size; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}
t.C.Set("enum " + dt.EnumName)
signed := 0
t.EnumValues = make(map[string]int64)
for _, ev := range dt.Val {
t.EnumValues[ev.Name] = ev.Val
if ev.Val < 0 {
signed = signedDelta
}
}
switch t.Size + int64(signed) {
default:
fatalf("%s: unexpected: %d-byte enum type - %s", lineno(pos), t.Size, dtype)
case 1:
t.Go = c.uint8
case 2:
t.Go = c.uint16
case 4:
t.Go = c.uint32
case 8:
t.Go = c.uint64
case 1 + signedDelta:
t.Go = c.int8
case 2 + signedDelta:
t.Go = c.int16
case 4 + signedDelta:
t.Go = c.int32
case 8 + signedDelta:
t.Go = c.int64
}
case *dwarf.FloatType:
switch t.Size {
default:
fatalf("%s: unexpected: %d-byte float type - %s", lineno(pos), t.Size, dtype)
case 4:
t.Go = c.float32
case 8:
t.Go = c.float64
}
if t.Align = t.Size; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}
case *dwarf.ComplexType:
switch t.Size {
default:
fatalf("%s: unexpected: %d-byte complex type - %s", lineno(pos), t.Size, dtype)
case 8:
t.Go = c.complex64
case 16:
t.Go = c.complex128
}
if t.Align = t.Size / 2; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}
case *dwarf.FuncType:
// No attempt at translation: would enable calls
// directly between worlds, but we need to moderate those.
t.Go = c.uintptr
t.Align = c.ptrSize
case *dwarf.IntType:
if dt.BitSize > 0 {
fatalf("%s: unexpected: %d-bit int type - %s", lineno(pos), dt.BitSize, dtype)
}
switch t.Size {
default:
fatalf("%s: unexpected: %d-byte int type - %s", lineno(pos), t.Size, dtype)
case 1:
t.Go = c.int8
case 2:
t.Go = c.int16
case 4:
t.Go = c.int32
case 8:
t.Go = c.int64
case 16:
t.Go = &ast.ArrayType{
Len: c.intExpr(t.Size),
Elt: c.uint8,
}
}
if t.Align = t.Size; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}
case *dwarf.PtrType:
// Clang doesn't emit DW_AT_byte_size for pointer types.
if t.Size != c.ptrSize && t.Size != -1 {
fatalf("%s: unexpected: %d-byte pointer type - %s", lineno(pos), t.Size, dtype)
}
t.Size = c.ptrSize
t.Align = c.ptrSize
if _, ok := base(dt.Type).(*dwarf.VoidType); ok {
t.Go = c.goVoidPtr
t.C.Set("void*")
dq := dt.Type
for {
if d, ok := dq.(*dwarf.QualType); ok {
t.C.Set(d.Qual + " " + t.C.String())
dq = d.Type
} else {
break
}
}
break
}
// Placeholder initialization; completed in FinishType.
t.Go = &ast.StarExpr{}
t.C.Set("<incomplete>*")
if _, ok := c.ptrs[dt.Type]; !ok {
c.ptrKeys = append(c.ptrKeys, dt.Type)
}
c.ptrs[dt.Type] = append(c.ptrs[dt.Type], t)
case *dwarf.QualType:
t1 := c.Type(dt.Type, pos)
t.Size = t1.Size
t.Align = t1.Align
t.Go = t1.Go
if unionWithPointer[t1.Go] {
unionWithPointer[t.Go] = true
}
t.EnumValues = nil
t.Typedef = ""
t.C.Set("%s "+dt.Qual, t1.C)
return t
case *dwarf.StructType:
// Convert to Go struct, being careful about alignment.
// Have to give it a name to simulate C "struct foo" references.
tag := dt.StructName
if dt.ByteSize < 0 && tag == "" { // opaque unnamed struct - should not be possible
break
}
if tag == "" {
tag = "__" + strconv.Itoa(tagGen)
tagGen++
} else if t.C.Empty() {
t.C.Set(dt.Kind + " " + tag)
}
name := c.Ident("_Ctype_" + dt.Kind + "_" + tag)
t.Go = name // publish before recursive calls
goIdent[name.Name] = name
if dt.ByteSize < 0 {
// Size calculation in c.Struct/c.Opaque will die with size=-1 (unknown),
// so execute the basic things that the struct case would do
// other than try to determine a Go representation.
tt := *t
tt.C = &TypeRepr{"%s %s", []interface{}{dt.Kind, tag}}
tt.Go = c.Ident("struct{}")
typedef[name.Name] = &tt
break
}
switch dt.Kind {
case "class", "union":
t.Go = c.Opaque(t.Size)
if c.dwarfHasPointer(dt, pos) {
unionWithPointer[t.Go] = true
}
if t.C.Empty() {
t.C.Set("__typeof__(unsigned char[%d])", t.Size)
}
t.Align = 1 // TODO: should probably base this on field alignment.
typedef[name.Name] = t
case "struct":
g, csyntax, align := c.Struct(dt, pos)
if t.C.Empty() {
t.C.Set(csyntax)
}
t.Align = align
tt := *t
if tag != "" {
tt.C = &TypeRepr{"struct %s", []interface{}{tag}}
}
tt.Go = g
typedef[name.Name] = &tt
}
case *dwarf.TypedefType:
// Record typedef for printing.
if dt.Name == "_GoString_" {
// Special C name for Go string type.
// Knows string layout used by compilers: pointer plus length,
// which rounds up to 2 pointers after alignment.
t.Go = c.string
t.Size = c.ptrSize * 2
t.Align = c.ptrSize
break
}
if dt.Name == "_GoBytes_" {
// Special C name for Go []byte type.
// Knows slice layout used by compilers: pointer, length, cap.
t.Go = c.Ident("[]byte")
t.Size = c.ptrSize + 4 + 4
t.Align = c.ptrSize
break
}
name := c.Ident("_Ctype_" + dt.Name)
goIdent[name.Name] = name
sub := c.Type(dt.Type, pos)
if c.badPointerTypedef(dt) {
// Treat this typedef as a uintptr.
s := *sub
s.Go = c.uintptr
sub = &s
}
t.Go = name
if unionWithPointer[sub.Go] {
unionWithPointer[t.Go] = true
}
t.Size = sub.Size
t.Align = sub.Align
oldType := typedef[name.Name]
if oldType == nil {
tt := *t
tt.Go = sub.Go
typedef[name.Name] = &tt
}
// If sub.Go.Name is "_Ctype_struct_foo" or "_Ctype_union_foo" or "_Ctype_class_foo",
// use that as the Go form for this typedef too, so that the typedef will be interchangeable
// with the base type.
// In -godefs mode, do this for all typedefs.
if isStructUnionClass(sub.Go) || *godefs {
t.Go = sub.Go
if isStructUnionClass(sub.Go) {
// Use the typedef name for C code.
typedef[sub.Go.(*ast.Ident).Name].C = t.C
}
// If we've seen this typedef before, and it
// was an anonymous struct/union/class before
// too, use the old definition.
// TODO: it would be safer to only do this if
// we verify that the types are the same.
if oldType != nil && isStructUnionClass(oldType.Go) {
t.Go = oldType.Go
}
}
case *dwarf.UcharType:
if t.Size != 1 {
fatalf("%s: unexpected: %d-byte uchar type - %s", lineno(pos), t.Size, dtype)
}
t.Go = c.uint8
t.Align = 1
case *dwarf.UintType:
if dt.BitSize > 0 {
fatalf("%s: unexpected: %d-bit uint type - %s", lineno(pos), dt.BitSize, dtype)
}
switch t.Size {
default:
fatalf("%s: unexpected: %d-byte uint type - %s", lineno(pos), t.Size, dtype)
case 1:
t.Go = c.uint8
case 2:
t.Go = c.uint16
case 4:
t.Go = c.uint32
case 8:
t.Go = c.uint64
case 16:
t.Go = &ast.ArrayType{
Len: c.intExpr(t.Size),
Elt: c.uint8,
}
}
if t.Align = t.Size; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}
case *dwarf.VoidType:
t.Go = c.goVoid
t.C.Set("void")
t.Align = 1
}
switch dtype.(type) {
case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.ComplexType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType:
s := dtype.Common().Name
if s != "" {
if ss, ok := dwarfToName[s]; ok {
s = ss
}
s = strings.Replace(s, " ", "", -1)
name := c.Ident("_Ctype_" + s)
tt := *t
typedef[name.Name] = &tt
if !*godefs {
t.Go = name
}
}
}
if t.Size < 0 {
// Unsized types are [0]byte, unless they're typedefs of other types
// or structs with tags.
// if so, use the name we've already defined.
t.Size = 0
switch dt := dtype.(type) {
case *dwarf.TypedefType:
// ok
case *dwarf.StructType:
if dt.StructName != "" {
break
}
t.Go = c.Opaque(0)
default:
t.Go = c.Opaque(0)
}
if t.C.Empty() {
t.C.Set("void")
}
}
if t.C.Empty() {
fatalf("%s: internal error: did not create C name for %s", lineno(pos), dtype)
}
return t
}
// isStructUnionClass reports whether the type described by the Go syntax x
// is a struct, union, or class with a tag.
func isStructUnionClass(x ast.Expr) bool {
id, ok := x.(*ast.Ident)
if !ok {
return false
}
name := id.Name
return strings.HasPrefix(name, "_Ctype_struct_") ||
strings.HasPrefix(name, "_Ctype_union_") ||
strings.HasPrefix(name, "_Ctype_class_")
}
// FuncArg returns a Go type with the same memory layout as
// dtype when used as the type of a C function argument.
func (c *typeConv) FuncArg(dtype dwarf.Type, pos token.Pos) *Type {
t := c.Type(unqual(dtype), pos)
switch dt := dtype.(type) {
case *dwarf.ArrayType:
// Arrays are passed implicitly as pointers in C.
// In Go, we must be explicit.
tr := &TypeRepr{}
tr.Set("%s*", t.C)
return &Type{
Size: c.ptrSize,
Align: c.ptrSize,
Go: &ast.StarExpr{X: t.Go},
C: tr,
}
case *dwarf.TypedefType:
// C has much more relaxed rules than Go for
// implicit type conversions. When the parameter
// is type T defined as *X, simulate a little of the
// laxness of C by making the argument *X instead of T.
if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok {
// Unless the typedef happens to point to void* since
// Go has special rules around using unsafe.Pointer.
if _, void := base(ptr.Type).(*dwarf.VoidType); void {
break
}
// ...or the typedef is one in which we expect bad pointers.
// It will be a uintptr instead of *X.
if c.badPointerTypedef(dt) {
break
}
// If we already know the typedef for t just use that.
// See issue 19832.
if def := typedef[t.Go.(*ast.Ident).Name]; def != nil {
break
}
t = c.Type(ptr, pos)
if t == nil {
return nil
}
// For a struct/union/class, remember the C spelling,
// in case it has __attribute__((unavailable)).
// See issue 2888.
if isStructUnionClass(t.Go) {
t.Typedef = dt.Name
}
}
}
return t
}
// FuncType returns the Go type analogous to dtype.
// There is no guarantee about matching memory layout.
func (c *typeConv) FuncType(dtype *dwarf.FuncType, pos token.Pos) *FuncType {
p := make([]*Type, len(dtype.ParamType))
gp := make([]*ast.Field, len(dtype.ParamType))
for i, f := range dtype.ParamType {
// gcc's DWARF generator outputs a single DotDotDotType parameter for
// function pointers that specify no parameters (e.g. void
// (*__cgo_0)()). Treat this special case as void. This case is
// invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not
// legal).
if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 {
p, gp = nil, nil
break
}
p[i] = c.FuncArg(f, pos)
gp[i] = &ast.Field{Type: p[i].Go}
}
var r *Type
var gr []*ast.Field
if _, ok := base(dtype.ReturnType).(*dwarf.VoidType); ok {
gr = []*ast.Field{{Type: c.goVoid}}
} else if dtype.ReturnType != nil {
r = c.Type(unqual(dtype.ReturnType), pos)
gr = []*ast.Field{{Type: r.Go}}
}
return &FuncType{
Params: p,
Result: r,
Go: &ast.FuncType{
Params: &ast.FieldList{List: gp},
Results: &ast.FieldList{List: gr},
},
}
}
// Identifier
func (c *typeConv) Ident(s string) *ast.Ident {
return ast.NewIdent(s)
}
// Opaque type of n bytes.
func (c *typeConv) Opaque(n int64) ast.Expr {
return &ast.ArrayType{
Len: c.intExpr(n),
Elt: c.byte,
}
}
// Expr for integer n.
func (c *typeConv) intExpr(n int64) ast.Expr {
return &ast.BasicLit{
Kind: token.INT,
Value: strconv.FormatInt(n, 10),
}
}
// Add padding of given size to fld.
func (c *typeConv) pad(fld []*ast.Field, sizes []int64, size int64) ([]*ast.Field, []int64) {
n := len(fld)
fld = fld[0 : n+1]
fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)}
sizes = sizes[0 : n+1]
sizes[n] = size
return fld, sizes
}
// Struct conversion: return Go and (gc) C syntax for type.
func (c *typeConv) Struct(dt *dwarf.StructType, pos token.Pos) (expr *ast.StructType, csyntax string, align int64) {
// Minimum alignment for a struct is 1 byte.
align = 1
var buf bytes.Buffer
buf.WriteString("struct {")
fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field
sizes := make([]int64, 0, 2*len(dt.Field)+1)
off := int64(0)
// Rename struct fields that happen to be named Go keywords into
// _{keyword}. Create a map from C ident -> Go ident. The Go ident will
// be mangled. Any existing identifier that already has the same name on
// the C-side will cause the Go-mangled version to be prefixed with _.
// (e.g. in a struct with fields '_type' and 'type', the latter would be
// rendered as '__type' in Go).
ident := make(map[string]string)
used := make(map[string]bool)
for _, f := range dt.Field {
ident[f.Name] = f.Name
used[f.Name] = true
}
if !*godefs {
for cid, goid := range ident {
if token.Lookup(goid).IsKeyword() {
// Avoid keyword
goid = "_" + goid
// Also avoid existing fields
for _, exist := used[goid]; exist; _, exist = used[goid] {
goid = "_" + goid
}
used[goid] = true
ident[cid] = goid
}
}
}
anon := 0
for _, f := range dt.Field {
if f.ByteOffset > off {
fld, sizes = c.pad(fld, sizes, f.ByteOffset-off)
off = f.ByteOffset
}
name := f.Name
ft := f.Type
// In godefs mode, if this field is a C11
// anonymous union then treat the first field in the
// union as the field in the struct. This handles
// cases like the glibc <sys/resource.h> file; see
// issue 6677.
if *godefs {
if st, ok := f.Type.(*dwarf.StructType); ok && name == "" && st.Kind == "union" && len(st.Field) > 0 && !used[st.Field[0].Name] {
name = st.Field[0].Name
ident[name] = name
ft = st.Field[0].Type
}
}
// TODO: Handle fields that are anonymous structs by
// promoting the fields of the inner struct.
t := c.Type(ft, pos)
tgo := t.Go
size := t.Size
talign := t.Align
if f.BitSize > 0 {
switch f.BitSize {
case 8, 16, 32, 64:
default:
continue
}
size = f.BitSize / 8
name := tgo.(*ast.Ident).String()
if strings.HasPrefix(name, "int") {
name = "int"
} else {
name = "uint"
}
tgo = ast.NewIdent(name + fmt.Sprint(f.BitSize))
talign = size
}
if talign > 0 && f.ByteOffset%talign != 0 {
// Drop misaligned fields, the same way we drop integer bit fields.
// The goal is to make available what can be made available.
// Otherwise one bad and unneeded field in an otherwise okay struct
// makes the whole program not compile. Much of the time these
// structs are in system headers that cannot be corrected.
continue
}
n := len(fld)
fld = fld[0 : n+1]
if name == "" {
name = fmt.Sprintf("anon%d", anon)
anon++
ident[name] = name
}
fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[name])}, Type: tgo}
sizes = sizes[0 : n+1]
sizes[n] = size
off += size
buf.WriteString(t.C.String())
buf.WriteString(" ")
buf.WriteString(name)
buf.WriteString("; ")
if talign > align {
align = talign
}
}
if off < dt.ByteSize {
fld, sizes = c.pad(fld, sizes, dt.ByteSize-off)
off = dt.ByteSize
}
// If the last field in a non-zero-sized struct is zero-sized
// the compiler is going to pad it by one (see issue 9401).
// We can't permit that, because then the size of the Go
// struct will not be the same as the size of the C struct.
// Our only option in such a case is to remove the field,
// which means that it cannot be referenced from Go.
for off > 0 && sizes[len(sizes)-1] == 0 {
n := len(sizes)
fld = fld[0 : n-1]
sizes = sizes[0 : n-1]
}
if off != dt.ByteSize {
fatalf("%s: struct size calculation error off=%d bytesize=%d", lineno(pos), off, dt.ByteSize)
}
buf.WriteString("}")
csyntax = buf.String()
if *godefs {
godefsFields(fld)
}
expr = &ast.StructType{Fields: &ast.FieldList{List: fld}}
return
}
// dwarfHasPointer returns whether the DWARF type dt contains a pointer.
func (c *typeConv) dwarfHasPointer(dt dwarf.Type, pos token.Pos) bool {
switch dt := dt.(type) {
default:
fatalf("%s: unexpected type: %s", lineno(pos), dt)
return false
case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.EnumType,
*dwarf.FloatType, *dwarf.ComplexType, *dwarf.FuncType,
*dwarf.IntType, *dwarf.UcharType, *dwarf.UintType, *dwarf.VoidType:
return false
case *dwarf.ArrayType:
return c.dwarfHasPointer(dt.Type, pos)
case *dwarf.PtrType:
return true
case *dwarf.QualType:
return c.dwarfHasPointer(dt.Type, pos)
case *dwarf.StructType:
for _, f := range dt.Field {
if c.dwarfHasPointer(f.Type, pos) {
return true
}
}
return false
case *dwarf.TypedefType:
if dt.Name == "_GoString_" || dt.Name == "_GoBytes_" {
return true
}
return c.dwarfHasPointer(dt.Type, pos)
}
}
func upper(s string) string {
if s == "" {
return ""
}
r, size := utf8.DecodeRuneInString(s)
if r == '_' {
return "X" + s
}
return string(unicode.ToUpper(r)) + s[size:]
}
// godefsFields rewrites field names for use in Go or C definitions.
// It strips leading common prefixes (like tv_ in tv_sec, tv_usec)
// converts names to upper case, and rewrites _ into Pad_godefs_n,
// so that all fields are exported.
func godefsFields(fld []*ast.Field) {
prefix := fieldPrefix(fld)
npad := 0
for _, f := range fld {
for _, n := range f.Names {
if n.Name != prefix {
n.Name = strings.TrimPrefix(n.Name, prefix)
}
if n.Name == "_" {
// Use exported name instead.
n.Name = "Pad_cgo_" + strconv.Itoa(npad)
npad++
}
n.Name = upper(n.Name)
}
}
}
// fieldPrefix returns the prefix that should be removed from all the
// field names when generating the C or Go code. For generated
// C, we leave the names as is (tv_sec, tv_usec), since that's what
// people are used to seeing in C. For generated Go code, such as
// package syscall's data structures, we drop a common prefix
// (so sec, usec, which will get turned into Sec, Usec for exporting).
func fieldPrefix(fld []*ast.Field) string {
prefix := ""
for _, f := range fld {
for _, n := range f.Names {
// Ignore field names that don't have the prefix we're
// looking for. It is common in C headers to have fields
// named, say, _pad in an otherwise prefixed header.
// If the struct has 3 fields tv_sec, tv_usec, _pad1, then we
// still want to remove the tv_ prefix.
// The check for "orig_" here handles orig_eax in the
// x86 ptrace register sets, which otherwise have all fields
// with reg_ prefixes.
if strings.HasPrefix(n.Name, "orig_") || strings.HasPrefix(n.Name, "_") {
continue
}
i := strings.Index(n.Name, "_")
if i < 0 {
continue
}
if prefix == "" {
prefix = n.Name[:i+1]
} else if prefix != n.Name[:i+1] {
return ""
}
}
}
return prefix
}
// badPointerTypedef reports whether t is a C typedef that should not be considered a pointer in Go.
// A typedef is bad if C code sometimes stores non-pointers in this type.
// TODO: Currently our best solution is to find these manually and list them as
// they come up. A better solution is desired.
func (c *typeConv) badPointerTypedef(dt *dwarf.TypedefType) bool {
if c.badCFType(dt) {
return true
}
if c.badJNI(dt) {
return true
}
return false
}
func (c *typeConv) badCFType(dt *dwarf.TypedefType) bool {
// The real bad types are CFNumberRef and CFDateRef.
// Sometimes non-pointers are stored in these types.
// CFTypeRef is a supertype of those, so it can have bad pointers in it as well.
// We return true for the other *Ref types just so casting between them is easier.
// We identify the correct set of types as those ending in Ref and for which
// there exists a corresponding GetTypeID function.
// See comment below for details about the bad pointers.
if goos != "darwin" {
return false
}
s := dt.Name
if !strings.HasSuffix(s, "Ref") {
return false
}
s = s[:len(s)-3]
if s == "CFType" {
return true
}
if c.getTypeIDs[s] {
return true
}
if i := strings.Index(s, "Mutable"); i >= 0 && c.getTypeIDs[s[:i]+s[i+7:]] {
// Mutable and immutable variants share a type ID.
return true
}
return false
}
// Comment from Darwin's CFInternal.h
/*
// Tagged pointer support
// Low-bit set means tagged object, next 3 bits (currently)
// define the tagged object class, next 4 bits are for type
// information for the specific tagged object class. Thus,
// the low byte is for type info, and the rest of a pointer
// (32 or 64-bit) is for payload, whatever the tagged class.
//
// Note that the specific integers used to identify the
// specific tagged classes can and will change from release
// to release (that's why this stuff is in CF*Internal*.h),
// as can the definition of type info vs payload above.
//
#if __LP64__
#define CF_IS_TAGGED_OBJ(PTR) ((uintptr_t)(PTR) & 0x1)
#define CF_TAGGED_OBJ_TYPE(PTR) ((uintptr_t)(PTR) & 0xF)
#else
#define CF_IS_TAGGED_OBJ(PTR) 0
#define CF_TAGGED_OBJ_TYPE(PTR) 0
#endif
enum {
kCFTaggedObjectID_Invalid = 0,
kCFTaggedObjectID_Atom = (0 << 1) + 1,
kCFTaggedObjectID_Undefined3 = (1 << 1) + 1,
kCFTaggedObjectID_Undefined2 = (2 << 1) + 1,
kCFTaggedObjectID_Integer = (3 << 1) + 1,
kCFTaggedObjectID_DateTS = (4 << 1) + 1,
kCFTaggedObjectID_ManagedObjectID = (5 << 1) + 1, // Core Data
kCFTaggedObjectID_Date = (6 << 1) + 1,
kCFTaggedObjectID_Undefined7 = (7 << 1) + 1,
};
*/
func (c *typeConv) badJNI(dt *dwarf.TypedefType) bool {
// In Dalvik and ART, the jobject type in the JNI interface of the JVM has the
// property that it is sometimes (always?) a small integer instead of a real pointer.
// Note: although only the android JVMs are bad in this respect, we declare the JNI types
// bad regardless of platform, so the same Go code compiles on both android and non-android.
if parent, ok := jniTypes[dt.Name]; ok {
// Try to make sure we're talking about a JNI type, not just some random user's
// type that happens to use the same name.
// C doesn't have the notion of a package, so it's hard to be certain.
// Walk up to jobject, checking each typedef on the way.
w := dt
for parent != "" {
t, ok := w.Type.(*dwarf.TypedefType)
if !ok || t.Name != parent {
return false
}
w = t
parent, ok = jniTypes[w.Name]
if !ok {
return false
}
}
// Check that the typedef is:
// struct _jobject;
// typedef struct _jobject *jobject;
if ptr, ok := w.Type.(*dwarf.PtrType); ok {
if str, ok := ptr.Type.(*dwarf.StructType); ok {
if str.StructName == "_jobject" && str.Kind == "struct" && len(str.Field) == 0 && str.Incomplete {
return true
}
}
}
}
return false
}
// jniTypes maps from JNI types that we want to be uintptrs, to the underlying type to which
// they are mapped. The base "jobject" maps to the empty string.
var jniTypes = map[string]string{
"jobject": "",
"jclass": "jobject",
"jthrowable": "jobject",
"jstring": "jobject",
"jarray": "jobject",
"jbooleanArray": "jarray",
"jbyteArray": "jarray",
"jcharArray": "jarray",
"jshortArray": "jarray",
"jintArray": "jarray",
"jlongArray": "jarray",
"jfloatArray": "jarray",
"jdoubleArray": "jarray",
"jobjectArray": "jarray",
"jweak": "jobject",
}