mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Mostly NOSPLIT additions. Had to rewrite atomic_arm.c in Go because it calls lock, and lock is too complex. With this CL, I find no Go -> C calls that can split the stack on any system except Solaris and Windows. Solaris and Windows need more work and will be done separately. LGTM=iant, dave R=golang-codereviews, bradfitz, iant, dave CC=dvyukov, golang-codereviews, khr, r https://golang.org/cl/137160043
439 lines
13 KiB
C
439 lines
13 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// See malloc.h for overview.
|
|
//
|
|
// TODO(rsc): double-check stats.
|
|
|
|
#include "runtime.h"
|
|
#include "arch_GOARCH.h"
|
|
#include "malloc.h"
|
|
#include "type.h"
|
|
#include "typekind.h"
|
|
#include "race.h"
|
|
#include "stack.h"
|
|
#include "../../cmd/ld/textflag.h"
|
|
|
|
// Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K.
|
|
#pragma dataflag NOPTR
|
|
MHeap runtime·mheap;
|
|
#pragma dataflag NOPTR
|
|
MStats runtime·memstats;
|
|
|
|
Type* runtime·conservative;
|
|
|
|
void runtime·cmallocgc(uintptr size, Type *typ, uint32 flag, void **ret);
|
|
void runtime·gc_notype_ptr(Eface*);
|
|
|
|
void*
|
|
runtime·mallocgc(uintptr size, Type *typ, uint32 flag)
|
|
{
|
|
void *ret;
|
|
|
|
// Call into the Go version of mallocgc.
|
|
// TODO: maybe someday we can get rid of this. It is
|
|
// probably the only location where we run Go code on the M stack.
|
|
if((flag&FlagNoScan) == 0 && typ == nil)
|
|
typ = runtime·conservative;
|
|
runtime·cmallocgc(size, typ, flag, &ret);
|
|
return ret;
|
|
}
|
|
|
|
int32
|
|
runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
|
|
{
|
|
uintptr n, i;
|
|
byte *p;
|
|
MSpan *s;
|
|
|
|
g->m->mcache->local_nlookup++;
|
|
if (sizeof(void*) == 4 && g->m->mcache->local_nlookup >= (1<<30)) {
|
|
// purge cache stats to prevent overflow
|
|
runtime·lock(&runtime·mheap.lock);
|
|
runtime·purgecachedstats(g->m->mcache);
|
|
runtime·unlock(&runtime·mheap.lock);
|
|
}
|
|
|
|
s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
|
|
if(sp)
|
|
*sp = s;
|
|
if(s == nil) {
|
|
if(base)
|
|
*base = nil;
|
|
if(size)
|
|
*size = 0;
|
|
return 0;
|
|
}
|
|
|
|
p = (byte*)((uintptr)s->start<<PageShift);
|
|
if(s->sizeclass == 0) {
|
|
// Large object.
|
|
if(base)
|
|
*base = p;
|
|
if(size)
|
|
*size = s->npages<<PageShift;
|
|
return 1;
|
|
}
|
|
|
|
n = s->elemsize;
|
|
if(base) {
|
|
i = ((byte*)v - p)/n;
|
|
*base = p + i*n;
|
|
}
|
|
if(size)
|
|
*size = n;
|
|
|
|
return 1;
|
|
}
|
|
|
|
#pragma textflag NOSPLIT
|
|
void
|
|
runtime·purgecachedstats(MCache *c)
|
|
{
|
|
MHeap *h;
|
|
int32 i;
|
|
|
|
// Protected by either heap or GC lock.
|
|
h = &runtime·mheap;
|
|
mstats.heap_alloc += c->local_cachealloc;
|
|
c->local_cachealloc = 0;
|
|
mstats.nlookup += c->local_nlookup;
|
|
c->local_nlookup = 0;
|
|
h->largefree += c->local_largefree;
|
|
c->local_largefree = 0;
|
|
h->nlargefree += c->local_nlargefree;
|
|
c->local_nlargefree = 0;
|
|
for(i=0; i<nelem(c->local_nsmallfree); i++) {
|
|
h->nsmallfree[i] += c->local_nsmallfree[i];
|
|
c->local_nsmallfree[i] = 0;
|
|
}
|
|
}
|
|
|
|
// Size of the trailing by_size array differs between Go and C,
|
|
// NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
|
|
// sizeof_C_MStats is what C thinks about size of Go struct.
|
|
uintptr runtime·sizeof_C_MStats = sizeof(MStats) - (NumSizeClasses - 61) * sizeof(mstats.by_size[0]);
|
|
|
|
#define MaxArena32 (2U<<30)
|
|
|
|
// For use by Go. It can't be a constant in Go, unfortunately,
|
|
// because it depends on the OS.
|
|
uintptr runtime·maxMem = MaxMem;
|
|
|
|
void
|
|
runtime·mallocinit(void)
|
|
{
|
|
byte *p, *p1;
|
|
uintptr arena_size, bitmap_size, spans_size, p_size;
|
|
extern byte runtime·end[];
|
|
uintptr limit;
|
|
uint64 i;
|
|
bool reserved;
|
|
Eface notype_eface;
|
|
|
|
p = nil;
|
|
p_size = 0;
|
|
arena_size = 0;
|
|
bitmap_size = 0;
|
|
spans_size = 0;
|
|
reserved = false;
|
|
|
|
// for 64-bit build
|
|
USED(p);
|
|
USED(p_size);
|
|
USED(arena_size);
|
|
USED(bitmap_size);
|
|
USED(spans_size);
|
|
|
|
runtime·InitSizes();
|
|
|
|
if(runtime·class_to_size[TinySizeClass] != TinySize)
|
|
runtime·throw("bad TinySizeClass");
|
|
|
|
// limit = runtime·memlimit();
|
|
// See https://code.google.com/p/go/issues/detail?id=5049
|
|
// TODO(rsc): Fix after 1.1.
|
|
limit = 0;
|
|
|
|
// Set up the allocation arena, a contiguous area of memory where
|
|
// allocated data will be found. The arena begins with a bitmap large
|
|
// enough to hold 4 bits per allocated word.
|
|
if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) {
|
|
// On a 64-bit machine, allocate from a single contiguous reservation.
|
|
// 128 GB (MaxMem) should be big enough for now.
|
|
//
|
|
// The code will work with the reservation at any address, but ask
|
|
// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
|
|
// Allocating a 128 GB region takes away 37 bits, and the amd64
|
|
// doesn't let us choose the top 17 bits, so that leaves the 11 bits
|
|
// in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
|
|
// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
|
|
// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
|
|
// UTF-8 sequences, and they are otherwise as far away from
|
|
// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
|
|
// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
|
|
// on OS X during thread allocations. 0x00c0 causes conflicts with
|
|
// AddressSanitizer which reserves all memory up to 0x0100.
|
|
// These choices are both for debuggability and to reduce the
|
|
// odds of the conservative garbage collector not collecting memory
|
|
// because some non-pointer block of memory had a bit pattern
|
|
// that matched a memory address.
|
|
//
|
|
// Actually we reserve 136 GB (because the bitmap ends up being 8 GB)
|
|
// but it hardly matters: e0 00 is not valid UTF-8 either.
|
|
//
|
|
// If this fails we fall back to the 32 bit memory mechanism
|
|
arena_size = MaxMem;
|
|
bitmap_size = arena_size / (sizeof(void*)*8/4);
|
|
spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
|
|
spans_size = ROUND(spans_size, PageSize);
|
|
for(i = 0; i <= 0x7f; i++) {
|
|
p = (void*)(i<<40 | 0x00c0ULL<<32);
|
|
p_size = bitmap_size + spans_size + arena_size + PageSize;
|
|
p = runtime·SysReserve(p, p_size, &reserved);
|
|
if(p != nil)
|
|
break;
|
|
}
|
|
}
|
|
if (p == nil) {
|
|
// On a 32-bit machine, we can't typically get away
|
|
// with a giant virtual address space reservation.
|
|
// Instead we map the memory information bitmap
|
|
// immediately after the data segment, large enough
|
|
// to handle another 2GB of mappings (256 MB),
|
|
// along with a reservation for another 512 MB of memory.
|
|
// When that gets used up, we'll start asking the kernel
|
|
// for any memory anywhere and hope it's in the 2GB
|
|
// following the bitmap (presumably the executable begins
|
|
// near the bottom of memory, so we'll have to use up
|
|
// most of memory before the kernel resorts to giving out
|
|
// memory before the beginning of the text segment).
|
|
//
|
|
// Alternatively we could reserve 512 MB bitmap, enough
|
|
// for 4GB of mappings, and then accept any memory the
|
|
// kernel threw at us, but normally that's a waste of 512 MB
|
|
// of address space, which is probably too much in a 32-bit world.
|
|
bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
|
|
arena_size = 512<<20;
|
|
spans_size = MaxArena32 / PageSize * sizeof(runtime·mheap.spans[0]);
|
|
if(limit > 0 && arena_size+bitmap_size+spans_size > limit) {
|
|
bitmap_size = (limit / 9) & ~((1<<PageShift) - 1);
|
|
arena_size = bitmap_size * 8;
|
|
spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
|
|
}
|
|
spans_size = ROUND(spans_size, PageSize);
|
|
|
|
// SysReserve treats the address we ask for, end, as a hint,
|
|
// not as an absolute requirement. If we ask for the end
|
|
// of the data segment but the operating system requires
|
|
// a little more space before we can start allocating, it will
|
|
// give out a slightly higher pointer. Except QEMU, which
|
|
// is buggy, as usual: it won't adjust the pointer upward.
|
|
// So adjust it upward a little bit ourselves: 1/4 MB to get
|
|
// away from the running binary image and then round up
|
|
// to a MB boundary.
|
|
p = (byte*)ROUND((uintptr)runtime·end + (1<<18), 1<<20);
|
|
p_size = bitmap_size + spans_size + arena_size + PageSize;
|
|
p = runtime·SysReserve(p, p_size, &reserved);
|
|
if(p == nil)
|
|
runtime·throw("runtime: cannot reserve arena virtual address space");
|
|
}
|
|
|
|
// PageSize can be larger than OS definition of page size,
|
|
// so SysReserve can give us a PageSize-unaligned pointer.
|
|
// To overcome this we ask for PageSize more and round up the pointer.
|
|
p1 = (byte*)ROUND((uintptr)p, PageSize);
|
|
|
|
runtime·mheap.spans = (MSpan**)p1;
|
|
runtime·mheap.bitmap = p1 + spans_size;
|
|
runtime·mheap.arena_start = p1 + spans_size + bitmap_size;
|
|
runtime·mheap.arena_used = runtime·mheap.arena_start;
|
|
runtime·mheap.arena_end = p + p_size;
|
|
runtime·mheap.arena_reserved = reserved;
|
|
|
|
if(((uintptr)runtime·mheap.arena_start & (PageSize-1)) != 0)
|
|
runtime·throw("misrounded allocation in mallocinit");
|
|
|
|
// Initialize the rest of the allocator.
|
|
runtime·MHeap_Init(&runtime·mheap);
|
|
g->m->mcache = runtime·allocmcache();
|
|
|
|
runtime·gc_notype_ptr(¬ype_eface);
|
|
runtime·conservative = notype_eface.type;
|
|
}
|
|
|
|
void*
|
|
runtime·MHeap_SysAlloc(MHeap *h, uintptr n)
|
|
{
|
|
byte *p, *p_end;
|
|
uintptr p_size;
|
|
bool reserved;
|
|
|
|
if(n > h->arena_end - h->arena_used) {
|
|
// We are in 32-bit mode, maybe we didn't use all possible address space yet.
|
|
// Reserve some more space.
|
|
byte *new_end;
|
|
|
|
p_size = ROUND(n + PageSize, 256<<20);
|
|
new_end = h->arena_end + p_size;
|
|
if(new_end <= h->arena_start + MaxArena32) {
|
|
// TODO: It would be bad if part of the arena
|
|
// is reserved and part is not.
|
|
p = runtime·SysReserve(h->arena_end, p_size, &reserved);
|
|
if(p == h->arena_end) {
|
|
h->arena_end = new_end;
|
|
h->arena_reserved = reserved;
|
|
}
|
|
else if(p+p_size <= h->arena_start + MaxArena32) {
|
|
// Keep everything page-aligned.
|
|
// Our pages are bigger than hardware pages.
|
|
h->arena_end = p+p_size;
|
|
h->arena_used = p + (-(uintptr)p&(PageSize-1));
|
|
h->arena_reserved = reserved;
|
|
} else {
|
|
uint64 stat;
|
|
stat = 0;
|
|
runtime·SysFree(p, p_size, &stat);
|
|
}
|
|
}
|
|
}
|
|
if(n <= h->arena_end - h->arena_used) {
|
|
// Keep taking from our reservation.
|
|
p = h->arena_used;
|
|
runtime·SysMap(p, n, h->arena_reserved, &mstats.heap_sys);
|
|
h->arena_used += n;
|
|
runtime·MHeap_MapBits(h);
|
|
runtime·MHeap_MapSpans(h);
|
|
if(raceenabled)
|
|
runtime·racemapshadow(p, n);
|
|
|
|
if(((uintptr)p & (PageSize-1)) != 0)
|
|
runtime·throw("misrounded allocation in MHeap_SysAlloc");
|
|
return p;
|
|
}
|
|
|
|
// If using 64-bit, our reservation is all we have.
|
|
if(h->arena_end - h->arena_start >= MaxArena32)
|
|
return nil;
|
|
|
|
// On 32-bit, once the reservation is gone we can
|
|
// try to get memory at a location chosen by the OS
|
|
// and hope that it is in the range we allocated bitmap for.
|
|
p_size = ROUND(n, PageSize) + PageSize;
|
|
p = runtime·sysAlloc(p_size, &mstats.heap_sys);
|
|
if(p == nil)
|
|
return nil;
|
|
|
|
if(p < h->arena_start || p+p_size - h->arena_start >= MaxArena32) {
|
|
runtime·printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
|
|
p, h->arena_start, h->arena_start+MaxArena32);
|
|
runtime·SysFree(p, p_size, &mstats.heap_sys);
|
|
return nil;
|
|
}
|
|
|
|
p_end = p + p_size;
|
|
p += -(uintptr)p & (PageSize-1);
|
|
if(p+n > h->arena_used) {
|
|
h->arena_used = p+n;
|
|
if(p_end > h->arena_end)
|
|
h->arena_end = p_end;
|
|
runtime·MHeap_MapBits(h);
|
|
runtime·MHeap_MapSpans(h);
|
|
if(raceenabled)
|
|
runtime·racemapshadow(p, n);
|
|
}
|
|
|
|
if(((uintptr)p & (PageSize-1)) != 0)
|
|
runtime·throw("misrounded allocation in MHeap_SysAlloc");
|
|
return p;
|
|
}
|
|
|
|
// Runtime stubs.
|
|
|
|
static void*
|
|
cnew(Type *typ, intgo n)
|
|
{
|
|
if(n < 0 || (typ->size > 0 && n > MaxMem/typ->size))
|
|
runtime·panicstring("runtime: allocation size out of range");
|
|
return runtime·mallocgc(typ->size*n, typ, typ->kind&KindNoPointers ? FlagNoScan : 0);
|
|
}
|
|
|
|
// same as runtime·new, but callable from C
|
|
void*
|
|
runtime·cnew(Type *typ)
|
|
{
|
|
return cnew(typ, 1);
|
|
}
|
|
|
|
void*
|
|
runtime·cnewarray(Type *typ, intgo n)
|
|
{
|
|
return cnew(typ, n);
|
|
}
|
|
|
|
void
|
|
runtime·setFinalizer_m(void)
|
|
{
|
|
FuncVal *fn;
|
|
void *arg;
|
|
uintptr nret;
|
|
Type *fint;
|
|
PtrType *ot;
|
|
|
|
fn = g->m->ptrarg[0];
|
|
arg = g->m->ptrarg[1];
|
|
nret = g->m->scalararg[0];
|
|
fint = g->m->ptrarg[2];
|
|
ot = g->m->ptrarg[3];
|
|
g->m->ptrarg[0] = nil;
|
|
g->m->ptrarg[1] = nil;
|
|
g->m->ptrarg[2] = nil;
|
|
g->m->ptrarg[3] = nil;
|
|
|
|
g->m->scalararg[0] = runtime·addfinalizer(arg, fn, nret, fint, ot);
|
|
}
|
|
|
|
void
|
|
runtime·removeFinalizer_m(void)
|
|
{
|
|
void *p;
|
|
|
|
p = g->m->ptrarg[0];
|
|
g->m->ptrarg[0] = nil;
|
|
runtime·removefinalizer(p);
|
|
}
|
|
|
|
// mcallable cache refill
|
|
void
|
|
runtime·mcacheRefill_m(void)
|
|
{
|
|
runtime·MCache_Refill(g->m->mcache, (int32)g->m->scalararg[0]);
|
|
}
|
|
|
|
void
|
|
runtime·largeAlloc_m(void)
|
|
{
|
|
uintptr npages, size;
|
|
MSpan *s;
|
|
void *v;
|
|
int32 flag;
|
|
|
|
//runtime·printf("largeAlloc size=%D\n", g->m->scalararg[0]);
|
|
// Allocate directly from heap.
|
|
size = g->m->scalararg[0];
|
|
flag = (int32)g->m->scalararg[1];
|
|
if(size + PageSize < size)
|
|
runtime·throw("out of memory");
|
|
npages = size >> PageShift;
|
|
if((size & PageMask) != 0)
|
|
npages++;
|
|
s = runtime·MHeap_Alloc(&runtime·mheap, npages, 0, 1, !(flag & FlagNoZero));
|
|
if(s == nil)
|
|
runtime·throw("out of memory");
|
|
s->limit = (byte*)(s->start<<PageShift) + size;
|
|
v = (void*)(s->start << PageShift);
|
|
// setup for mark sweep
|
|
runtime·markspan(v, 0, 0, true);
|
|
g->m->ptrarg[0] = s;
|
|
}
|