mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
There's several copies of this function. We only need one. While here, normalize so that we always declare parameters, and always use the names ~pNN for params and ~rNN for results. Change-Id: I49e90d3fd1820f3c07936227ed5cfefd75d49a1c Reviewed-on: https://go-review.googlesource.com/c/go/+/528415 Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com> Auto-Submit: Matthew Dempsky <mdempsky@google.com> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Reviewed-by: Than McIntosh <thanm@google.com>
667 lines
18 KiB
Go
667 lines
18 KiB
Go
// Copyright 2016 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package reflectdata
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/compare"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/objw"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
// AlgType returns the fixed-width AMEMxx variants instead of the general
|
|
// AMEM kind when possible.
|
|
func AlgType(t *types.Type) types.AlgKind {
|
|
a, _ := types.AlgType(t)
|
|
if a == types.AMEM {
|
|
if t.Alignment() < int64(base.Ctxt.Arch.Alignment) && t.Alignment() < t.Size() {
|
|
// For example, we can't treat [2]int16 as an int32 if int32s require
|
|
// 4-byte alignment. See issue 46283.
|
|
return a
|
|
}
|
|
switch t.Size() {
|
|
case 0:
|
|
return types.AMEM0
|
|
case 1:
|
|
return types.AMEM8
|
|
case 2:
|
|
return types.AMEM16
|
|
case 4:
|
|
return types.AMEM32
|
|
case 8:
|
|
return types.AMEM64
|
|
case 16:
|
|
return types.AMEM128
|
|
}
|
|
}
|
|
|
|
return a
|
|
}
|
|
|
|
// genhash returns a symbol which is the closure used to compute
|
|
// the hash of a value of type t.
|
|
// Note: the generated function must match runtime.typehash exactly.
|
|
func genhash(t *types.Type) *obj.LSym {
|
|
switch AlgType(t) {
|
|
default:
|
|
// genhash is only called for types that have equality
|
|
base.Fatalf("genhash %v", t)
|
|
case types.AMEM0:
|
|
return sysClosure("memhash0")
|
|
case types.AMEM8:
|
|
return sysClosure("memhash8")
|
|
case types.AMEM16:
|
|
return sysClosure("memhash16")
|
|
case types.AMEM32:
|
|
return sysClosure("memhash32")
|
|
case types.AMEM64:
|
|
return sysClosure("memhash64")
|
|
case types.AMEM128:
|
|
return sysClosure("memhash128")
|
|
case types.ASTRING:
|
|
return sysClosure("strhash")
|
|
case types.AINTER:
|
|
return sysClosure("interhash")
|
|
case types.ANILINTER:
|
|
return sysClosure("nilinterhash")
|
|
case types.AFLOAT32:
|
|
return sysClosure("f32hash")
|
|
case types.AFLOAT64:
|
|
return sysClosure("f64hash")
|
|
case types.ACPLX64:
|
|
return sysClosure("c64hash")
|
|
case types.ACPLX128:
|
|
return sysClosure("c128hash")
|
|
case types.AMEM:
|
|
// For other sizes of plain memory, we build a closure
|
|
// that calls memhash_varlen. The size of the memory is
|
|
// encoded in the first slot of the closure.
|
|
closure := TypeLinksymLookup(fmt.Sprintf(".hashfunc%d", t.Size()))
|
|
if len(closure.P) > 0 { // already generated
|
|
return closure
|
|
}
|
|
if memhashvarlen == nil {
|
|
memhashvarlen = typecheck.LookupRuntimeFunc("memhash_varlen")
|
|
}
|
|
ot := 0
|
|
ot = objw.SymPtr(closure, ot, memhashvarlen, 0)
|
|
ot = objw.Uintptr(closure, ot, uint64(t.Size())) // size encoded in closure
|
|
objw.Global(closure, int32(ot), obj.DUPOK|obj.RODATA)
|
|
return closure
|
|
case types.ASPECIAL:
|
|
break
|
|
}
|
|
|
|
closure := TypeLinksymPrefix(".hashfunc", t)
|
|
if len(closure.P) > 0 { // already generated
|
|
return closure
|
|
}
|
|
|
|
// Generate hash functions for subtypes.
|
|
// There are cases where we might not use these hashes,
|
|
// but in that case they will get dead-code eliminated.
|
|
// (And the closure generated by genhash will also get
|
|
// dead-code eliminated, as we call the subtype hashers
|
|
// directly.)
|
|
switch t.Kind() {
|
|
case types.TARRAY:
|
|
genhash(t.Elem())
|
|
case types.TSTRUCT:
|
|
for _, f := range t.Fields() {
|
|
genhash(f.Type)
|
|
}
|
|
}
|
|
|
|
if base.Flag.LowerR != 0 {
|
|
fmt.Printf("genhash %v %v\n", closure, t)
|
|
}
|
|
|
|
fn := hashFunc(t)
|
|
|
|
// Build closure. It doesn't close over any variables, so
|
|
// it contains just the function pointer.
|
|
objw.SymPtr(closure, 0, fn.Linksym(), 0)
|
|
objw.Global(closure, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
|
|
|
|
return closure
|
|
}
|
|
|
|
func hashFunc(t *types.Type) *ir.Func {
|
|
sym := TypeSymPrefix(".hash", t)
|
|
if sym.Def != nil {
|
|
return sym.Def.(*ir.Name).Func
|
|
}
|
|
|
|
pos := base.AutogeneratedPos // less confusing than end of input
|
|
base.Pos = pos
|
|
|
|
// func sym(p *T, h uintptr) uintptr
|
|
fn := ir.NewFunc(pos, pos, sym, types.NewSignature(nil,
|
|
[]*types.Field{
|
|
types.NewField(pos, typecheck.Lookup("p"), types.NewPtr(t)),
|
|
types.NewField(pos, typecheck.Lookup("h"), types.Types[types.TUINTPTR]),
|
|
},
|
|
[]*types.Field{
|
|
types.NewField(pos, nil, types.Types[types.TUINTPTR]),
|
|
},
|
|
))
|
|
sym.Def = fn.Nname
|
|
fn.Pragma |= ir.Noinline // TODO(mdempsky): We need to emit this during the unified frontend instead, to allow inlining.
|
|
|
|
typecheck.DeclFunc(fn)
|
|
np := fn.Dcl[0]
|
|
nh := fn.Dcl[1]
|
|
|
|
switch t.Kind() {
|
|
case types.TARRAY:
|
|
// An array of pure memory would be handled by the
|
|
// standard algorithm, so the element type must not be
|
|
// pure memory.
|
|
hashel := hashfor(t.Elem())
|
|
|
|
// for i := 0; i < nelem; i++
|
|
ni := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
|
|
init := ir.NewAssignStmt(base.Pos, ni, ir.NewInt(base.Pos, 0))
|
|
cond := ir.NewBinaryExpr(base.Pos, ir.OLT, ni, ir.NewInt(base.Pos, t.NumElem()))
|
|
post := ir.NewAssignStmt(base.Pos, ni, ir.NewBinaryExpr(base.Pos, ir.OADD, ni, ir.NewInt(base.Pos, 1)))
|
|
loop := ir.NewForStmt(base.Pos, nil, cond, post, nil, false)
|
|
loop.PtrInit().Append(init)
|
|
|
|
// h = hashel(&p[i], h)
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
|
|
|
|
nx := ir.NewIndexExpr(base.Pos, np, ni)
|
|
nx.SetBounded(true)
|
|
na := typecheck.NodAddr(nx)
|
|
call.Args.Append(na)
|
|
call.Args.Append(nh)
|
|
loop.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
|
|
|
|
fn.Body.Append(loop)
|
|
|
|
case types.TSTRUCT:
|
|
// Walk the struct using memhash for runs of AMEM
|
|
// and calling specific hash functions for the others.
|
|
for i, fields := 0, t.Fields(); i < len(fields); {
|
|
f := fields[i]
|
|
|
|
// Skip blank fields.
|
|
if f.Sym.IsBlank() {
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Hash non-memory fields with appropriate hash function.
|
|
if !compare.IsRegularMemory(f.Type) {
|
|
hashel := hashfor(f.Type)
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
|
|
na := typecheck.NodAddr(typecheck.DotField(base.Pos, np, i))
|
|
call.Args.Append(na)
|
|
call.Args.Append(nh)
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Otherwise, hash a maximal length run of raw memory.
|
|
size, next := compare.Memrun(t, i)
|
|
|
|
// h = hashel(&p.first, size, h)
|
|
hashel := hashmem(f.Type)
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
|
|
na := typecheck.NodAddr(typecheck.DotField(base.Pos, np, i))
|
|
call.Args.Append(na)
|
|
call.Args.Append(nh)
|
|
call.Args.Append(ir.NewInt(base.Pos, size))
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
|
|
|
|
i = next
|
|
}
|
|
}
|
|
|
|
r := ir.NewReturnStmt(base.Pos, nil)
|
|
r.Results.Append(nh)
|
|
fn.Body.Append(r)
|
|
|
|
if base.Flag.LowerR != 0 {
|
|
ir.DumpList("genhash body", fn.Body)
|
|
}
|
|
|
|
typecheck.FinishFuncBody()
|
|
|
|
fn.SetDupok(true)
|
|
|
|
ir.WithFunc(fn, func() {
|
|
typecheck.Stmts(fn.Body)
|
|
})
|
|
|
|
fn.SetNilCheckDisabled(true)
|
|
|
|
return fn
|
|
}
|
|
|
|
func runtimeHashFor(name string, t *types.Type) *ir.Name {
|
|
return typecheck.LookupRuntime(name, t)
|
|
}
|
|
|
|
// hashfor returns the function to compute the hash of a value of type t.
|
|
func hashfor(t *types.Type) *ir.Name {
|
|
switch a, _ := types.AlgType(t); a {
|
|
case types.AMEM:
|
|
base.Fatalf("hashfor with AMEM type")
|
|
case types.AINTER:
|
|
return runtimeHashFor("interhash", t)
|
|
case types.ANILINTER:
|
|
return runtimeHashFor("nilinterhash", t)
|
|
case types.ASTRING:
|
|
return runtimeHashFor("strhash", t)
|
|
case types.AFLOAT32:
|
|
return runtimeHashFor("f32hash", t)
|
|
case types.AFLOAT64:
|
|
return runtimeHashFor("f64hash", t)
|
|
case types.ACPLX64:
|
|
return runtimeHashFor("c64hash", t)
|
|
case types.ACPLX128:
|
|
return runtimeHashFor("c128hash", t)
|
|
}
|
|
|
|
fn := hashFunc(t)
|
|
return fn.Nname
|
|
}
|
|
|
|
// sysClosure returns a closure which will call the
|
|
// given runtime function (with no closed-over variables).
|
|
func sysClosure(name string) *obj.LSym {
|
|
s := typecheck.LookupRuntimeVar(name + "·f")
|
|
if len(s.P) == 0 {
|
|
f := typecheck.LookupRuntimeFunc(name)
|
|
objw.SymPtr(s, 0, f, 0)
|
|
objw.Global(s, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// geneq returns a symbol which is the closure used to compute
|
|
// equality for two objects of type t.
|
|
func geneq(t *types.Type) *obj.LSym {
|
|
switch AlgType(t) {
|
|
case types.ANOEQ:
|
|
// The runtime will panic if it tries to compare
|
|
// a type with a nil equality function.
|
|
return nil
|
|
case types.AMEM0:
|
|
return sysClosure("memequal0")
|
|
case types.AMEM8:
|
|
return sysClosure("memequal8")
|
|
case types.AMEM16:
|
|
return sysClosure("memequal16")
|
|
case types.AMEM32:
|
|
return sysClosure("memequal32")
|
|
case types.AMEM64:
|
|
return sysClosure("memequal64")
|
|
case types.AMEM128:
|
|
return sysClosure("memequal128")
|
|
case types.ASTRING:
|
|
return sysClosure("strequal")
|
|
case types.AINTER:
|
|
return sysClosure("interequal")
|
|
case types.ANILINTER:
|
|
return sysClosure("nilinterequal")
|
|
case types.AFLOAT32:
|
|
return sysClosure("f32equal")
|
|
case types.AFLOAT64:
|
|
return sysClosure("f64equal")
|
|
case types.ACPLX64:
|
|
return sysClosure("c64equal")
|
|
case types.ACPLX128:
|
|
return sysClosure("c128equal")
|
|
case types.AMEM:
|
|
// make equality closure. The size of the type
|
|
// is encoded in the closure.
|
|
closure := TypeLinksymLookup(fmt.Sprintf(".eqfunc%d", t.Size()))
|
|
if len(closure.P) != 0 {
|
|
return closure
|
|
}
|
|
if memequalvarlen == nil {
|
|
memequalvarlen = typecheck.LookupRuntimeFunc("memequal_varlen")
|
|
}
|
|
ot := 0
|
|
ot = objw.SymPtr(closure, ot, memequalvarlen, 0)
|
|
ot = objw.Uintptr(closure, ot, uint64(t.Size()))
|
|
objw.Global(closure, int32(ot), obj.DUPOK|obj.RODATA)
|
|
return closure
|
|
case types.ASPECIAL:
|
|
break
|
|
}
|
|
|
|
closure := TypeLinksymPrefix(".eqfunc", t)
|
|
if len(closure.P) > 0 { // already generated
|
|
return closure
|
|
}
|
|
|
|
if base.Flag.LowerR != 0 {
|
|
fmt.Printf("geneq %v\n", t)
|
|
}
|
|
|
|
fn := eqFunc(t)
|
|
|
|
// Generate a closure which points at the function we just generated.
|
|
objw.SymPtr(closure, 0, fn.Linksym(), 0)
|
|
objw.Global(closure, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
|
|
return closure
|
|
}
|
|
|
|
func eqFunc(t *types.Type) *ir.Func {
|
|
// Autogenerate code for equality of structs and arrays.
|
|
sym := TypeSymPrefix(".eq", t)
|
|
if sym.Def != nil {
|
|
return sym.Def.(*ir.Name).Func
|
|
}
|
|
|
|
pos := base.AutogeneratedPos // less confusing than end of input
|
|
base.Pos = pos
|
|
|
|
// func sym(p, q *T) bool
|
|
fn := ir.NewFunc(pos, pos, sym, types.NewSignature(nil,
|
|
[]*types.Field{
|
|
types.NewField(pos, typecheck.Lookup("p"), types.NewPtr(t)),
|
|
types.NewField(pos, typecheck.Lookup("q"), types.NewPtr(t)),
|
|
},
|
|
[]*types.Field{
|
|
types.NewField(pos, typecheck.Lookup("r"), types.Types[types.TBOOL]),
|
|
},
|
|
))
|
|
sym.Def = fn.Nname
|
|
fn.Pragma |= ir.Noinline // TODO(mdempsky): We need to emit this during the unified frontend instead, to allow inlining.
|
|
|
|
typecheck.DeclFunc(fn)
|
|
np := fn.Dcl[0]
|
|
nq := fn.Dcl[1]
|
|
nr := fn.Dcl[2]
|
|
|
|
// Label to jump to if an equality test fails.
|
|
neq := typecheck.AutoLabel(".neq")
|
|
|
|
// We reach here only for types that have equality but
|
|
// cannot be handled by the standard algorithms,
|
|
// so t must be either an array or a struct.
|
|
switch t.Kind() {
|
|
default:
|
|
base.Fatalf("geneq %v", t)
|
|
|
|
case types.TARRAY:
|
|
nelem := t.NumElem()
|
|
|
|
// checkAll generates code to check the equality of all array elements.
|
|
// If unroll is greater than nelem, checkAll generates:
|
|
//
|
|
// if eq(p[0], q[0]) && eq(p[1], q[1]) && ... {
|
|
// } else {
|
|
// goto neq
|
|
// }
|
|
//
|
|
// And so on.
|
|
//
|
|
// Otherwise it generates:
|
|
//
|
|
// iterateTo := nelem/unroll*unroll
|
|
// for i := 0; i < iterateTo; i += unroll {
|
|
// if eq(p[i+0], q[i+0]) && eq(p[i+1], q[i+1]) && ... && eq(p[i+unroll-1], q[i+unroll-1]) {
|
|
// } else {
|
|
// goto neq
|
|
// }
|
|
// }
|
|
// if eq(p[iterateTo+0], q[iterateTo+0]) && eq(p[iterateTo+1], q[iterateTo+1]) && ... {
|
|
// } else {
|
|
// goto neq
|
|
// }
|
|
//
|
|
checkAll := func(unroll int64, last bool, eq func(pi, qi ir.Node) ir.Node) {
|
|
// checkIdx generates a node to check for equality at index i.
|
|
checkIdx := func(i ir.Node) ir.Node {
|
|
// pi := p[i]
|
|
pi := ir.NewIndexExpr(base.Pos, np, i)
|
|
pi.SetBounded(true)
|
|
pi.SetType(t.Elem())
|
|
// qi := q[i]
|
|
qi := ir.NewIndexExpr(base.Pos, nq, i)
|
|
qi.SetBounded(true)
|
|
qi.SetType(t.Elem())
|
|
return eq(pi, qi)
|
|
}
|
|
|
|
iterations := nelem / unroll
|
|
iterateTo := iterations * unroll
|
|
// If a loop is iterated only once, there shouldn't be any loop at all.
|
|
if iterations == 1 {
|
|
iterateTo = 0
|
|
}
|
|
|
|
if iterateTo > 0 {
|
|
// Generate an unrolled for loop.
|
|
// for i := 0; i < nelem/unroll*unroll; i += unroll
|
|
i := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
|
|
init := ir.NewAssignStmt(base.Pos, i, ir.NewInt(base.Pos, 0))
|
|
cond := ir.NewBinaryExpr(base.Pos, ir.OLT, i, ir.NewInt(base.Pos, iterateTo))
|
|
loop := ir.NewForStmt(base.Pos, nil, cond, nil, nil, false)
|
|
loop.PtrInit().Append(init)
|
|
|
|
// if eq(p[i+0], q[i+0]) && eq(p[i+1], q[i+1]) && ... && eq(p[i+unroll-1], q[i+unroll-1]) {
|
|
// } else {
|
|
// goto neq
|
|
// }
|
|
for j := int64(0); j < unroll; j++ {
|
|
// if check {} else { goto neq }
|
|
nif := ir.NewIfStmt(base.Pos, checkIdx(i), nil, nil)
|
|
nif.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
|
|
loop.Body.Append(nif)
|
|
post := ir.NewAssignStmt(base.Pos, i, ir.NewBinaryExpr(base.Pos, ir.OADD, i, ir.NewInt(base.Pos, 1)))
|
|
loop.Body.Append(post)
|
|
}
|
|
|
|
fn.Body.Append(loop)
|
|
|
|
if nelem == iterateTo {
|
|
if last {
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(base.Pos, true)))
|
|
}
|
|
return
|
|
}
|
|
}
|
|
|
|
// Generate remaining checks, if nelem is not a multiple of unroll.
|
|
if last {
|
|
// Do last comparison in a different manner.
|
|
nelem--
|
|
}
|
|
// if eq(p[iterateTo+0], q[iterateTo+0]) && eq(p[iterateTo+1], q[iterateTo+1]) && ... {
|
|
// } else {
|
|
// goto neq
|
|
// }
|
|
for j := iterateTo; j < nelem; j++ {
|
|
// if check {} else { goto neq }
|
|
nif := ir.NewIfStmt(base.Pos, checkIdx(ir.NewInt(base.Pos, j)), nil, nil)
|
|
nif.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
|
|
fn.Body.Append(nif)
|
|
}
|
|
if last {
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, checkIdx(ir.NewInt(base.Pos, nelem))))
|
|
}
|
|
}
|
|
|
|
switch t.Elem().Kind() {
|
|
case types.TSTRING:
|
|
// Do two loops. First, check that all the lengths match (cheap).
|
|
// Second, check that all the contents match (expensive).
|
|
checkAll(3, false, func(pi, qi ir.Node) ir.Node {
|
|
// Compare lengths.
|
|
eqlen, _ := compare.EqString(pi, qi)
|
|
return eqlen
|
|
})
|
|
checkAll(1, true, func(pi, qi ir.Node) ir.Node {
|
|
// Compare contents.
|
|
_, eqmem := compare.EqString(pi, qi)
|
|
return eqmem
|
|
})
|
|
case types.TFLOAT32, types.TFLOAT64:
|
|
checkAll(2, true, func(pi, qi ir.Node) ir.Node {
|
|
// p[i] == q[i]
|
|
return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi)
|
|
})
|
|
case types.TSTRUCT:
|
|
isCall := func(n ir.Node) bool {
|
|
return n.Op() == ir.OCALL || n.Op() == ir.OCALLFUNC
|
|
}
|
|
var expr ir.Node
|
|
var hasCallExprs bool
|
|
allCallExprs := true
|
|
and := func(cond ir.Node) {
|
|
if expr == nil {
|
|
expr = cond
|
|
} else {
|
|
expr = ir.NewLogicalExpr(base.Pos, ir.OANDAND, expr, cond)
|
|
}
|
|
}
|
|
|
|
var tmpPos src.XPos
|
|
pi := ir.NewIndexExpr(tmpPos, np, ir.NewInt(tmpPos, 0))
|
|
pi.SetBounded(true)
|
|
pi.SetType(t.Elem())
|
|
qi := ir.NewIndexExpr(tmpPos, nq, ir.NewInt(tmpPos, 0))
|
|
qi.SetBounded(true)
|
|
qi.SetType(t.Elem())
|
|
flatConds, canPanic := compare.EqStruct(t.Elem(), pi, qi)
|
|
for _, c := range flatConds {
|
|
if isCall(c) {
|
|
hasCallExprs = true
|
|
} else {
|
|
allCallExprs = false
|
|
}
|
|
}
|
|
if !hasCallExprs || allCallExprs || canPanic {
|
|
checkAll(1, true, func(pi, qi ir.Node) ir.Node {
|
|
// p[i] == q[i]
|
|
return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi)
|
|
})
|
|
} else {
|
|
checkAll(4, false, func(pi, qi ir.Node) ir.Node {
|
|
expr = nil
|
|
flatConds, _ := compare.EqStruct(t.Elem(), pi, qi)
|
|
if len(flatConds) == 0 {
|
|
return ir.NewBool(base.Pos, true)
|
|
}
|
|
for _, c := range flatConds {
|
|
if !isCall(c) {
|
|
and(c)
|
|
}
|
|
}
|
|
return expr
|
|
})
|
|
checkAll(2, true, func(pi, qi ir.Node) ir.Node {
|
|
expr = nil
|
|
flatConds, _ := compare.EqStruct(t.Elem(), pi, qi)
|
|
for _, c := range flatConds {
|
|
if isCall(c) {
|
|
and(c)
|
|
}
|
|
}
|
|
return expr
|
|
})
|
|
}
|
|
default:
|
|
checkAll(1, true, func(pi, qi ir.Node) ir.Node {
|
|
// p[i] == q[i]
|
|
return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi)
|
|
})
|
|
}
|
|
|
|
case types.TSTRUCT:
|
|
flatConds, _ := compare.EqStruct(t, np, nq)
|
|
if len(flatConds) == 0 {
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(base.Pos, true)))
|
|
} else {
|
|
for _, c := range flatConds[:len(flatConds)-1] {
|
|
// if cond {} else { goto neq }
|
|
n := ir.NewIfStmt(base.Pos, c, nil, nil)
|
|
n.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
|
|
fn.Body.Append(n)
|
|
}
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, flatConds[len(flatConds)-1]))
|
|
}
|
|
}
|
|
|
|
// ret:
|
|
// return
|
|
ret := typecheck.AutoLabel(".ret")
|
|
fn.Body.Append(ir.NewLabelStmt(base.Pos, ret))
|
|
fn.Body.Append(ir.NewReturnStmt(base.Pos, nil))
|
|
|
|
// neq:
|
|
// r = false
|
|
// return (or goto ret)
|
|
fn.Body.Append(ir.NewLabelStmt(base.Pos, neq))
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(base.Pos, false)))
|
|
if compare.EqCanPanic(t) || anyCall(fn) {
|
|
// Epilogue is large, so share it with the equal case.
|
|
fn.Body.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, ret))
|
|
} else {
|
|
// Epilogue is small, so don't bother sharing.
|
|
fn.Body.Append(ir.NewReturnStmt(base.Pos, nil))
|
|
}
|
|
// TODO(khr): the epilogue size detection condition above isn't perfect.
|
|
// We should really do a generic CL that shares epilogues across
|
|
// the board. See #24936.
|
|
|
|
if base.Flag.LowerR != 0 {
|
|
ir.DumpList("geneq body", fn.Body)
|
|
}
|
|
|
|
typecheck.FinishFuncBody()
|
|
|
|
fn.SetDupok(true)
|
|
|
|
ir.WithFunc(fn, func() {
|
|
typecheck.Stmts(fn.Body)
|
|
})
|
|
|
|
// Disable checknils while compiling this code.
|
|
// We are comparing a struct or an array,
|
|
// neither of which can be nil, and our comparisons
|
|
// are shallow.
|
|
fn.SetNilCheckDisabled(true)
|
|
return fn
|
|
}
|
|
|
|
// EqFor returns ONAME node represents type t's equal function, and a boolean
|
|
// to indicates whether a length needs to be passed when calling the function.
|
|
func EqFor(t *types.Type) (ir.Node, bool) {
|
|
switch a, _ := types.AlgType(t); a {
|
|
case types.AMEM:
|
|
return typecheck.LookupRuntime("memequal", t, t), true
|
|
case types.ASPECIAL:
|
|
fn := eqFunc(t)
|
|
return fn.Nname, false
|
|
}
|
|
base.Fatalf("EqFor %v", t)
|
|
return nil, false
|
|
}
|
|
|
|
func anyCall(fn *ir.Func) bool {
|
|
return ir.Any(fn, func(n ir.Node) bool {
|
|
// TODO(rsc): No methods?
|
|
op := n.Op()
|
|
return op == ir.OCALL || op == ir.OCALLFUNC
|
|
})
|
|
}
|
|
|
|
func hashmem(t *types.Type) ir.Node {
|
|
return typecheck.LookupRuntime("memhash", t)
|
|
}
|