go/src/pkg/runtime/os_openbsd.c
Russ Cox d3066e47b1 runtime/pprof: test multithreaded profile, remove OS X workarounds
This means that pprof will no longer report profiles on OS X.
That's unfortunate, but the profiles were often wrong and, worse,
it was difficult to tell whether the profile was wrong or not.

The workarounds were making the scheduler more complex,
possibly caused a deadlock (see issue 5519), and did not actually
deliver reliable results.

It may be possible for adventurous users to apply a patch to
their kernels to get working results, or perhaps having no results
will encourage someone to do the work of creating a profiling
thread like on Windows. Issue 6047 has details.

Fixes #5519.
Fixes #6047.

R=golang-dev, bradfitz, r
CC=golang-dev
https://golang.org/cl/12429045
2013-08-05 19:49:02 -04:00

301 lines
6.8 KiB
C

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "signal_unix.h"
#include "stack.h"
enum
{
ESRCH = 3,
ENOTSUP = 91,
// From OpenBSD's sys/time.h
CLOCK_REALTIME = 0,
CLOCK_VIRTUAL = 1,
CLOCK_PROF = 2,
CLOCK_MONOTONIC = 3
};
extern SigTab runtime·sigtab[];
static Sigset sigset_none;
static Sigset sigset_all = ~(Sigset)0;
extern int64 runtime·tfork(void *param, uintptr psize, M *mp, G *gp, void (*fn)(void));
extern int32 runtime·thrsleep(void *ident, int32 clock_id, void *tsp, void *lock, const int32 *abort);
extern int32 runtime·thrwakeup(void *ident, int32 n);
// From OpenBSD's <sys/sysctl.h>
#define CTL_HW 6
#define HW_NCPU 3
static int32
getncpu(void)
{
uint32 mib[2];
uint32 out;
int32 ret;
uintptr nout;
// Fetch hw.ncpu via sysctl.
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
nout = sizeof out;
out = 0;
ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0);
if(ret >= 0)
return out;
else
return 1;
}
uintptr
runtime·semacreate(void)
{
return 1;
}
#pragma textflag 7
int32
runtime·semasleep(int64 ns)
{
Timespec ts;
// spin-mutex lock
while(runtime·xchg(&m->waitsemalock, 1))
runtime·osyield();
for(;;) {
// lock held
if(m->waitsemacount == 0) {
// sleep until semaphore != 0 or timeout.
// thrsleep unlocks m->waitsemalock.
if(ns < 0)
runtime·thrsleep(&m->waitsemacount, 0, nil, &m->waitsemalock, nil);
else {
ns += runtime·nanotime();
// NOTE: tv_nsec is int64 on amd64, so this assumes a little-endian system.
ts.tv_nsec = 0;
ts.tv_sec = runtime·timediv(ns, 1000000000, (int32*)&ts.tv_nsec);
runtime·thrsleep(&m->waitsemacount, CLOCK_REALTIME, &ts, &m->waitsemalock, nil);
}
// reacquire lock
while(runtime·xchg(&m->waitsemalock, 1))
runtime·osyield();
}
// lock held (again)
if(m->waitsemacount != 0) {
// semaphore is available.
m->waitsemacount--;
// spin-mutex unlock
runtime·atomicstore(&m->waitsemalock, 0);
return 0; // semaphore acquired
}
// semaphore not available.
// if there is a timeout, stop now.
// otherwise keep trying.
if(ns >= 0)
break;
}
// lock held but giving up
// spin-mutex unlock
runtime·atomicstore(&m->waitsemalock, 0);
return -1;
}
void
runtime·semawakeup(M *mp)
{
uint32 ret;
// spin-mutex lock
while(runtime·xchg(&mp->waitsemalock, 1))
runtime·osyield();
mp->waitsemacount++;
ret = runtime·thrwakeup(&mp->waitsemacount, 1);
if(ret != 0 && ret != ESRCH)
runtime·printf("thrwakeup addr=%p sem=%d ret=%d\n", &mp->waitsemacount, mp->waitsemacount, ret);
// spin-mutex unlock
runtime·atomicstore(&mp->waitsemalock, 0);
}
void
runtime·newosproc(M *mp, void *stk)
{
Tfork param;
Sigset oset;
int32 ret;
if(0) {
runtime·printf(
"newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n",
stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp);
}
mp->tls[0] = mp->id; // so 386 asm can find it
param.tf_tcb = (byte*)&mp->tls[0];
param.tf_tid = (int32*)&mp->procid;
param.tf_stack = stk;
oset = runtime·sigprocmask(SIG_SETMASK, sigset_all);
ret = runtime·tfork((byte*)&param, sizeof(param), mp, mp->g0, runtime·mstart);
runtime·sigprocmask(SIG_SETMASK, oset);
if(ret < 0) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount() - 1, -ret);
if (ret == -ENOTSUP)
runtime·printf("runtime: is kern.rthreads disabled?\n");
runtime·throw("runtime.newosproc");
}
}
void
runtime·osinit(void)
{
runtime·ncpu = getncpu();
}
void
runtime·get_random_data(byte **rnd, int32 *rnd_len)
{
static byte urandom_data[HashRandomBytes];
int32 fd;
fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0);
if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) {
*rnd = urandom_data;
*rnd_len = HashRandomBytes;
} else {
*rnd = nil;
*rnd_len = 0;
}
runtime·close(fd);
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
void
runtime·mpreinit(M *mp)
{
mp->gsignal = runtime·malg(32*1024);
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
void
runtime·minit(void)
{
// Initialize signal handling
runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024);
runtime·sigprocmask(SIG_SETMASK, sigset_none);
}
// Called from dropm to undo the effect of an minit.
void
runtime·unminit(void)
{
runtime·signalstack(nil, 0);
}
void
runtime·sigpanic(void)
{
switch(g->sig) {
case SIGBUS:
if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGSEGV:
if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGFPE:
switch(g->sigcode0) {
case FPE_INTDIV:
runtime·panicstring("integer divide by zero");
case FPE_INTOVF:
runtime·panicstring("integer overflow");
}
runtime·panicstring("floating point error");
}
runtime·panicstring(runtime·sigtab[g->sig].name);
}
uintptr
runtime·memlimit(void)
{
return 0;
}
extern void runtime·sigtramp(void);
typedef struct sigaction {
union {
void (*__sa_handler)(int32);
void (*__sa_sigaction)(int32, Siginfo*, void *);
} __sigaction_u; /* signal handler */
uint32 sa_mask; /* signal mask to apply */
int32 sa_flags; /* see signal options below */
} Sigaction;
void
runtime·setsig(int32 i, GoSighandler *fn, bool restart)
{
Sigaction sa;
runtime·memclr((byte*)&sa, sizeof sa);
sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
if(restart)
sa.sa_flags |= SA_RESTART;
sa.sa_mask = ~0U;
if(fn == runtime·sighandler)
fn = (void*)runtime·sigtramp;
sa.__sigaction_u.__sa_sigaction = (void*)fn;
runtime·sigaction(i, &sa, nil);
}
GoSighandler*
runtime·getsig(int32 i)
{
Sigaction sa;
runtime·memclr((byte*)&sa, sizeof sa);
runtime·sigaction(i, nil, &sa);
if((void*)sa.__sigaction_u.__sa_sigaction == runtime·sigtramp)
return runtime·sighandler;
return (void*)sa.__sigaction_u.__sa_sigaction;
}
void
runtime·signalstack(byte *p, int32 n)
{
StackT st;
st.ss_sp = (void*)p;
st.ss_size = n;
st.ss_flags = 0;
if(p == nil)
st.ss_flags = SS_DISABLE;
runtime·sigaltstack(&st, nil);
}