go/src/cmd/compile/internal/gc/range.go
Dave Cheney d7012ca282 cmd/compile/internal/gc: unexport more helper functions
After the removal of the old backend many types are no longer referenced
outside internal/gc. Make these functions private so that tools like
honnef.co/go/unused can spot when they become dead code. In doing so
this CL identified several previously public helpers which are no longer
used, so removes them.

This should be the last of the public functions.

Change-Id: I7e9c4e72f86f391b428b9dddb6f0d516529706c3
Reviewed-on: https://go-review.googlesource.com/29134
Run-TryBot: Dave Cheney <dave@cheney.net>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
2016-09-15 13:57:42 +00:00

440 lines
9.9 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import "unicode/utf8"
// range
func typecheckrange(n *Node) {
var toomany int
var why string
var t1 *Type
var t2 *Type
var v1 *Node
var v2 *Node
var ls []*Node
// Typechecking order is important here:
// 0. first typecheck range expression (slice/map/chan),
// it is evaluated only once and so logically it is not part of the loop.
// 1. typcheck produced values,
// this part can declare new vars and so it must be typechecked before body,
// because body can contain a closure that captures the vars.
// 2. decldepth++ to denote loop body.
// 3. typecheck body.
// 4. decldepth--.
n.Right = typecheck(n.Right, Erv)
t := n.Right.Type
if t == nil {
goto out
}
// delicate little dance. see typecheckas2
ls = n.List.Slice()
for i1, n1 := range ls {
if n1.Name == nil || n1.Name.Defn != n {
ls[i1] = typecheck(ls[i1], Erv|Easgn)
}
}
if t.IsPtr() && t.Elem().IsArray() {
t = t.Elem()
}
n.Type = t
toomany = 0
switch t.Etype {
default:
yyerror("cannot range over %L", n.Right)
goto out
case TARRAY, TSLICE:
t1 = Types[TINT]
t2 = t.Elem()
case TMAP:
t1 = t.Key()
t2 = t.Val()
case TCHAN:
if !t.ChanDir().CanRecv() {
yyerror("invalid operation: range %v (receive from send-only type %v)", n.Right, n.Right.Type)
goto out
}
t1 = t.Elem()
t2 = nil
if n.List.Len() == 2 {
toomany = 1
}
case TSTRING:
t1 = Types[TINT]
t2 = runetype
}
if n.List.Len() > 2 || toomany != 0 {
yyerror("too many variables in range")
}
v1 = nil
if n.List.Len() != 0 {
v1 = n.List.First()
}
v2 = nil
if n.List.Len() > 1 {
v2 = n.List.Second()
}
// this is not only a optimization but also a requirement in the spec.
// "if the second iteration variable is the blank identifier, the range
// clause is equivalent to the same clause with only the first variable
// present."
if isblank(v2) {
if v1 != nil {
n.List.Set1(v1)
}
v2 = nil
}
if v1 != nil {
if v1.Name != nil && v1.Name.Defn == n {
v1.Type = t1
} else if v1.Type != nil && assignop(t1, v1.Type, &why) == 0 {
yyerror("cannot assign type %v to %L in range%s", t1, v1, why)
}
checkassign(n, v1)
}
if v2 != nil {
if v2.Name != nil && v2.Name.Defn == n {
v2.Type = t2
} else if v2.Type != nil && assignop(t2, v2.Type, &why) == 0 {
yyerror("cannot assign type %v to %L in range%s", t2, v2, why)
}
checkassign(n, v2)
}
// second half of dance
out:
n.Typecheck = 1
ls = n.List.Slice()
for i1, n1 := range ls {
if n1.Typecheck == 0 {
ls[i1] = typecheck(ls[i1], Erv|Easgn)
}
}
decldepth++
typecheckslice(n.Nbody.Slice(), Etop)
decldepth--
}
func walkrange(n *Node) {
// variable name conventions:
// ohv1, hv1, hv2: hidden (old) val 1, 2
// ha, hit: hidden aggregate, iterator
// hn, hp: hidden len, pointer
// hb: hidden bool
// a, v1, v2: not hidden aggregate, val 1, 2
t := n.Type
a := n.Right
lno := setlineno(a)
n.Right = nil
var v1 *Node
if n.List.Len() != 0 {
v1 = n.List.First()
}
var v2 *Node
if n.List.Len() > 1 && !isblank(n.List.Second()) {
v2 = n.List.Second()
}
// n.List has no meaning anymore, clear it
// to avoid erroneous processing by racewalk.
n.List.Set(nil)
var body []*Node
var init []*Node
switch t.Etype {
default:
Fatalf("walkrange")
case TARRAY, TSLICE:
if memclrrange(n, v1, v2, a) {
lineno = lno
return
}
// orderstmt arranged for a copy of the array/slice variable if needed.
ha := a
hv1 := temp(Types[TINT])
hn := temp(Types[TINT])
var hp *Node
init = append(init, Nod(OAS, hv1, nil))
init = append(init, Nod(OAS, hn, Nod(OLEN, ha, nil)))
if v2 != nil {
hp = temp(ptrto(n.Type.Elem()))
tmp := Nod(OINDEX, ha, nodintconst(0))
tmp.Bounded = true
init = append(init, Nod(OAS, hp, Nod(OADDR, tmp, nil)))
}
n.Left = Nod(OLT, hv1, hn)
n.Right = Nod(OAS, hv1, Nod(OADD, hv1, nodintconst(1)))
if v1 == nil {
body = nil
} else if v2 == nil {
body = []*Node{Nod(OAS, v1, hv1)}
} else {
a := Nod(OAS2, nil, nil)
a.List.Set([]*Node{v1, v2})
a.Rlist.Set([]*Node{hv1, Nod(OIND, hp, nil)})
body = []*Node{a}
// Advance pointer as part of increment.
// We used to advance the pointer before executing the loop body,
// but doing so would make the pointer point past the end of the
// array during the final iteration, possibly causing another unrelated
// piece of memory not to be garbage collected until the loop finished.
// Advancing during the increment ensures that the pointer p only points
// pass the end of the array during the final "p++; i++; if(i >= len(x)) break;",
// after which p is dead, so it cannot confuse the collector.
tmp := Nod(OADD, hp, nodintconst(t.Elem().Width))
tmp.Type = hp.Type
tmp.Typecheck = 1
tmp.Right.Type = Types[Tptr]
tmp.Right.Typecheck = 1
a = Nod(OAS, hp, tmp)
a = typecheck(a, Etop)
n.Right.Ninit.Set1(a)
}
case TMAP:
// orderstmt allocated the iterator for us.
// we only use a once, so no copy needed.
ha := a
th := hiter(t)
hit := prealloc[n]
hit.Type = th
n.Left = nil
keysym := th.Field(0).Sym // depends on layout of iterator struct. See reflect.go:hiter
valsym := th.Field(1).Sym // ditto
fn := syslook("mapiterinit")
fn = substArgTypes(fn, t.Key(), t.Val(), th)
init = append(init, mkcall1(fn, nil, nil, typename(t), ha, Nod(OADDR, hit, nil)))
n.Left = Nod(ONE, nodSym(ODOT, hit, keysym), nodnil())
fn = syslook("mapiternext")
fn = substArgTypes(fn, th)
n.Right = mkcall1(fn, nil, nil, Nod(OADDR, hit, nil))
key := nodSym(ODOT, hit, keysym)
key = Nod(OIND, key, nil)
if v1 == nil {
body = nil
} else if v2 == nil {
body = []*Node{Nod(OAS, v1, key)}
} else {
val := nodSym(ODOT, hit, valsym)
val = Nod(OIND, val, nil)
a := Nod(OAS2, nil, nil)
a.List.Set([]*Node{v1, v2})
a.Rlist.Set([]*Node{key, val})
body = []*Node{a}
}
case TCHAN:
// orderstmt arranged for a copy of the channel variable.
ha := a
n.Left = nil
hv1 := temp(t.Elem())
hv1.Typecheck = 1
if haspointers(t.Elem()) {
init = append(init, Nod(OAS, hv1, nil))
}
hb := temp(Types[TBOOL])
n.Left = Nod(ONE, hb, nodbool(false))
a := Nod(OAS2RECV, nil, nil)
a.Typecheck = 1
a.List.Set([]*Node{hv1, hb})
a.Rlist.Set1(Nod(ORECV, ha, nil))
n.Left.Ninit.Set1(a)
if v1 == nil {
body = nil
} else {
body = []*Node{Nod(OAS, v1, hv1)}
}
// Zero hv1. This prevents hv1 from being the sole, inaccessible
// reference to an otherwise GC-able value during the next channel receive.
// See issue 15281.
body = append(body, Nod(OAS, hv1, nil))
case TSTRING:
// Transform string range statements like "for v1, v2 = range a" into
//
// ha := a
// for hv1 := 0; hv1 < len(ha); {
// v1 = hv1
// hv2 := rune(ha[hv1])
// if hv2 < utf8.RuneSelf {
// hv1++
// } else {
// hv2, hv1 = charntorune(ha, hv1)
// }
// v2 = hv2
// // original body
// }
// orderstmt arranged for a copy of the string variable.
ha := a
hv1 := temp(Types[TINT])
hv2 := temp(runetype)
// hv1 := 0
init = append(init, Nod(OAS, hv1, nil))
// hv1 < len(ha)
n.Left = Nod(OLT, hv1, Nod(OLEN, ha, nil))
if v1 != nil {
// v1 = hv1
body = append(body, Nod(OAS, v1, hv1))
}
// hv2 := ha[hv1]
nind := Nod(OINDEX, ha, hv1)
nind.Bounded = true
body = append(body, Nod(OAS, hv2, conv(nind, runetype)))
// if hv2 < utf8.RuneSelf
nif := Nod(OIF, nil, nil)
nif.Left = Nod(OLT, nind, nodintconst(utf8.RuneSelf))
// hv1++
nif.Nbody.Set1(Nod(OAS, hv1, Nod(OADD, hv1, nodintconst(1))))
// } else {
eif := Nod(OAS2, nil, nil)
nif.Rlist.Set1(eif)
// hv2, hv1 = charntorune(ha, hv1)
eif.List.Set2(hv2, hv1)
fn := syslook("charntorune")
eif.Rlist.Set1(mkcall1(fn, fn.Type.Results(), nil, ha, hv1))
body = append(body, nif)
if v2 != nil {
// v2 = hv2
body = append(body, Nod(OAS, v2, hv2))
}
}
n.Op = OFOR
typecheckslice(init, Etop)
n.Ninit.Append(init...)
typecheckslice(n.Left.Ninit.Slice(), Etop)
n.Left = typecheck(n.Left, Erv)
n.Right = typecheck(n.Right, Etop)
typecheckslice(body, Etop)
n.Nbody.Prepend(body...)
n = walkstmt(n)
lineno = lno
}
// Lower n into runtime·memclr if possible, for
// fast zeroing of slices and arrays (issue 5373).
// Look for instances of
//
// for i := range a {
// a[i] = zero
// }
//
// in which the evaluation of a is side-effect-free.
//
// Parameters are as in walkrange: "for v1, v2 = range a".
func memclrrange(n, v1, v2, a *Node) bool {
if Debug['N'] != 0 || instrumenting {
return false
}
if v1 == nil || v2 != nil {
return false
}
if n.Nbody.Len() == 0 || n.Nbody.First() == nil || n.Nbody.Len() > 1 {
return false
}
stmt := n.Nbody.First() // only stmt in body
if stmt.Op != OAS || stmt.Left.Op != OINDEX {
return false
}
if !samesafeexpr(stmt.Left.Left, a) || !samesafeexpr(stmt.Left.Right, v1) {
return false
}
elemsize := n.Type.Elem().Width
if elemsize <= 0 || !iszero(stmt.Right) {
return false
}
// Convert to
// if len(a) != 0 {
// hp = &a[0]
// hn = len(a)*sizeof(elem(a))
// memclr(hp, hn)
// i = len(a) - 1
// }
n.Op = OIF
n.Nbody.Set(nil)
n.Left = Nod(ONE, Nod(OLEN, a, nil), nodintconst(0))
// hp = &a[0]
hp := temp(ptrto(Types[TUINT8]))
tmp := Nod(OINDEX, a, nodintconst(0))
tmp.Bounded = true
tmp = Nod(OADDR, tmp, nil)
tmp = Nod(OCONVNOP, tmp, nil)
tmp.Type = ptrto(Types[TUINT8])
n.Nbody.Append(Nod(OAS, hp, tmp))
// hn = len(a) * sizeof(elem(a))
hn := temp(Types[TUINTPTR])
tmp = Nod(OLEN, a, nil)
tmp = Nod(OMUL, tmp, nodintconst(elemsize))
tmp = conv(tmp, Types[TUINTPTR])
n.Nbody.Append(Nod(OAS, hn, tmp))
// memclr(hp, hn)
fn := mkcall("memclr", nil, nil, hp, hn)
n.Nbody.Append(fn)
// i = len(a) - 1
v1 = Nod(OAS, v1, Nod(OSUB, Nod(OLEN, a, nil), nodintconst(1)))
n.Nbody.Append(v1)
n.Left = typecheck(n.Left, Erv)
typecheckslice(n.Nbody.Slice(), Etop)
n = walkstmt(n)
return true
}