go/src/cmd/compile/internal/arm/ssa.go
Russ Cox 1e5bb416d8 cmd/compile: implement bits.Mul64 on 32-bit systems
This CL implements Mul64uhilo, Hmul64, Hmul64u, and Avg64u
on 32-bit systems, with the effect that constant division of both
int64s and uint64s can now be emitted directly in all cases,
and also that bits.Mul64 can be intrinsified on 32-bit systems.

Previously, constant division of uint64s by values 0 ≤ c ≤ 0xFFFF were
implemented as uint32 divisions by c and some fixup. After expanding
those smaller constant divisions, the code for i/999 required:

	(386) 7 mul, 10 add, 2 sub, 3 rotate, 3 shift (104 bytes)
	(arm) 7 mul, 9 add, 3 sub, 2 shift (104 bytes)
	(mips) 7 mul, 10 add, 5 sub, 6 shift, 3 sgtu (176 bytes)

For that much code, we might as well use a full 64x64->128 multiply
that can be used for all divisors, not just small ones.
Having done that, the same i/999 now generates:

	(386) 4 mul, 9 add, 2 sub, 2 or, 6 shift (112 bytes)
	(arm) 4 mul, 8 add, 2 sub, 2 or, 3 shift (92 bytes)
	(mips) 4 mul, 11 add, 3 sub, 6 shift, 8 sgtu, 4 or (196 bytes)

The size increase on 386 is due to a few extra register spills.
The size increase on mips is due to add-with-carry being hard.

The new approach is more general, letting us delete the old special case
and guarantee that all int64 and uint64 divisions by constants are
generated directly on 32-bit systems.

This especially speeds up code making heavy use of bits.Mul64 with
a constant argument, which happens in strconv and various crypto
packages. A few examples are benchmarked below.

pkg: cmd/compile/internal/test

benchmark \ host                      local  linux-amd64       s7  linux-386  s7:GOARCH=386
                                    vs base      vs base  vs base    vs base        vs base
DivconstI64                               ~            ~        ~    -49.66%        -21.02%
ModconstI64                               ~            ~        ~    -13.45%        +14.52%
DivisiblePow2constI64                     ~            ~        ~     +0.97%         -1.32%
DivisibleconstI64                         ~            ~        ~    -20.01%        -48.28%
DivisibleWDivconstI64                     ~            ~   -1.76%    -38.59%        -42.74%
DivconstU64/3                             ~            ~        ~    -13.82%         -4.09%
DivconstU64/5                             ~            ~        ~    -14.10%         -3.54%
DivconstU64/37                       -2.07%       -4.45%        ~    -19.60%         -9.55%
DivconstU64/1234567                       ~            ~        ~    -61.55%        -56.93%
ModconstU64                               ~            ~        ~     -6.25%              ~
DivisibleconstU64                         ~            ~        ~     -2.78%         -7.82%
DivisibleWDivconstU64                     ~            ~        ~     +4.23%         +2.56%

pkg: math/bits

benchmark \ host         s7  linux-amd64  linux-386  s7:GOARCH=386
                    vs base      vs base    vs base        vs base
Add                       ~            ~          ~              ~
Add32                +1.59%            ~          ~              ~
Add64                     ~            ~          ~              ~
Add64multiple             ~            ~          ~              ~
Sub                       ~            ~          ~              ~
Sub32                     ~            ~          ~              ~
Sub64                     ~            ~     -9.20%              ~
Sub64multiple             ~            ~          ~              ~
Mul                       ~            ~          ~              ~
Mul32                     ~            ~          ~              ~
Mul64                     ~            ~    -41.58%        -53.21%
Div                       ~            ~          ~              ~
Div32                     ~            ~          ~              ~
Div64                     ~            ~          ~              ~

pkg: strconv

benchmark \ host                       s7  linux-amd64  linux-386  s7:GOARCH=386
                                  vs base      vs base    vs base        vs base
ParseInt/Pos/7bit                       ~            ~    -11.08%         -6.75%
ParseInt/Pos/26bit                      ~            ~    -13.65%        -11.02%
ParseInt/Pos/31bit                      ~            ~    -14.65%         -9.71%
ParseInt/Pos/56bit                 -1.80%            ~    -17.97%        -10.78%
ParseInt/Pos/63bit                      ~            ~    -13.85%         -9.63%
ParseInt/Neg/7bit                       ~            ~    -12.14%         -7.26%
ParseInt/Neg/26bit                      ~            ~    -14.18%         -9.81%
ParseInt/Neg/31bit                      ~            ~    -14.51%         -9.02%
ParseInt/Neg/56bit                      ~            ~    -15.79%         -9.79%
ParseInt/Neg/63bit                      ~            ~    -15.68%        -11.07%
AppendFloat/Decimal                     ~            ~     -7.25%        -12.26%
AppendFloat/Float                       ~            ~    -15.96%        -19.45%
AppendFloat/Exp                         ~            ~    -13.96%        -17.76%
AppendFloat/NegExp                      ~            ~    -14.89%        -20.27%
AppendFloat/LongExp                     ~            ~    -12.68%        -17.97%
AppendFloat/Big                         ~            ~    -11.10%        -16.64%
AppendFloat/BinaryExp                   ~            ~          ~              ~
AppendFloat/32Integer                   ~            ~    -10.05%        -10.91%
AppendFloat/32ExactFraction             ~            ~     -8.93%        -13.00%
AppendFloat/32Point                     ~            ~    -10.36%        -14.89%
AppendFloat/32Exp                       ~            ~     -9.88%        -13.54%
AppendFloat/32NegExp                    ~            ~    -10.16%        -14.26%
AppendFloat/32Shortest                  ~            ~    -11.39%        -14.96%
AppendFloat/32Fixed8Hard                ~            ~          ~         -2.31%
AppendFloat/32Fixed9Hard                ~            ~          ~         -7.01%
AppendFloat/64Fixed1                    ~            ~     -2.83%         -8.23%
AppendFloat/64Fixed2                    ~            ~          ~         -7.94%
AppendFloat/64Fixed3                    ~            ~     -4.07%         -7.22%
AppendFloat/64Fixed4                    ~            ~     -7.24%         -7.62%
AppendFloat/64Fixed12                   ~            ~     -6.57%         -4.82%
AppendFloat/64Fixed16                   ~            ~     -4.00%         -5.81%
AppendFloat/64Fixed12Hard          -2.22%            ~     -4.07%         -6.35%
AppendFloat/64Fixed17Hard          -2.12%            ~          ~         -3.79%
AppendFloat/64Fixed18Hard          -1.89%            ~     +2.48%              ~
AppendFloat/Slowpath64             -1.85%            ~    -14.49%        -18.21%
AppendFloat/SlowpathDenormal64          ~            ~    -13.08%        -19.41%

pkg: crypto/internal/fips140/nistec/fiat

benchmark \ host         s7  linux-amd64  linux-386  s7:GOARCH=386
                    vs base      vs base    vs base        vs base
Mul/P224                  ~            ~    -29.95%        -39.60%
Mul/P384                  ~            ~    -37.11%        -63.33%
Mul/P521                  ~            ~    -26.62%        -12.42%
Square/P224          +1.46%            ~    -40.62%        -49.18%
Square/P384               ~            ~    -45.51%        -69.68%
Square/P521         +90.37%            ~    -25.26%        -11.23%

(The +90% is a separate problem and not real; that much variation
can be seen on that system by running the same binary from two
different files.)

pkg: crypto/internal/fips140/edwards25519

benchmark \ host                    s7  linux-amd64  linux-386  s7:GOARCH=386
                               vs base      vs base    vs base        vs base
EncodingDecoding                     ~            ~    -34.67%        -35.75%
ScalarBaseMult                       ~            ~    -31.25%        -30.29%
ScalarMult                           ~            ~    -33.45%        -32.54%
VarTimeDoubleScalarBaseMult          ~            ~    -33.78%        -33.68%

Change-Id: Id3c91d42cd01def6731b755e99f8f40c6ad1bb65
Reviewed-on: https://go-review.googlesource.com/c/go/+/716061
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Auto-Submit: Russ Cox <rsc@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Keith Randall <khr@google.com>
2025-10-30 08:04:20 -07:00

1115 lines
32 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package arm
import (
"fmt"
"internal/buildcfg"
"math"
"math/bits"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/logopt"
"cmd/compile/internal/ssa"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/obj/arm"
"internal/abi"
)
// loadByType returns the load instruction of the given type.
func loadByType(t *types.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return arm.AMOVF
case 8:
return arm.AMOVD
}
} else {
switch t.Size() {
case 1:
if t.IsSigned() {
return arm.AMOVB
} else {
return arm.AMOVBU
}
case 2:
if t.IsSigned() {
return arm.AMOVH
} else {
return arm.AMOVHU
}
case 4:
return arm.AMOVW
}
}
panic("bad load type")
}
// storeByType returns the store instruction of the given type.
func storeByType(t *types.Type) obj.As {
if t.IsFloat() {
switch t.Size() {
case 4:
return arm.AMOVF
case 8:
return arm.AMOVD
}
} else {
switch t.Size() {
case 1:
return arm.AMOVB
case 2:
return arm.AMOVH
case 4:
return arm.AMOVW
}
}
panic("bad store type")
}
// shift type is used as Offset in obj.TYPE_SHIFT operands to encode shifted register operands.
type shift int64
// copied from ../../../internal/obj/util.go:/TYPE_SHIFT
func (v shift) String() string {
op := "<<>>->@>"[((v>>5)&3)<<1:]
if v&(1<<4) != 0 {
// register shift
return fmt.Sprintf("R%d%c%cR%d", v&15, op[0], op[1], (v>>8)&15)
} else {
// constant shift
return fmt.Sprintf("R%d%c%c%d", v&15, op[0], op[1], (v>>7)&31)
}
}
// makeshift encodes a register shifted by a constant.
func makeshift(v *ssa.Value, reg int16, typ int64, s int64) shift {
if s < 0 || s >= 32 {
v.Fatalf("shift out of range: %d", s)
}
return shift(int64(reg&0xf) | typ | (s&31)<<7)
}
// genshift generates a Prog for r = r0 op (r1 shifted by n).
func genshift(s *ssagen.State, v *ssa.Value, as obj.As, r0, r1, r int16, typ int64, n int64) *obj.Prog {
p := s.Prog(as)
p.From.Type = obj.TYPE_SHIFT
p.From.Offset = int64(makeshift(v, r1, typ, n))
p.Reg = r0
if r != 0 {
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
return p
}
// makeregshift encodes a register shifted by a register.
func makeregshift(r1 int16, typ int64, r2 int16) shift {
return shift(int64(r1&0xf) | typ | int64(r2&0xf)<<8 | 1<<4)
}
// genregshift generates a Prog for r = r0 op (r1 shifted by r2).
func genregshift(s *ssagen.State, as obj.As, r0, r1, r2, r int16, typ int64) *obj.Prog {
p := s.Prog(as)
p.From.Type = obj.TYPE_SHIFT
p.From.Offset = int64(makeregshift(r1, typ, r2))
p.Reg = r0
if r != 0 {
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
return p
}
// find a (lsb, width) pair for BFC
// lsb must be in [0, 31], width must be in [1, 32 - lsb]
// return (0xffffffff, 0) if v is not a binary like 0...01...10...0
func getBFC(v uint32) (uint32, uint32) {
var m, l uint32
// BFC is not applicable with zero
if v == 0 {
return 0xffffffff, 0
}
// find the lowest set bit, for example l=2 for 0x3ffffffc
l = uint32(bits.TrailingZeros32(v))
// m-1 represents the highest set bit index, for example m=30 for 0x3ffffffc
m = 32 - uint32(bits.LeadingZeros32(v))
// check if v is a binary like 0...01...10...0
if (1<<m)-(1<<l) == v {
// it must be m > l for non-zero v
return l, m - l
}
// invalid
return 0xffffffff, 0
}
func ssaGenValue(s *ssagen.State, v *ssa.Value) {
switch v.Op {
case ssa.OpCopy, ssa.OpARMMOVWreg:
if v.Type.IsMemory() {
return
}
x := v.Args[0].Reg()
y := v.Reg()
if x == y {
return
}
as := arm.AMOVW
if v.Type.IsFloat() {
switch v.Type.Size() {
case 4:
as = arm.AMOVF
case 8:
as = arm.AMOVD
default:
panic("bad float size")
}
}
p := s.Prog(as)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = y
case ssa.OpARMMOVWnop:
// nothing to do
case ssa.OpLoadReg:
if v.Type.IsFlags() {
v.Fatalf("load flags not implemented: %v", v.LongString())
return
}
p := s.Prog(loadByType(v.Type))
ssagen.AddrAuto(&p.From, v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpStoreReg:
if v.Type.IsFlags() {
v.Fatalf("store flags not implemented: %v", v.LongString())
return
}
p := s.Prog(storeByType(v.Type))
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
ssagen.AddrAuto(&p.To, v)
case ssa.OpARMADD,
ssa.OpARMADC,
ssa.OpARMSUB,
ssa.OpARMSBC,
ssa.OpARMRSB,
ssa.OpARMAND,
ssa.OpARMOR,
ssa.OpARMXOR,
ssa.OpARMBIC,
ssa.OpARMMUL,
ssa.OpARMADDF,
ssa.OpARMADDD,
ssa.OpARMSUBF,
ssa.OpARMSUBD,
ssa.OpARMSLL,
ssa.OpARMSRL,
ssa.OpARMSRA,
ssa.OpARMMULF,
ssa.OpARMMULD,
ssa.OpARMNMULF,
ssa.OpARMNMULD,
ssa.OpARMDIVF,
ssa.OpARMDIVD:
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpARMSRR:
genregshift(s, arm.AMOVW, 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_RR)
case ssa.OpARMMULAF, ssa.OpARMMULAD, ssa.OpARMMULSF, ssa.OpARMMULSD, ssa.OpARMFMULAD:
r := v.Reg()
r0 := v.Args[0].Reg()
r1 := v.Args[1].Reg()
r2 := v.Args[2].Reg()
if r != r0 {
v.Fatalf("result and addend are not in the same register: %v", v.LongString())
}
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpARMADDS,
ssa.OpARMADCS,
ssa.OpARMSUBS:
r := v.Reg0()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := s.Prog(v.Op.Asm())
p.Scond = arm.C_SBIT
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpARMSRAcond:
// ARM shift instructions uses only the low-order byte of the shift amount
// generate conditional instructions to deal with large shifts
// flag is already set
// SRA.HS $31, Rarg0, Rdst // shift 31 bits to get the sign bit
// SRA.LO Rarg1, Rarg0, Rdst
r := v.Reg()
r1 := v.Args[0].Reg()
r2 := v.Args[1].Reg()
p := s.Prog(arm.ASRA)
p.Scond = arm.C_SCOND_HS
p.From.Type = obj.TYPE_CONST
p.From.Offset = 31
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
p = s.Prog(arm.ASRA)
p.Scond = arm.C_SCOND_LO
p.From.Type = obj.TYPE_REG
p.From.Reg = r2
p.Reg = r1
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpARMBFX, ssa.OpARMBFXU:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt >> 8
p.AddRestSourceConst(v.AuxInt & 0xff)
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMANDconst, ssa.OpARMBICconst:
// try to optimize ANDconst and BICconst to BFC, which saves bytes and ticks
// BFC is only available on ARMv7, and its result and source are in the same register
if buildcfg.GOARM.Version == 7 && v.Reg() == v.Args[0].Reg() {
var val uint32
if v.Op == ssa.OpARMANDconst {
val = ^uint32(v.AuxInt)
} else { // BICconst
val = uint32(v.AuxInt)
}
lsb, width := getBFC(val)
// omit BFC for ARM's imm12
if 8 < width && width < 24 {
p := s.Prog(arm.ABFC)
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(width)
p.AddRestSourceConst(int64(lsb))
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
break
}
}
// fall back to ordinary form
fallthrough
case ssa.OpARMADDconst,
ssa.OpARMADCconst,
ssa.OpARMSUBconst,
ssa.OpARMSBCconst,
ssa.OpARMRSBconst,
ssa.OpARMRSCconst,
ssa.OpARMORconst,
ssa.OpARMXORconst,
ssa.OpARMSLLconst,
ssa.OpARMSRLconst,
ssa.OpARMSRAconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMADDSconst,
ssa.OpARMSUBSconst,
ssa.OpARMRSBSconst:
p := s.Prog(v.Op.Asm())
p.Scond = arm.C_SBIT
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg0()
case ssa.OpARMSRRconst:
genshift(s, v, arm.AMOVW, 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_RR, v.AuxInt)
case ssa.OpARMADDshiftLL,
ssa.OpARMADCshiftLL,
ssa.OpARMSUBshiftLL,
ssa.OpARMSBCshiftLL,
ssa.OpARMRSBshiftLL,
ssa.OpARMRSCshiftLL,
ssa.OpARMANDshiftLL,
ssa.OpARMORshiftLL,
ssa.OpARMXORshiftLL,
ssa.OpARMBICshiftLL:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LL, v.AuxInt)
case ssa.OpARMADDSshiftLL,
ssa.OpARMSUBSshiftLL,
ssa.OpARMRSBSshiftLL:
p := genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg0(), arm.SHIFT_LL, v.AuxInt)
p.Scond = arm.C_SBIT
case ssa.OpARMADDshiftRL,
ssa.OpARMADCshiftRL,
ssa.OpARMSUBshiftRL,
ssa.OpARMSBCshiftRL,
ssa.OpARMRSBshiftRL,
ssa.OpARMRSCshiftRL,
ssa.OpARMANDshiftRL,
ssa.OpARMORshiftRL,
ssa.OpARMXORshiftRL,
ssa.OpARMBICshiftRL:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LR, v.AuxInt)
case ssa.OpARMADDSshiftRL,
ssa.OpARMSUBSshiftRL,
ssa.OpARMRSBSshiftRL:
p := genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg0(), arm.SHIFT_LR, v.AuxInt)
p.Scond = arm.C_SBIT
case ssa.OpARMADDshiftRA,
ssa.OpARMADCshiftRA,
ssa.OpARMSUBshiftRA,
ssa.OpARMSBCshiftRA,
ssa.OpARMRSBshiftRA,
ssa.OpARMRSCshiftRA,
ssa.OpARMANDshiftRA,
ssa.OpARMORshiftRA,
ssa.OpARMXORshiftRA,
ssa.OpARMBICshiftRA:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_AR, v.AuxInt)
case ssa.OpARMADDSshiftRA,
ssa.OpARMSUBSshiftRA,
ssa.OpARMRSBSshiftRA:
p := genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg0(), arm.SHIFT_AR, v.AuxInt)
p.Scond = arm.C_SBIT
case ssa.OpARMXORshiftRR:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_RR, v.AuxInt)
case ssa.OpARMMVNshiftLL:
genshift(s, v, v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_LL, v.AuxInt)
case ssa.OpARMMVNshiftRL:
genshift(s, v, v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_LR, v.AuxInt)
case ssa.OpARMMVNshiftRA:
genshift(s, v, v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_AR, v.AuxInt)
case ssa.OpARMMVNshiftLLreg:
genregshift(s, v.Op.Asm(), 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LL)
case ssa.OpARMMVNshiftRLreg:
genregshift(s, v.Op.Asm(), 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_LR)
case ssa.OpARMMVNshiftRAreg:
genregshift(s, v.Op.Asm(), 0, v.Args[0].Reg(), v.Args[1].Reg(), v.Reg(), arm.SHIFT_AR)
case ssa.OpARMADDshiftLLreg,
ssa.OpARMADCshiftLLreg,
ssa.OpARMSUBshiftLLreg,
ssa.OpARMSBCshiftLLreg,
ssa.OpARMRSBshiftLLreg,
ssa.OpARMRSCshiftLLreg,
ssa.OpARMANDshiftLLreg,
ssa.OpARMORshiftLLreg,
ssa.OpARMXORshiftLLreg,
ssa.OpARMBICshiftLLreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg(), arm.SHIFT_LL)
case ssa.OpARMADDSshiftLLreg,
ssa.OpARMSUBSshiftLLreg,
ssa.OpARMRSBSshiftLLreg:
p := genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg0(), arm.SHIFT_LL)
p.Scond = arm.C_SBIT
case ssa.OpARMADDshiftRLreg,
ssa.OpARMADCshiftRLreg,
ssa.OpARMSUBshiftRLreg,
ssa.OpARMSBCshiftRLreg,
ssa.OpARMRSBshiftRLreg,
ssa.OpARMRSCshiftRLreg,
ssa.OpARMANDshiftRLreg,
ssa.OpARMORshiftRLreg,
ssa.OpARMXORshiftRLreg,
ssa.OpARMBICshiftRLreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg(), arm.SHIFT_LR)
case ssa.OpARMADDSshiftRLreg,
ssa.OpARMSUBSshiftRLreg,
ssa.OpARMRSBSshiftRLreg:
p := genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg0(), arm.SHIFT_LR)
p.Scond = arm.C_SBIT
case ssa.OpARMADDshiftRAreg,
ssa.OpARMADCshiftRAreg,
ssa.OpARMSUBshiftRAreg,
ssa.OpARMSBCshiftRAreg,
ssa.OpARMRSBshiftRAreg,
ssa.OpARMRSCshiftRAreg,
ssa.OpARMANDshiftRAreg,
ssa.OpARMORshiftRAreg,
ssa.OpARMXORshiftRAreg,
ssa.OpARMBICshiftRAreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg(), arm.SHIFT_AR)
case ssa.OpARMADDSshiftRAreg,
ssa.OpARMSUBSshiftRAreg,
ssa.OpARMRSBSshiftRAreg:
p := genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), v.Reg0(), arm.SHIFT_AR)
p.Scond = arm.C_SBIT
case ssa.OpARMHMUL,
ssa.OpARMHMULU:
// 32-bit high multiplication
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_REGREG
p.To.Reg = v.Reg()
p.To.Offset = arm.REGTMP // throw away low 32-bit into tmp register
case ssa.OpARMMULLU:
// 32-bit multiplication, results 64-bit, high 32-bit in out0, low 32-bit in out1
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_REGREG
p.To.Reg = v.Reg0() // high 32-bit
p.To.Offset = int64(v.Reg1()) // low 32-bit
case ssa.OpARMMULA, ssa.OpARMMULS:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_REGREG2
p.To.Reg = v.Reg() // result
p.To.Offset = int64(v.Args[2].Reg()) // addend
case ssa.OpARMMOVWconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMMOVFconst,
ssa.OpARMMOVDconst:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_FCONST
p.From.Val = math.Float64frombits(uint64(v.AuxInt))
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMCMP,
ssa.OpARMCMN,
ssa.OpARMTST,
ssa.OpARMTEQ,
ssa.OpARMCMPF,
ssa.OpARMCMPD:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
// Special layout in ARM assembly
// Comparing to x86, the operands of ARM's CMP are reversed.
p.From.Reg = v.Args[1].Reg()
p.Reg = v.Args[0].Reg()
case ssa.OpARMCMPconst,
ssa.OpARMCMNconst,
ssa.OpARMTSTconst,
ssa.OpARMTEQconst:
// Special layout in ARM assembly
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.Reg = v.Args[0].Reg()
case ssa.OpARMCMPF0,
ssa.OpARMCMPD0:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
case ssa.OpARMCMPshiftLL, ssa.OpARMCMNshiftLL, ssa.OpARMTSTshiftLL, ssa.OpARMTEQshiftLL:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm.SHIFT_LL, v.AuxInt)
case ssa.OpARMCMPshiftRL, ssa.OpARMCMNshiftRL, ssa.OpARMTSTshiftRL, ssa.OpARMTEQshiftRL:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm.SHIFT_LR, v.AuxInt)
case ssa.OpARMCMPshiftRA, ssa.OpARMCMNshiftRA, ssa.OpARMTSTshiftRA, ssa.OpARMTEQshiftRA:
genshift(s, v, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), 0, arm.SHIFT_AR, v.AuxInt)
case ssa.OpARMCMPshiftLLreg, ssa.OpARMCMNshiftLLreg, ssa.OpARMTSTshiftLLreg, ssa.OpARMTEQshiftLLreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), 0, arm.SHIFT_LL)
case ssa.OpARMCMPshiftRLreg, ssa.OpARMCMNshiftRLreg, ssa.OpARMTSTshiftRLreg, ssa.OpARMTEQshiftRLreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), 0, arm.SHIFT_LR)
case ssa.OpARMCMPshiftRAreg, ssa.OpARMCMNshiftRAreg, ssa.OpARMTSTshiftRAreg, ssa.OpARMTEQshiftRAreg:
genregshift(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg(), v.Args[2].Reg(), 0, arm.SHIFT_AR)
case ssa.OpARMMOVWaddr:
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_ADDR
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
var wantreg string
// MOVW $sym+off(base), R
// the assembler expands it as the following:
// - base is SP: add constant offset to SP (R13)
// when constant is large, tmp register (R11) may be used
// - base is SB: load external address from constant pool (use relocation)
switch v.Aux.(type) {
default:
v.Fatalf("aux is of unknown type %T", v.Aux)
case *obj.LSym:
wantreg = "SB"
ssagen.AddAux(&p.From, v)
case *ir.Name:
wantreg = "SP"
ssagen.AddAux(&p.From, v)
case nil:
// No sym, just MOVW $off(SP), R
wantreg = "SP"
p.From.Offset = v.AuxInt
}
if reg := v.Args[0].RegName(); reg != wantreg {
v.Fatalf("bad reg %s for symbol type %T, want %s", reg, v.Aux, wantreg)
}
case ssa.OpARMMOVBload,
ssa.OpARMMOVBUload,
ssa.OpARMMOVHload,
ssa.OpARMMOVHUload,
ssa.OpARMMOVWload,
ssa.OpARMMOVFload,
ssa.OpARMMOVDload:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMMOVBstore,
ssa.OpARMMOVHstore,
ssa.OpARMMOVWstore,
ssa.OpARMMOVFstore,
ssa.OpARMMOVDstore:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[1].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.To, v)
case ssa.OpARMMOVWloadidx, ssa.OpARMMOVBUloadidx, ssa.OpARMMOVBloadidx, ssa.OpARMMOVHUloadidx, ssa.OpARMMOVHloadidx:
// this is just shift 0 bits
fallthrough
case ssa.OpARMMOVWloadshiftLL:
p := genshift(s, v, v.Op.Asm(), 0, v.Args[1].Reg(), v.Reg(), arm.SHIFT_LL, v.AuxInt)
p.From.Reg = v.Args[0].Reg()
case ssa.OpARMMOVWloadshiftRL:
p := genshift(s, v, v.Op.Asm(), 0, v.Args[1].Reg(), v.Reg(), arm.SHIFT_LR, v.AuxInt)
p.From.Reg = v.Args[0].Reg()
case ssa.OpARMMOVWloadshiftRA:
p := genshift(s, v, v.Op.Asm(), 0, v.Args[1].Reg(), v.Reg(), arm.SHIFT_AR, v.AuxInt)
p.From.Reg = v.Args[0].Reg()
case ssa.OpARMMOVWstoreidx, ssa.OpARMMOVBstoreidx, ssa.OpARMMOVHstoreidx:
// this is just shift 0 bits
fallthrough
case ssa.OpARMMOVWstoreshiftLL:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_SHIFT
p.To.Reg = v.Args[0].Reg()
p.To.Offset = int64(makeshift(v, v.Args[1].Reg(), arm.SHIFT_LL, v.AuxInt))
case ssa.OpARMMOVWstoreshiftRL:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_SHIFT
p.To.Reg = v.Args[0].Reg()
p.To.Offset = int64(makeshift(v, v.Args[1].Reg(), arm.SHIFT_LR, v.AuxInt))
case ssa.OpARMMOVWstoreshiftRA:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_SHIFT
p.To.Reg = v.Args[0].Reg()
p.To.Offset = int64(makeshift(v, v.Args[1].Reg(), arm.SHIFT_AR, v.AuxInt))
case ssa.OpARMMOVBreg,
ssa.OpARMMOVBUreg,
ssa.OpARMMOVHreg,
ssa.OpARMMOVHUreg:
a := v.Args[0]
for a.Op == ssa.OpCopy || a.Op == ssa.OpARMMOVWreg || a.Op == ssa.OpARMMOVWnop {
a = a.Args[0]
}
if a.Op == ssa.OpLoadReg {
t := a.Type
switch {
case v.Op == ssa.OpARMMOVBreg && t.Size() == 1 && t.IsSigned(),
v.Op == ssa.OpARMMOVBUreg && t.Size() == 1 && !t.IsSigned(),
v.Op == ssa.OpARMMOVHreg && t.Size() == 2 && t.IsSigned(),
v.Op == ssa.OpARMMOVHUreg && t.Size() == 2 && !t.IsSigned():
// arg is a proper-typed load, already zero/sign-extended, don't extend again
if v.Reg() == v.Args[0].Reg() {
return
}
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
return
default:
}
}
if buildcfg.GOARM.Version >= 6 {
// generate more efficient "MOVB/MOVBU/MOVH/MOVHU Reg@>0, Reg" on ARMv6 & ARMv7
genshift(s, v, v.Op.Asm(), 0, v.Args[0].Reg(), v.Reg(), arm.SHIFT_RR, 0)
return
}
fallthrough
case ssa.OpARMMVN,
ssa.OpARMCLZ,
ssa.OpARMREV,
ssa.OpARMREV16,
ssa.OpARMRBIT,
ssa.OpARMSQRTF,
ssa.OpARMSQRTD,
ssa.OpARMNEGF,
ssa.OpARMNEGD,
ssa.OpARMABSD,
ssa.OpARMMOVWF,
ssa.OpARMMOVWD,
ssa.OpARMMOVFW,
ssa.OpARMMOVDW,
ssa.OpARMMOVFD,
ssa.OpARMMOVDF:
p := s.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMMOVWUF,
ssa.OpARMMOVWUD,
ssa.OpARMMOVFWU,
ssa.OpARMMOVDWU:
p := s.Prog(v.Op.Asm())
p.Scond = arm.C_UBIT
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[0].Reg()
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMCMOVWHSconst:
p := s.Prog(arm.AMOVW)
p.Scond = arm.C_SCOND_HS
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMCMOVWLSconst:
p := s.Prog(arm.AMOVW)
p.Scond = arm.C_SCOND_LS
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMCALLstatic, ssa.OpARMCALLclosure, ssa.OpARMCALLinter:
s.Call(v)
case ssa.OpARMCALLtail:
s.TailCall(v)
case ssa.OpARMCALLudiv:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = ir.Syms.Udiv
case ssa.OpARMLoweredWB:
p := s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
// AuxInt encodes how many buffer entries we need.
p.To.Sym = ir.Syms.GCWriteBarrier[v.AuxInt-1]
case ssa.OpARMLoweredPanicBoundsRR, ssa.OpARMLoweredPanicBoundsRC, ssa.OpARMLoweredPanicBoundsCR, ssa.OpARMLoweredPanicBoundsCC,
ssa.OpARMLoweredPanicExtendRR, ssa.OpARMLoweredPanicExtendRC:
// Compute the constant we put in the PCData entry for this call.
code, signed := ssa.BoundsKind(v.AuxInt).Code()
xIsReg := false
yIsReg := false
xVal := 0
yVal := 0
extend := false
switch v.Op {
case ssa.OpARMLoweredPanicBoundsRR:
xIsReg = true
xVal = int(v.Args[0].Reg() - arm.REG_R0)
yIsReg = true
yVal = int(v.Args[1].Reg() - arm.REG_R0)
case ssa.OpARMLoweredPanicExtendRR:
extend = true
xIsReg = true
hi := int(v.Args[0].Reg() - arm.REG_R0)
lo := int(v.Args[1].Reg() - arm.REG_R0)
xVal = hi<<2 + lo // encode 2 register numbers
yIsReg = true
yVal = int(v.Args[2].Reg() - arm.REG_R0)
case ssa.OpARMLoweredPanicBoundsRC:
xIsReg = true
xVal = int(v.Args[0].Reg() - arm.REG_R0)
c := v.Aux.(ssa.PanicBoundsC).C
if c >= 0 && c <= abi.BoundsMaxConst {
yVal = int(c)
} else {
// Move constant to a register
yIsReg = true
if yVal == xVal {
yVal = 1
}
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = c
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REG_R0 + int16(yVal)
}
case ssa.OpARMLoweredPanicExtendRC:
extend = true
xIsReg = true
hi := int(v.Args[0].Reg() - arm.REG_R0)
lo := int(v.Args[1].Reg() - arm.REG_R0)
xVal = hi<<2 + lo // encode 2 register numbers
c := v.Aux.(ssa.PanicBoundsC).C
if c >= 0 && c <= abi.BoundsMaxConst {
yVal = int(c)
} else {
// Move constant to a register
for yVal == hi || yVal == lo {
yVal++
}
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = c
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REG_R0 + int16(yVal)
}
case ssa.OpARMLoweredPanicBoundsCR:
yIsReg = true
yVal = int(v.Args[0].Reg() - arm.REG_R0)
c := v.Aux.(ssa.PanicBoundsC).C
if c >= 0 && c <= abi.BoundsMaxConst {
xVal = int(c)
} else if signed && int64(int32(c)) == c || !signed && int64(uint32(c)) == c {
// Move constant to a register
xIsReg = true
if xVal == yVal {
xVal = 1
}
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = c
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REG_R0 + int16(xVal)
} else {
// Move constant to two registers
extend = true
xIsReg = true
hi := 0
lo := 1
if hi == yVal {
hi = 2
}
if lo == yVal {
lo = 2
}
xVal = hi<<2 + lo
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = c >> 32
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REG_R0 + int16(hi)
p = s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(int32(c))
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REG_R0 + int16(lo)
}
case ssa.OpARMLoweredPanicBoundsCC:
c := v.Aux.(ssa.PanicBoundsCC).Cx
if c >= 0 && c <= abi.BoundsMaxConst {
xVal = int(c)
} else if signed && int64(int32(c)) == c || !signed && int64(uint32(c)) == c {
// Move constant to a register
xIsReg = true
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = c
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REG_R0 + int16(xVal)
} else {
// Move constant to two registers
extend = true
xIsReg = true
hi := 0
lo := 1
xVal = hi<<2 + lo
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = c >> 32
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REG_R0 + int16(hi)
p = s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = int64(int32(c))
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REG_R0 + int16(lo)
}
c = v.Aux.(ssa.PanicBoundsCC).Cy
if c >= 0 && c <= abi.BoundsMaxConst {
yVal = int(c)
} else {
// Move constant to a register
yIsReg = true
yVal = 2
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = c
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REG_R0 + int16(yVal)
}
}
c := abi.BoundsEncode(code, signed, xIsReg, yIsReg, xVal, yVal)
p := s.Prog(obj.APCDATA)
p.From.SetConst(abi.PCDATA_PanicBounds)
p.To.SetConst(int64(c))
p = s.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
if extend {
p.To.Sym = ir.Syms.PanicExtend
} else {
p.To.Sym = ir.Syms.PanicBounds
}
case ssa.OpARMDUFFZERO:
p := s.Prog(obj.ADUFFZERO)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = ir.Syms.Duffzero
p.To.Offset = v.AuxInt
case ssa.OpARMDUFFCOPY:
p := s.Prog(obj.ADUFFCOPY)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = ir.Syms.Duffcopy
p.To.Offset = v.AuxInt
case ssa.OpARMLoweredNilCheck:
// Issue a load which will fault if arg is nil.
p := s.Prog(arm.AMOVB)
p.From.Type = obj.TYPE_MEM
p.From.Reg = v.Args[0].Reg()
ssagen.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REGTMP
if logopt.Enabled() {
logopt.LogOpt(v.Pos, "nilcheck", "genssa", v.Block.Func.Name)
}
if base.Debug.Nil != 0 && v.Pos.Line() > 1 { // v.Pos.Line()==1 in generated wrappers
base.WarnfAt(v.Pos, "generated nil check")
}
case ssa.OpARMLoweredZero:
// MOVW.P Rarg2, 4(R1)
// CMP Rarg1, R1
// BLE -2(PC)
// arg1 is the address of the last element to zero
// arg2 is known to be zero
// auxint is alignment
var sz int64
var mov obj.As
switch {
case v.AuxInt%4 == 0:
sz = 4
mov = arm.AMOVW
case v.AuxInt%2 == 0:
sz = 2
mov = arm.AMOVH
default:
sz = 1
mov = arm.AMOVB
}
p := s.Prog(mov)
p.Scond = arm.C_PBIT
p.From.Type = obj.TYPE_REG
p.From.Reg = v.Args[2].Reg()
p.To.Type = obj.TYPE_MEM
p.To.Reg = arm.REG_R1
p.To.Offset = sz
p2 := s.Prog(arm.ACMP)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = v.Args[1].Reg()
p2.Reg = arm.REG_R1
p3 := s.Prog(arm.ABLE)
p3.To.Type = obj.TYPE_BRANCH
p3.To.SetTarget(p)
case ssa.OpARMLoweredMove:
// MOVW.P 4(R1), Rtmp
// MOVW.P Rtmp, 4(R2)
// CMP Rarg2, R1
// BLE -3(PC)
// arg2 is the address of the last element of src
// auxint is alignment
var sz int64
var mov obj.As
switch {
case v.AuxInt%4 == 0:
sz = 4
mov = arm.AMOVW
case v.AuxInt%2 == 0:
sz = 2
mov = arm.AMOVH
default:
sz = 1
mov = arm.AMOVB
}
p := s.Prog(mov)
p.Scond = arm.C_PBIT
p.From.Type = obj.TYPE_MEM
p.From.Reg = arm.REG_R1
p.From.Offset = sz
p.To.Type = obj.TYPE_REG
p.To.Reg = arm.REGTMP
p2 := s.Prog(mov)
p2.Scond = arm.C_PBIT
p2.From.Type = obj.TYPE_REG
p2.From.Reg = arm.REGTMP
p2.To.Type = obj.TYPE_MEM
p2.To.Reg = arm.REG_R2
p2.To.Offset = sz
p3 := s.Prog(arm.ACMP)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = v.Args[2].Reg()
p3.Reg = arm.REG_R1
p4 := s.Prog(arm.ABLE)
p4.To.Type = obj.TYPE_BRANCH
p4.To.SetTarget(p)
case ssa.OpARMEqual,
ssa.OpARMNotEqual,
ssa.OpARMLessThan,
ssa.OpARMLessEqual,
ssa.OpARMGreaterThan,
ssa.OpARMGreaterEqual,
ssa.OpARMLessThanU,
ssa.OpARMLessEqualU,
ssa.OpARMGreaterThanU,
ssa.OpARMGreaterEqualU:
// generate boolean values
// use conditional move
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 0
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
p = s.Prog(arm.AMOVW)
p.Scond = condBits[v.Op]
p.From.Type = obj.TYPE_CONST
p.From.Offset = 1
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMLoweredGetClosurePtr:
// Closure pointer is R7 (arm.REGCTXT).
ssagen.CheckLoweredGetClosurePtr(v)
case ssa.OpARMLoweredGetCallerSP:
// caller's SP is FixedFrameSize below the address of the first arg
p := s.Prog(arm.AMOVW)
p.From.Type = obj.TYPE_ADDR
p.From.Offset = -base.Ctxt.Arch.FixedFrameSize
p.From.Name = obj.NAME_PARAM
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMLoweredGetCallerPC:
p := s.Prog(obj.AGETCALLERPC)
p.To.Type = obj.TYPE_REG
p.To.Reg = v.Reg()
case ssa.OpARMFlagConstant:
v.Fatalf("FlagConstant op should never make it to codegen %v", v.LongString())
case ssa.OpARMInvertFlags:
v.Fatalf("InvertFlags should never make it to codegen %v", v.LongString())
case ssa.OpClobber, ssa.OpClobberReg:
// TODO: implement for clobberdead experiment. Nop is ok for now.
default:
v.Fatalf("genValue not implemented: %s", v.LongString())
}
}
var condBits = map[ssa.Op]uint8{
ssa.OpARMEqual: arm.C_SCOND_EQ,
ssa.OpARMNotEqual: arm.C_SCOND_NE,
ssa.OpARMLessThan: arm.C_SCOND_LT,
ssa.OpARMLessThanU: arm.C_SCOND_LO,
ssa.OpARMLessEqual: arm.C_SCOND_LE,
ssa.OpARMLessEqualU: arm.C_SCOND_LS,
ssa.OpARMGreaterThan: arm.C_SCOND_GT,
ssa.OpARMGreaterThanU: arm.C_SCOND_HI,
ssa.OpARMGreaterEqual: arm.C_SCOND_GE,
ssa.OpARMGreaterEqualU: arm.C_SCOND_HS,
}
var blockJump = map[ssa.BlockKind]struct {
asm, invasm obj.As
}{
ssa.BlockARMEQ: {arm.ABEQ, arm.ABNE},
ssa.BlockARMNE: {arm.ABNE, arm.ABEQ},
ssa.BlockARMLT: {arm.ABLT, arm.ABGE},
ssa.BlockARMGE: {arm.ABGE, arm.ABLT},
ssa.BlockARMLE: {arm.ABLE, arm.ABGT},
ssa.BlockARMGT: {arm.ABGT, arm.ABLE},
ssa.BlockARMULT: {arm.ABLO, arm.ABHS},
ssa.BlockARMUGE: {arm.ABHS, arm.ABLO},
ssa.BlockARMUGT: {arm.ABHI, arm.ABLS},
ssa.BlockARMULE: {arm.ABLS, arm.ABHI},
ssa.BlockARMLTnoov: {arm.ABMI, arm.ABPL},
ssa.BlockARMGEnoov: {arm.ABPL, arm.ABMI},
}
// To model a 'LEnoov' ('<=' without overflow checking) branching.
var leJumps = [2][2]ssagen.IndexJump{
{{Jump: arm.ABEQ, Index: 0}, {Jump: arm.ABPL, Index: 1}}, // next == b.Succs[0]
{{Jump: arm.ABMI, Index: 0}, {Jump: arm.ABEQ, Index: 0}}, // next == b.Succs[1]
}
// To model a 'GTnoov' ('>' without overflow checking) branching.
var gtJumps = [2][2]ssagen.IndexJump{
{{Jump: arm.ABMI, Index: 1}, {Jump: arm.ABEQ, Index: 1}}, // next == b.Succs[0]
{{Jump: arm.ABEQ, Index: 1}, {Jump: arm.ABPL, Index: 0}}, // next == b.Succs[1]
}
func ssaGenBlock(s *ssagen.State, b, next *ssa.Block) {
switch b.Kind {
case ssa.BlockPlain, ssa.BlockDefer:
if b.Succs[0].Block() != next {
p := s.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, ssagen.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockExit, ssa.BlockRetJmp:
case ssa.BlockRet:
s.Prog(obj.ARET)
case ssa.BlockARMEQ, ssa.BlockARMNE,
ssa.BlockARMLT, ssa.BlockARMGE,
ssa.BlockARMLE, ssa.BlockARMGT,
ssa.BlockARMULT, ssa.BlockARMUGT,
ssa.BlockARMULE, ssa.BlockARMUGE,
ssa.BlockARMLTnoov, ssa.BlockARMGEnoov:
jmp := blockJump[b.Kind]
switch next {
case b.Succs[0].Block():
s.Br(jmp.invasm, b.Succs[1].Block())
case b.Succs[1].Block():
s.Br(jmp.asm, b.Succs[0].Block())
default:
if b.Likely != ssa.BranchUnlikely {
s.Br(jmp.asm, b.Succs[0].Block())
s.Br(obj.AJMP, b.Succs[1].Block())
} else {
s.Br(jmp.invasm, b.Succs[1].Block())
s.Br(obj.AJMP, b.Succs[0].Block())
}
}
case ssa.BlockARMLEnoov:
s.CombJump(b, next, &leJumps)
case ssa.BlockARMGTnoov:
s.CombJump(b, next, &gtJumps)
default:
b.Fatalf("branch not implemented: %s", b.LongString())
}
}