mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
To break up package gc, we need to put these calculations somewhere
lower in the import graph, either an existing or new package. Package types
already needs this code and is using hacks to get it without an import cycle.
We can remove the hacks and set up for the new package gc by moving the
code into package types itself.
[git-generate]
cd src/cmd/compile/internal/gc
rf '
# Remove old import cycle hacks in gc.
rm TypecheckInit:/types.Widthptr =/-0,/types.Dowidth =/+0 \
../ssa/export_test.go:/types.Dowidth =/-+
ex {
import "cmd/compile/internal/types"
types.Widthptr -> Widthptr
types.Dowidth -> dowidth
}
# Disable CalcSize in tests instead of base.Fatalf
sub dowidth:/base.Fatalf\("dowidth without betypeinit"\)/ \
// Assume this is a test. \
return
# Move size calculation into cmd/compile/internal/types
mv Widthptr PtrSize
mv Widthreg RegSize
mv slicePtrOffset SlicePtrOffset
mv sliceLenOffset SliceLenOffset
mv sliceCapOffset SliceCapOffset
mv sizeofSlice SliceSize
mv sizeofString StringSize
mv skipDowidthForTracing SkipSizeForTracing
mv dowidth CalcSize
mv checkwidth CheckSize
mv widstruct calcStructOffset
mv sizeCalculationDisabled CalcSizeDisabled
mv defercheckwidth DeferCheckSize
mv resumecheckwidth ResumeCheckSize
mv typeptrdata PtrDataSize
mv \
PtrSize RegSize SlicePtrOffset SkipSizeForTracing typePos align.go PtrDataSize \
size.go
mv size.go cmd/compile/internal/types
'
: # Remove old import cycle hacks in types.
cd ../types
rf '
ex {
Widthptr -> PtrSize
Dowidth -> CalcSize
}
rm Widthptr Dowidth
'
Change-Id: Ib96cdc6bda2617235480c29392ea5cfb20f60cd8
Reviewed-on: https://go-review.googlesource.com/c/go/+/279234
Trust: Russ Cox <rsc@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
1336 lines
42 KiB
Go
1336 lines
42 KiB
Go
// Copyright 2016 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package amd64
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/gc"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/logopt"
|
|
"cmd/compile/internal/ssa"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/obj/x86"
|
|
)
|
|
|
|
// markMoves marks any MOVXconst ops that need to avoid clobbering flags.
|
|
func ssaMarkMoves(s *gc.SSAGenState, b *ssa.Block) {
|
|
flive := b.FlagsLiveAtEnd
|
|
for _, c := range b.ControlValues() {
|
|
flive = c.Type.IsFlags() || flive
|
|
}
|
|
for i := len(b.Values) - 1; i >= 0; i-- {
|
|
v := b.Values[i]
|
|
if flive && (v.Op == ssa.OpAMD64MOVLconst || v.Op == ssa.OpAMD64MOVQconst) {
|
|
// The "mark" is any non-nil Aux value.
|
|
v.Aux = v
|
|
}
|
|
if v.Type.IsFlags() {
|
|
flive = false
|
|
}
|
|
for _, a := range v.Args {
|
|
if a.Type.IsFlags() {
|
|
flive = true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// loadByType returns the load instruction of the given type.
|
|
func loadByType(t *types.Type) obj.As {
|
|
// Avoid partial register write
|
|
if !t.IsFloat() {
|
|
switch t.Size() {
|
|
case 1:
|
|
return x86.AMOVBLZX
|
|
case 2:
|
|
return x86.AMOVWLZX
|
|
}
|
|
}
|
|
// Otherwise, there's no difference between load and store opcodes.
|
|
return storeByType(t)
|
|
}
|
|
|
|
// storeByType returns the store instruction of the given type.
|
|
func storeByType(t *types.Type) obj.As {
|
|
width := t.Size()
|
|
if t.IsFloat() {
|
|
switch width {
|
|
case 4:
|
|
return x86.AMOVSS
|
|
case 8:
|
|
return x86.AMOVSD
|
|
}
|
|
} else {
|
|
switch width {
|
|
case 1:
|
|
return x86.AMOVB
|
|
case 2:
|
|
return x86.AMOVW
|
|
case 4:
|
|
return x86.AMOVL
|
|
case 8:
|
|
return x86.AMOVQ
|
|
}
|
|
}
|
|
panic(fmt.Sprintf("bad store type %v", t))
|
|
}
|
|
|
|
// moveByType returns the reg->reg move instruction of the given type.
|
|
func moveByType(t *types.Type) obj.As {
|
|
if t.IsFloat() {
|
|
// Moving the whole sse2 register is faster
|
|
// than moving just the correct low portion of it.
|
|
// There is no xmm->xmm move with 1 byte opcode,
|
|
// so use movups, which has 2 byte opcode.
|
|
return x86.AMOVUPS
|
|
} else {
|
|
switch t.Size() {
|
|
case 1:
|
|
// Avoids partial register write
|
|
return x86.AMOVL
|
|
case 2:
|
|
return x86.AMOVL
|
|
case 4:
|
|
return x86.AMOVL
|
|
case 8:
|
|
return x86.AMOVQ
|
|
case 16:
|
|
return x86.AMOVUPS // int128s are in SSE registers
|
|
default:
|
|
panic(fmt.Sprintf("bad int register width %d:%v", t.Size(), t))
|
|
}
|
|
}
|
|
}
|
|
|
|
// opregreg emits instructions for
|
|
// dest := dest(To) op src(From)
|
|
// and also returns the created obj.Prog so it
|
|
// may be further adjusted (offset, scale, etc).
|
|
func opregreg(s *gc.SSAGenState, op obj.As, dest, src int16) *obj.Prog {
|
|
p := s.Prog(op)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = dest
|
|
p.From.Reg = src
|
|
return p
|
|
}
|
|
|
|
// memIdx fills out a as an indexed memory reference for v.
|
|
// It assumes that the base register and the index register
|
|
// are v.Args[0].Reg() and v.Args[1].Reg(), respectively.
|
|
// The caller must still use gc.AddAux/gc.AddAux2 to handle v.Aux as necessary.
|
|
func memIdx(a *obj.Addr, v *ssa.Value) {
|
|
r, i := v.Args[0].Reg(), v.Args[1].Reg()
|
|
a.Type = obj.TYPE_MEM
|
|
a.Scale = v.Op.Scale()
|
|
if a.Scale == 1 && i == x86.REG_SP {
|
|
r, i = i, r
|
|
}
|
|
a.Reg = r
|
|
a.Index = i
|
|
}
|
|
|
|
// DUFFZERO consists of repeated blocks of 4 MOVUPSs + LEAQ,
|
|
// See runtime/mkduff.go.
|
|
func duffStart(size int64) int64 {
|
|
x, _ := duff(size)
|
|
return x
|
|
}
|
|
func duffAdj(size int64) int64 {
|
|
_, x := duff(size)
|
|
return x
|
|
}
|
|
|
|
// duff returns the offset (from duffzero, in bytes) and pointer adjust (in bytes)
|
|
// required to use the duffzero mechanism for a block of the given size.
|
|
func duff(size int64) (int64, int64) {
|
|
if size < 32 || size > 1024 || size%dzClearStep != 0 {
|
|
panic("bad duffzero size")
|
|
}
|
|
steps := size / dzClearStep
|
|
blocks := steps / dzBlockLen
|
|
steps %= dzBlockLen
|
|
off := dzBlockSize * (dzBlocks - blocks)
|
|
var adj int64
|
|
if steps != 0 {
|
|
off -= dzLeaqSize
|
|
off -= dzMovSize * steps
|
|
adj -= dzClearStep * (dzBlockLen - steps)
|
|
}
|
|
return off, adj
|
|
}
|
|
|
|
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
|
|
switch v.Op {
|
|
case ssa.OpAMD64VFMADD231SD:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From = obj.Addr{Type: obj.TYPE_REG, Reg: v.Args[2].Reg()}
|
|
p.To = obj.Addr{Type: obj.TYPE_REG, Reg: v.Reg()}
|
|
p.SetFrom3(obj.Addr{Type: obj.TYPE_REG, Reg: v.Args[1].Reg()})
|
|
if v.Reg() != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
case ssa.OpAMD64ADDQ, ssa.OpAMD64ADDL:
|
|
r := v.Reg()
|
|
r1 := v.Args[0].Reg()
|
|
r2 := v.Args[1].Reg()
|
|
switch {
|
|
case r == r1:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r2
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
case r == r2:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r1
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
default:
|
|
var asm obj.As
|
|
if v.Op == ssa.OpAMD64ADDQ {
|
|
asm = x86.ALEAQ
|
|
} else {
|
|
asm = x86.ALEAL
|
|
}
|
|
p := s.Prog(asm)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = r1
|
|
p.From.Scale = 1
|
|
p.From.Index = r2
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
}
|
|
// 2-address opcode arithmetic
|
|
case ssa.OpAMD64SUBQ, ssa.OpAMD64SUBL,
|
|
ssa.OpAMD64MULQ, ssa.OpAMD64MULL,
|
|
ssa.OpAMD64ANDQ, ssa.OpAMD64ANDL,
|
|
ssa.OpAMD64ORQ, ssa.OpAMD64ORL,
|
|
ssa.OpAMD64XORQ, ssa.OpAMD64XORL,
|
|
ssa.OpAMD64SHLQ, ssa.OpAMD64SHLL,
|
|
ssa.OpAMD64SHRQ, ssa.OpAMD64SHRL, ssa.OpAMD64SHRW, ssa.OpAMD64SHRB,
|
|
ssa.OpAMD64SARQ, ssa.OpAMD64SARL, ssa.OpAMD64SARW, ssa.OpAMD64SARB,
|
|
ssa.OpAMD64ROLQ, ssa.OpAMD64ROLL, ssa.OpAMD64ROLW, ssa.OpAMD64ROLB,
|
|
ssa.OpAMD64RORQ, ssa.OpAMD64RORL, ssa.OpAMD64RORW, ssa.OpAMD64RORB,
|
|
ssa.OpAMD64ADDSS, ssa.OpAMD64ADDSD, ssa.OpAMD64SUBSS, ssa.OpAMD64SUBSD,
|
|
ssa.OpAMD64MULSS, ssa.OpAMD64MULSD, ssa.OpAMD64DIVSS, ssa.OpAMD64DIVSD,
|
|
ssa.OpAMD64PXOR,
|
|
ssa.OpAMD64BTSL, ssa.OpAMD64BTSQ,
|
|
ssa.OpAMD64BTCL, ssa.OpAMD64BTCQ,
|
|
ssa.OpAMD64BTRL, ssa.OpAMD64BTRQ:
|
|
r := v.Reg()
|
|
if r != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
opregreg(s, v.Op.Asm(), r, v.Args[1].Reg())
|
|
|
|
case ssa.OpAMD64DIVQU, ssa.OpAMD64DIVLU, ssa.OpAMD64DIVWU:
|
|
// Arg[0] (the dividend) is in AX.
|
|
// Arg[1] (the divisor) can be in any other register.
|
|
// Result[0] (the quotient) is in AX.
|
|
// Result[1] (the remainder) is in DX.
|
|
r := v.Args[1].Reg()
|
|
|
|
// Zero extend dividend.
|
|
c := s.Prog(x86.AXORL)
|
|
c.From.Type = obj.TYPE_REG
|
|
c.From.Reg = x86.REG_DX
|
|
c.To.Type = obj.TYPE_REG
|
|
c.To.Reg = x86.REG_DX
|
|
|
|
// Issue divide.
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r
|
|
|
|
case ssa.OpAMD64DIVQ, ssa.OpAMD64DIVL, ssa.OpAMD64DIVW:
|
|
// Arg[0] (the dividend) is in AX.
|
|
// Arg[1] (the divisor) can be in any other register.
|
|
// Result[0] (the quotient) is in AX.
|
|
// Result[1] (the remainder) is in DX.
|
|
r := v.Args[1].Reg()
|
|
var j1 *obj.Prog
|
|
|
|
// CPU faults upon signed overflow, which occurs when the most
|
|
// negative int is divided by -1. Handle divide by -1 as a special case.
|
|
if ssa.DivisionNeedsFixUp(v) {
|
|
var c *obj.Prog
|
|
switch v.Op {
|
|
case ssa.OpAMD64DIVQ:
|
|
c = s.Prog(x86.ACMPQ)
|
|
case ssa.OpAMD64DIVL:
|
|
c = s.Prog(x86.ACMPL)
|
|
case ssa.OpAMD64DIVW:
|
|
c = s.Prog(x86.ACMPW)
|
|
}
|
|
c.From.Type = obj.TYPE_REG
|
|
c.From.Reg = r
|
|
c.To.Type = obj.TYPE_CONST
|
|
c.To.Offset = -1
|
|
j1 = s.Prog(x86.AJEQ)
|
|
j1.To.Type = obj.TYPE_BRANCH
|
|
}
|
|
|
|
// Sign extend dividend.
|
|
switch v.Op {
|
|
case ssa.OpAMD64DIVQ:
|
|
s.Prog(x86.ACQO)
|
|
case ssa.OpAMD64DIVL:
|
|
s.Prog(x86.ACDQ)
|
|
case ssa.OpAMD64DIVW:
|
|
s.Prog(x86.ACWD)
|
|
}
|
|
|
|
// Issue divide.
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r
|
|
|
|
if j1 != nil {
|
|
// Skip over -1 fixup code.
|
|
j2 := s.Prog(obj.AJMP)
|
|
j2.To.Type = obj.TYPE_BRANCH
|
|
|
|
// Issue -1 fixup code.
|
|
// n / -1 = -n
|
|
var n1 *obj.Prog
|
|
switch v.Op {
|
|
case ssa.OpAMD64DIVQ:
|
|
n1 = s.Prog(x86.ANEGQ)
|
|
case ssa.OpAMD64DIVL:
|
|
n1 = s.Prog(x86.ANEGL)
|
|
case ssa.OpAMD64DIVW:
|
|
n1 = s.Prog(x86.ANEGW)
|
|
}
|
|
n1.To.Type = obj.TYPE_REG
|
|
n1.To.Reg = x86.REG_AX
|
|
|
|
// n % -1 == 0
|
|
n2 := s.Prog(x86.AXORL)
|
|
n2.From.Type = obj.TYPE_REG
|
|
n2.From.Reg = x86.REG_DX
|
|
n2.To.Type = obj.TYPE_REG
|
|
n2.To.Reg = x86.REG_DX
|
|
|
|
// TODO(khr): issue only the -1 fixup code we need.
|
|
// For instance, if only the quotient is used, no point in zeroing the remainder.
|
|
|
|
j1.To.SetTarget(n1)
|
|
j2.To.SetTarget(s.Pc())
|
|
}
|
|
|
|
case ssa.OpAMD64HMULQ, ssa.OpAMD64HMULL, ssa.OpAMD64HMULQU, ssa.OpAMD64HMULLU:
|
|
// the frontend rewrites constant division by 8/16/32 bit integers into
|
|
// HMUL by a constant
|
|
// SSA rewrites generate the 64 bit versions
|
|
|
|
// Arg[0] is already in AX as it's the only register we allow
|
|
// and DX is the only output we care about (the high bits)
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[1].Reg()
|
|
|
|
// IMULB puts the high portion in AH instead of DL,
|
|
// so move it to DL for consistency
|
|
if v.Type.Size() == 1 {
|
|
m := s.Prog(x86.AMOVB)
|
|
m.From.Type = obj.TYPE_REG
|
|
m.From.Reg = x86.REG_AH
|
|
m.To.Type = obj.TYPE_REG
|
|
m.To.Reg = x86.REG_DX
|
|
}
|
|
|
|
case ssa.OpAMD64MULQU, ssa.OpAMD64MULLU:
|
|
// Arg[0] is already in AX as it's the only register we allow
|
|
// results lo in AX
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[1].Reg()
|
|
|
|
case ssa.OpAMD64MULQU2:
|
|
// Arg[0] is already in AX as it's the only register we allow
|
|
// results hi in DX, lo in AX
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[1].Reg()
|
|
|
|
case ssa.OpAMD64DIVQU2:
|
|
// Arg[0], Arg[1] are already in Dx, AX, as they're the only registers we allow
|
|
// results q in AX, r in DX
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[2].Reg()
|
|
|
|
case ssa.OpAMD64AVGQU:
|
|
// compute (x+y)/2 unsigned.
|
|
// Do a 64-bit add, the overflow goes into the carry.
|
|
// Shift right once and pull the carry back into the 63rd bit.
|
|
r := v.Reg()
|
|
if r != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
p := s.Prog(x86.AADDQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
p.From.Reg = v.Args[1].Reg()
|
|
p = s.Prog(x86.ARCRQ)
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = 1
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
|
|
case ssa.OpAMD64ADDQcarry, ssa.OpAMD64ADCQ:
|
|
r := v.Reg0()
|
|
r0 := v.Args[0].Reg()
|
|
r1 := v.Args[1].Reg()
|
|
switch r {
|
|
case r0:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r1
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
case r1:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r0
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
default:
|
|
v.Fatalf("output not in same register as an input %s", v.LongString())
|
|
}
|
|
|
|
case ssa.OpAMD64SUBQborrow, ssa.OpAMD64SBBQ:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[1].Reg()
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg0()
|
|
|
|
case ssa.OpAMD64ADDQconstcarry, ssa.OpAMD64ADCQconst, ssa.OpAMD64SUBQconstborrow, ssa.OpAMD64SBBQconst:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg0()
|
|
|
|
case ssa.OpAMD64ADDQconst, ssa.OpAMD64ADDLconst:
|
|
r := v.Reg()
|
|
a := v.Args[0].Reg()
|
|
if r == a {
|
|
switch v.AuxInt {
|
|
case 1:
|
|
var asm obj.As
|
|
// Software optimization manual recommends add $1,reg.
|
|
// But inc/dec is 1 byte smaller. ICC always uses inc
|
|
// Clang/GCC choose depending on flags, but prefer add.
|
|
// Experiments show that inc/dec is both a little faster
|
|
// and make a binary a little smaller.
|
|
if v.Op == ssa.OpAMD64ADDQconst {
|
|
asm = x86.AINCQ
|
|
} else {
|
|
asm = x86.AINCL
|
|
}
|
|
p := s.Prog(asm)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
return
|
|
case -1:
|
|
var asm obj.As
|
|
if v.Op == ssa.OpAMD64ADDQconst {
|
|
asm = x86.ADECQ
|
|
} else {
|
|
asm = x86.ADECL
|
|
}
|
|
p := s.Prog(asm)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
return
|
|
case 0x80:
|
|
// 'SUBQ $-0x80, r' is shorter to encode than
|
|
// and functionally equivalent to 'ADDQ $0x80, r'.
|
|
asm := x86.ASUBL
|
|
if v.Op == ssa.OpAMD64ADDQconst {
|
|
asm = x86.ASUBQ
|
|
}
|
|
p := s.Prog(asm)
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = -0x80
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
return
|
|
|
|
}
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
return
|
|
}
|
|
var asm obj.As
|
|
if v.Op == ssa.OpAMD64ADDQconst {
|
|
asm = x86.ALEAQ
|
|
} else {
|
|
asm = x86.ALEAL
|
|
}
|
|
p := s.Prog(asm)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = a
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
|
|
case ssa.OpAMD64CMOVQEQ, ssa.OpAMD64CMOVLEQ, ssa.OpAMD64CMOVWEQ,
|
|
ssa.OpAMD64CMOVQLT, ssa.OpAMD64CMOVLLT, ssa.OpAMD64CMOVWLT,
|
|
ssa.OpAMD64CMOVQNE, ssa.OpAMD64CMOVLNE, ssa.OpAMD64CMOVWNE,
|
|
ssa.OpAMD64CMOVQGT, ssa.OpAMD64CMOVLGT, ssa.OpAMD64CMOVWGT,
|
|
ssa.OpAMD64CMOVQLE, ssa.OpAMD64CMOVLLE, ssa.OpAMD64CMOVWLE,
|
|
ssa.OpAMD64CMOVQGE, ssa.OpAMD64CMOVLGE, ssa.OpAMD64CMOVWGE,
|
|
ssa.OpAMD64CMOVQHI, ssa.OpAMD64CMOVLHI, ssa.OpAMD64CMOVWHI,
|
|
ssa.OpAMD64CMOVQLS, ssa.OpAMD64CMOVLLS, ssa.OpAMD64CMOVWLS,
|
|
ssa.OpAMD64CMOVQCC, ssa.OpAMD64CMOVLCC, ssa.OpAMD64CMOVWCC,
|
|
ssa.OpAMD64CMOVQCS, ssa.OpAMD64CMOVLCS, ssa.OpAMD64CMOVWCS,
|
|
ssa.OpAMD64CMOVQGTF, ssa.OpAMD64CMOVLGTF, ssa.OpAMD64CMOVWGTF,
|
|
ssa.OpAMD64CMOVQGEF, ssa.OpAMD64CMOVLGEF, ssa.OpAMD64CMOVWGEF:
|
|
r := v.Reg()
|
|
if r != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[1].Reg()
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
|
|
case ssa.OpAMD64CMOVQNEF, ssa.OpAMD64CMOVLNEF, ssa.OpAMD64CMOVWNEF:
|
|
r := v.Reg()
|
|
if r != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
// Flag condition: ^ZERO || PARITY
|
|
// Generate:
|
|
// CMOV*NE SRC,DST
|
|
// CMOV*PS SRC,DST
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[1].Reg()
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
var q *obj.Prog
|
|
if v.Op == ssa.OpAMD64CMOVQNEF {
|
|
q = s.Prog(x86.ACMOVQPS)
|
|
} else if v.Op == ssa.OpAMD64CMOVLNEF {
|
|
q = s.Prog(x86.ACMOVLPS)
|
|
} else {
|
|
q = s.Prog(x86.ACMOVWPS)
|
|
}
|
|
q.From.Type = obj.TYPE_REG
|
|
q.From.Reg = v.Args[1].Reg()
|
|
q.To.Type = obj.TYPE_REG
|
|
q.To.Reg = r
|
|
|
|
case ssa.OpAMD64CMOVQEQF, ssa.OpAMD64CMOVLEQF, ssa.OpAMD64CMOVWEQF:
|
|
r := v.Reg()
|
|
if r != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
|
|
// Flag condition: ZERO && !PARITY
|
|
// Generate:
|
|
// MOV SRC,AX
|
|
// CMOV*NE DST,AX
|
|
// CMOV*PC AX,DST
|
|
//
|
|
// TODO(rasky): we could generate:
|
|
// CMOV*NE DST,SRC
|
|
// CMOV*PC SRC,DST
|
|
// But this requires a way for regalloc to know that SRC might be
|
|
// clobbered by this instruction.
|
|
if v.Args[1].Reg() != x86.REG_AX {
|
|
opregreg(s, moveByType(v.Type), x86.REG_AX, v.Args[1].Reg())
|
|
}
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = x86.REG_AX
|
|
var q *obj.Prog
|
|
if v.Op == ssa.OpAMD64CMOVQEQF {
|
|
q = s.Prog(x86.ACMOVQPC)
|
|
} else if v.Op == ssa.OpAMD64CMOVLEQF {
|
|
q = s.Prog(x86.ACMOVLPC)
|
|
} else {
|
|
q = s.Prog(x86.ACMOVWPC)
|
|
}
|
|
q.From.Type = obj.TYPE_REG
|
|
q.From.Reg = x86.REG_AX
|
|
q.To.Type = obj.TYPE_REG
|
|
q.To.Reg = r
|
|
|
|
case ssa.OpAMD64MULQconst, ssa.OpAMD64MULLconst:
|
|
r := v.Reg()
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
p.SetFrom3(obj.Addr{Type: obj.TYPE_REG, Reg: v.Args[0].Reg()})
|
|
|
|
case ssa.OpAMD64SUBQconst, ssa.OpAMD64SUBLconst,
|
|
ssa.OpAMD64ANDQconst, ssa.OpAMD64ANDLconst,
|
|
ssa.OpAMD64ORQconst, ssa.OpAMD64ORLconst,
|
|
ssa.OpAMD64XORQconst, ssa.OpAMD64XORLconst,
|
|
ssa.OpAMD64SHLQconst, ssa.OpAMD64SHLLconst,
|
|
ssa.OpAMD64SHRQconst, ssa.OpAMD64SHRLconst, ssa.OpAMD64SHRWconst, ssa.OpAMD64SHRBconst,
|
|
ssa.OpAMD64SARQconst, ssa.OpAMD64SARLconst, ssa.OpAMD64SARWconst, ssa.OpAMD64SARBconst,
|
|
ssa.OpAMD64ROLQconst, ssa.OpAMD64ROLLconst, ssa.OpAMD64ROLWconst, ssa.OpAMD64ROLBconst:
|
|
r := v.Reg()
|
|
if r != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
case ssa.OpAMD64SBBQcarrymask, ssa.OpAMD64SBBLcarrymask:
|
|
r := v.Reg()
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
case ssa.OpAMD64LEAQ1, ssa.OpAMD64LEAQ2, ssa.OpAMD64LEAQ4, ssa.OpAMD64LEAQ8,
|
|
ssa.OpAMD64LEAL1, ssa.OpAMD64LEAL2, ssa.OpAMD64LEAL4, ssa.OpAMD64LEAL8,
|
|
ssa.OpAMD64LEAW1, ssa.OpAMD64LEAW2, ssa.OpAMD64LEAW4, ssa.OpAMD64LEAW8:
|
|
p := s.Prog(v.Op.Asm())
|
|
memIdx(&p.From, v)
|
|
o := v.Reg()
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = o
|
|
if v.AuxInt != 0 && v.Aux == nil {
|
|
// Emit an additional LEA to add the displacement instead of creating a slow 3 operand LEA.
|
|
switch v.Op {
|
|
case ssa.OpAMD64LEAQ1, ssa.OpAMD64LEAQ2, ssa.OpAMD64LEAQ4, ssa.OpAMD64LEAQ8:
|
|
p = s.Prog(x86.ALEAQ)
|
|
case ssa.OpAMD64LEAL1, ssa.OpAMD64LEAL2, ssa.OpAMD64LEAL4, ssa.OpAMD64LEAL8:
|
|
p = s.Prog(x86.ALEAL)
|
|
case ssa.OpAMD64LEAW1, ssa.OpAMD64LEAW2, ssa.OpAMD64LEAW4, ssa.OpAMD64LEAW8:
|
|
p = s.Prog(x86.ALEAW)
|
|
}
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = o
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = o
|
|
}
|
|
gc.AddAux(&p.From, v)
|
|
case ssa.OpAMD64LEAQ, ssa.OpAMD64LEAL, ssa.OpAMD64LEAW:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = v.Args[0].Reg()
|
|
gc.AddAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
case ssa.OpAMD64CMPQ, ssa.OpAMD64CMPL, ssa.OpAMD64CMPW, ssa.OpAMD64CMPB,
|
|
ssa.OpAMD64TESTQ, ssa.OpAMD64TESTL, ssa.OpAMD64TESTW, ssa.OpAMD64TESTB,
|
|
ssa.OpAMD64BTL, ssa.OpAMD64BTQ:
|
|
opregreg(s, v.Op.Asm(), v.Args[1].Reg(), v.Args[0].Reg())
|
|
case ssa.OpAMD64UCOMISS, ssa.OpAMD64UCOMISD:
|
|
// Go assembler has swapped operands for UCOMISx relative to CMP,
|
|
// must account for that right here.
|
|
opregreg(s, v.Op.Asm(), v.Args[0].Reg(), v.Args[1].Reg())
|
|
case ssa.OpAMD64CMPQconst, ssa.OpAMD64CMPLconst, ssa.OpAMD64CMPWconst, ssa.OpAMD64CMPBconst:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[0].Reg()
|
|
p.To.Type = obj.TYPE_CONST
|
|
p.To.Offset = v.AuxInt
|
|
case ssa.OpAMD64BTLconst, ssa.OpAMD64BTQconst,
|
|
ssa.OpAMD64TESTQconst, ssa.OpAMD64TESTLconst, ssa.OpAMD64TESTWconst, ssa.OpAMD64TESTBconst,
|
|
ssa.OpAMD64BTSLconst, ssa.OpAMD64BTSQconst,
|
|
ssa.OpAMD64BTCLconst, ssa.OpAMD64BTCQconst,
|
|
ssa.OpAMD64BTRLconst, ssa.OpAMD64BTRQconst:
|
|
op := v.Op
|
|
if op == ssa.OpAMD64BTQconst && v.AuxInt < 32 {
|
|
// Emit 32-bit version because it's shorter
|
|
op = ssa.OpAMD64BTLconst
|
|
}
|
|
p := s.Prog(op.Asm())
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Args[0].Reg()
|
|
case ssa.OpAMD64CMPQload, ssa.OpAMD64CMPLload, ssa.OpAMD64CMPWload, ssa.OpAMD64CMPBload:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = v.Args[0].Reg()
|
|
gc.AddAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Args[1].Reg()
|
|
case ssa.OpAMD64CMPQconstload, ssa.OpAMD64CMPLconstload, ssa.OpAMD64CMPWconstload, ssa.OpAMD64CMPBconstload:
|
|
sc := v.AuxValAndOff()
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = v.Args[0].Reg()
|
|
gc.AddAux2(&p.From, v, sc.Off())
|
|
p.To.Type = obj.TYPE_CONST
|
|
p.To.Offset = sc.Val()
|
|
case ssa.OpAMD64CMPQloadidx8, ssa.OpAMD64CMPQloadidx1, ssa.OpAMD64CMPLloadidx4, ssa.OpAMD64CMPLloadidx1, ssa.OpAMD64CMPWloadidx2, ssa.OpAMD64CMPWloadidx1, ssa.OpAMD64CMPBloadidx1:
|
|
p := s.Prog(v.Op.Asm())
|
|
memIdx(&p.From, v)
|
|
gc.AddAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Args[2].Reg()
|
|
case ssa.OpAMD64CMPQconstloadidx8, ssa.OpAMD64CMPQconstloadidx1, ssa.OpAMD64CMPLconstloadidx4, ssa.OpAMD64CMPLconstloadidx1, ssa.OpAMD64CMPWconstloadidx2, ssa.OpAMD64CMPWconstloadidx1, ssa.OpAMD64CMPBconstloadidx1:
|
|
sc := v.AuxValAndOff()
|
|
p := s.Prog(v.Op.Asm())
|
|
memIdx(&p.From, v)
|
|
gc.AddAux2(&p.From, v, sc.Off())
|
|
p.To.Type = obj.TYPE_CONST
|
|
p.To.Offset = sc.Val()
|
|
case ssa.OpAMD64MOVLconst, ssa.OpAMD64MOVQconst:
|
|
x := v.Reg()
|
|
|
|
// If flags aren't live (indicated by v.Aux == nil),
|
|
// then we can rewrite MOV $0, AX into XOR AX, AX.
|
|
if v.AuxInt == 0 && v.Aux == nil {
|
|
p := s.Prog(x86.AXORL)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = x
|
|
break
|
|
}
|
|
|
|
asm := v.Op.Asm()
|
|
// Use MOVL to move a small constant into a register
|
|
// when the constant is positive and fits into 32 bits.
|
|
if 0 <= v.AuxInt && v.AuxInt <= (1<<32-1) {
|
|
// The upper 32bit are zeroed automatically when using MOVL.
|
|
asm = x86.AMOVL
|
|
}
|
|
p := s.Prog(asm)
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = v.AuxInt
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = x
|
|
case ssa.OpAMD64MOVSSconst, ssa.OpAMD64MOVSDconst:
|
|
x := v.Reg()
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_FCONST
|
|
p.From.Val = math.Float64frombits(uint64(v.AuxInt))
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = x
|
|
case ssa.OpAMD64MOVQload, ssa.OpAMD64MOVSSload, ssa.OpAMD64MOVSDload, ssa.OpAMD64MOVLload, ssa.OpAMD64MOVWload, ssa.OpAMD64MOVBload, ssa.OpAMD64MOVBQSXload, ssa.OpAMD64MOVWQSXload, ssa.OpAMD64MOVLQSXload, ssa.OpAMD64MOVOload:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = v.Args[0].Reg()
|
|
gc.AddAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
case ssa.OpAMD64MOVBloadidx1, ssa.OpAMD64MOVWloadidx1, ssa.OpAMD64MOVLloadidx1, ssa.OpAMD64MOVQloadidx1, ssa.OpAMD64MOVSSloadidx1, ssa.OpAMD64MOVSDloadidx1,
|
|
ssa.OpAMD64MOVQloadidx8, ssa.OpAMD64MOVSDloadidx8, ssa.OpAMD64MOVLloadidx8, ssa.OpAMD64MOVLloadidx4, ssa.OpAMD64MOVSSloadidx4, ssa.OpAMD64MOVWloadidx2:
|
|
p := s.Prog(v.Op.Asm())
|
|
memIdx(&p.From, v)
|
|
gc.AddAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
case ssa.OpAMD64MOVQstore, ssa.OpAMD64MOVSSstore, ssa.OpAMD64MOVSDstore, ssa.OpAMD64MOVLstore, ssa.OpAMD64MOVWstore, ssa.OpAMD64MOVBstore, ssa.OpAMD64MOVOstore,
|
|
ssa.OpAMD64BTCQmodify, ssa.OpAMD64BTCLmodify, ssa.OpAMD64BTRQmodify, ssa.OpAMD64BTRLmodify, ssa.OpAMD64BTSQmodify, ssa.OpAMD64BTSLmodify,
|
|
ssa.OpAMD64ADDQmodify, ssa.OpAMD64SUBQmodify, ssa.OpAMD64ANDQmodify, ssa.OpAMD64ORQmodify, ssa.OpAMD64XORQmodify,
|
|
ssa.OpAMD64ADDLmodify, ssa.OpAMD64SUBLmodify, ssa.OpAMD64ANDLmodify, ssa.OpAMD64ORLmodify, ssa.OpAMD64XORLmodify:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[1].Reg()
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = v.Args[0].Reg()
|
|
gc.AddAux(&p.To, v)
|
|
case ssa.OpAMD64MOVBstoreidx1, ssa.OpAMD64MOVWstoreidx1, ssa.OpAMD64MOVLstoreidx1, ssa.OpAMD64MOVQstoreidx1, ssa.OpAMD64MOVSSstoreidx1, ssa.OpAMD64MOVSDstoreidx1,
|
|
ssa.OpAMD64MOVQstoreidx8, ssa.OpAMD64MOVSDstoreidx8, ssa.OpAMD64MOVLstoreidx8, ssa.OpAMD64MOVSSstoreidx4, ssa.OpAMD64MOVLstoreidx4, ssa.OpAMD64MOVWstoreidx2,
|
|
ssa.OpAMD64ADDLmodifyidx1, ssa.OpAMD64ADDLmodifyidx4, ssa.OpAMD64ADDLmodifyidx8, ssa.OpAMD64ADDQmodifyidx1, ssa.OpAMD64ADDQmodifyidx8,
|
|
ssa.OpAMD64SUBLmodifyidx1, ssa.OpAMD64SUBLmodifyidx4, ssa.OpAMD64SUBLmodifyidx8, ssa.OpAMD64SUBQmodifyidx1, ssa.OpAMD64SUBQmodifyidx8,
|
|
ssa.OpAMD64ANDLmodifyidx1, ssa.OpAMD64ANDLmodifyidx4, ssa.OpAMD64ANDLmodifyidx8, ssa.OpAMD64ANDQmodifyidx1, ssa.OpAMD64ANDQmodifyidx8,
|
|
ssa.OpAMD64ORLmodifyidx1, ssa.OpAMD64ORLmodifyidx4, ssa.OpAMD64ORLmodifyidx8, ssa.OpAMD64ORQmodifyidx1, ssa.OpAMD64ORQmodifyidx8,
|
|
ssa.OpAMD64XORLmodifyidx1, ssa.OpAMD64XORLmodifyidx4, ssa.OpAMD64XORLmodifyidx8, ssa.OpAMD64XORQmodifyidx1, ssa.OpAMD64XORQmodifyidx8:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[2].Reg()
|
|
memIdx(&p.To, v)
|
|
gc.AddAux(&p.To, v)
|
|
case ssa.OpAMD64ADDQconstmodify, ssa.OpAMD64ADDLconstmodify:
|
|
sc := v.AuxValAndOff()
|
|
off := sc.Off()
|
|
val := sc.Val()
|
|
if val == 1 || val == -1 {
|
|
var asm obj.As
|
|
if v.Op == ssa.OpAMD64ADDQconstmodify {
|
|
if val == 1 {
|
|
asm = x86.AINCQ
|
|
} else {
|
|
asm = x86.ADECQ
|
|
}
|
|
} else {
|
|
if val == 1 {
|
|
asm = x86.AINCL
|
|
} else {
|
|
asm = x86.ADECL
|
|
}
|
|
}
|
|
p := s.Prog(asm)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = v.Args[0].Reg()
|
|
gc.AddAux2(&p.To, v, off)
|
|
break
|
|
}
|
|
fallthrough
|
|
case ssa.OpAMD64ANDQconstmodify, ssa.OpAMD64ANDLconstmodify, ssa.OpAMD64ORQconstmodify, ssa.OpAMD64ORLconstmodify,
|
|
ssa.OpAMD64BTCQconstmodify, ssa.OpAMD64BTCLconstmodify, ssa.OpAMD64BTSQconstmodify, ssa.OpAMD64BTSLconstmodify,
|
|
ssa.OpAMD64BTRQconstmodify, ssa.OpAMD64BTRLconstmodify, ssa.OpAMD64XORQconstmodify, ssa.OpAMD64XORLconstmodify:
|
|
sc := v.AuxValAndOff()
|
|
off := sc.Off()
|
|
val := sc.Val()
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = val
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = v.Args[0].Reg()
|
|
gc.AddAux2(&p.To, v, off)
|
|
|
|
case ssa.OpAMD64MOVQstoreconst, ssa.OpAMD64MOVLstoreconst, ssa.OpAMD64MOVWstoreconst, ssa.OpAMD64MOVBstoreconst:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_CONST
|
|
sc := v.AuxValAndOff()
|
|
p.From.Offset = sc.Val()
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = v.Args[0].Reg()
|
|
gc.AddAux2(&p.To, v, sc.Off())
|
|
case ssa.OpAMD64MOVQstoreconstidx1, ssa.OpAMD64MOVQstoreconstidx8, ssa.OpAMD64MOVLstoreconstidx1, ssa.OpAMD64MOVLstoreconstidx4, ssa.OpAMD64MOVWstoreconstidx1, ssa.OpAMD64MOVWstoreconstidx2, ssa.OpAMD64MOVBstoreconstidx1,
|
|
ssa.OpAMD64ADDLconstmodifyidx1, ssa.OpAMD64ADDLconstmodifyidx4, ssa.OpAMD64ADDLconstmodifyidx8, ssa.OpAMD64ADDQconstmodifyidx1, ssa.OpAMD64ADDQconstmodifyidx8,
|
|
ssa.OpAMD64ANDLconstmodifyidx1, ssa.OpAMD64ANDLconstmodifyidx4, ssa.OpAMD64ANDLconstmodifyidx8, ssa.OpAMD64ANDQconstmodifyidx1, ssa.OpAMD64ANDQconstmodifyidx8,
|
|
ssa.OpAMD64ORLconstmodifyidx1, ssa.OpAMD64ORLconstmodifyidx4, ssa.OpAMD64ORLconstmodifyidx8, ssa.OpAMD64ORQconstmodifyidx1, ssa.OpAMD64ORQconstmodifyidx8,
|
|
ssa.OpAMD64XORLconstmodifyidx1, ssa.OpAMD64XORLconstmodifyidx4, ssa.OpAMD64XORLconstmodifyidx8, ssa.OpAMD64XORQconstmodifyidx1, ssa.OpAMD64XORQconstmodifyidx8:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_CONST
|
|
sc := v.AuxValAndOff()
|
|
p.From.Offset = sc.Val()
|
|
switch {
|
|
case p.As == x86.AADDQ && p.From.Offset == 1:
|
|
p.As = x86.AINCQ
|
|
p.From.Type = obj.TYPE_NONE
|
|
case p.As == x86.AADDQ && p.From.Offset == -1:
|
|
p.As = x86.ADECQ
|
|
p.From.Type = obj.TYPE_NONE
|
|
case p.As == x86.AADDL && p.From.Offset == 1:
|
|
p.As = x86.AINCL
|
|
p.From.Type = obj.TYPE_NONE
|
|
case p.As == x86.AADDL && p.From.Offset == -1:
|
|
p.As = x86.ADECL
|
|
p.From.Type = obj.TYPE_NONE
|
|
}
|
|
memIdx(&p.To, v)
|
|
gc.AddAux2(&p.To, v, sc.Off())
|
|
case ssa.OpAMD64MOVLQSX, ssa.OpAMD64MOVWQSX, ssa.OpAMD64MOVBQSX, ssa.OpAMD64MOVLQZX, ssa.OpAMD64MOVWQZX, ssa.OpAMD64MOVBQZX,
|
|
ssa.OpAMD64CVTTSS2SL, ssa.OpAMD64CVTTSD2SL, ssa.OpAMD64CVTTSS2SQ, ssa.OpAMD64CVTTSD2SQ,
|
|
ssa.OpAMD64CVTSS2SD, ssa.OpAMD64CVTSD2SS:
|
|
opregreg(s, v.Op.Asm(), v.Reg(), v.Args[0].Reg())
|
|
case ssa.OpAMD64CVTSL2SD, ssa.OpAMD64CVTSQ2SD, ssa.OpAMD64CVTSQ2SS, ssa.OpAMD64CVTSL2SS:
|
|
r := v.Reg()
|
|
// Break false dependency on destination register.
|
|
opregreg(s, x86.AXORPS, r, r)
|
|
opregreg(s, v.Op.Asm(), r, v.Args[0].Reg())
|
|
case ssa.OpAMD64MOVQi2f, ssa.OpAMD64MOVQf2i, ssa.OpAMD64MOVLi2f, ssa.OpAMD64MOVLf2i:
|
|
var p *obj.Prog
|
|
switch v.Op {
|
|
case ssa.OpAMD64MOVQi2f, ssa.OpAMD64MOVQf2i:
|
|
p = s.Prog(x86.AMOVQ)
|
|
case ssa.OpAMD64MOVLi2f, ssa.OpAMD64MOVLf2i:
|
|
p = s.Prog(x86.AMOVL)
|
|
}
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[0].Reg()
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
case ssa.OpAMD64ADDQload, ssa.OpAMD64ADDLload, ssa.OpAMD64SUBQload, ssa.OpAMD64SUBLload,
|
|
ssa.OpAMD64ANDQload, ssa.OpAMD64ANDLload, ssa.OpAMD64ORQload, ssa.OpAMD64ORLload,
|
|
ssa.OpAMD64XORQload, ssa.OpAMD64XORLload, ssa.OpAMD64ADDSDload, ssa.OpAMD64ADDSSload,
|
|
ssa.OpAMD64SUBSDload, ssa.OpAMD64SUBSSload, ssa.OpAMD64MULSDload, ssa.OpAMD64MULSSload,
|
|
ssa.OpAMD64DIVSDload, ssa.OpAMD64DIVSSload:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = v.Args[1].Reg()
|
|
gc.AddAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
if v.Reg() != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
case ssa.OpAMD64ADDLloadidx1, ssa.OpAMD64ADDLloadidx4, ssa.OpAMD64ADDLloadidx8, ssa.OpAMD64ADDQloadidx1, ssa.OpAMD64ADDQloadidx8,
|
|
ssa.OpAMD64SUBLloadidx1, ssa.OpAMD64SUBLloadidx4, ssa.OpAMD64SUBLloadidx8, ssa.OpAMD64SUBQloadidx1, ssa.OpAMD64SUBQloadidx8,
|
|
ssa.OpAMD64ANDLloadidx1, ssa.OpAMD64ANDLloadidx4, ssa.OpAMD64ANDLloadidx8, ssa.OpAMD64ANDQloadidx1, ssa.OpAMD64ANDQloadidx8,
|
|
ssa.OpAMD64ORLloadidx1, ssa.OpAMD64ORLloadidx4, ssa.OpAMD64ORLloadidx8, ssa.OpAMD64ORQloadidx1, ssa.OpAMD64ORQloadidx8,
|
|
ssa.OpAMD64XORLloadidx1, ssa.OpAMD64XORLloadidx4, ssa.OpAMD64XORLloadidx8, ssa.OpAMD64XORQloadidx1, ssa.OpAMD64XORQloadidx8,
|
|
ssa.OpAMD64ADDSSloadidx1, ssa.OpAMD64ADDSSloadidx4, ssa.OpAMD64ADDSDloadidx1, ssa.OpAMD64ADDSDloadidx8,
|
|
ssa.OpAMD64SUBSSloadidx1, ssa.OpAMD64SUBSSloadidx4, ssa.OpAMD64SUBSDloadidx1, ssa.OpAMD64SUBSDloadidx8,
|
|
ssa.OpAMD64MULSSloadidx1, ssa.OpAMD64MULSSloadidx4, ssa.OpAMD64MULSDloadidx1, ssa.OpAMD64MULSDloadidx8,
|
|
ssa.OpAMD64DIVSSloadidx1, ssa.OpAMD64DIVSSloadidx4, ssa.OpAMD64DIVSDloadidx1, ssa.OpAMD64DIVSDloadidx8:
|
|
p := s.Prog(v.Op.Asm())
|
|
|
|
r, i := v.Args[1].Reg(), v.Args[2].Reg()
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Scale = v.Op.Scale()
|
|
if p.From.Scale == 1 && i == x86.REG_SP {
|
|
r, i = i, r
|
|
}
|
|
p.From.Reg = r
|
|
p.From.Index = i
|
|
|
|
gc.AddAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
if v.Reg() != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
case ssa.OpAMD64DUFFZERO:
|
|
off := duffStart(v.AuxInt)
|
|
adj := duffAdj(v.AuxInt)
|
|
var p *obj.Prog
|
|
if adj != 0 {
|
|
p = s.Prog(x86.ALEAQ)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Offset = adj
|
|
p.From.Reg = x86.REG_DI
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = x86.REG_DI
|
|
}
|
|
p = s.Prog(obj.ADUFFZERO)
|
|
p.To.Type = obj.TYPE_ADDR
|
|
p.To.Sym = ir.Syms.Duffzero
|
|
p.To.Offset = off
|
|
case ssa.OpAMD64MOVOconst:
|
|
if v.AuxInt != 0 {
|
|
v.Fatalf("MOVOconst can only do constant=0")
|
|
}
|
|
r := v.Reg()
|
|
opregreg(s, x86.AXORPS, r, r)
|
|
case ssa.OpAMD64DUFFCOPY:
|
|
p := s.Prog(obj.ADUFFCOPY)
|
|
p.To.Type = obj.TYPE_ADDR
|
|
p.To.Sym = ir.Syms.Duffcopy
|
|
if v.AuxInt%16 != 0 {
|
|
v.Fatalf("bad DUFFCOPY AuxInt %v", v.AuxInt)
|
|
}
|
|
p.To.Offset = 14 * (64 - v.AuxInt/16)
|
|
// 14 and 64 are magic constants. 14 is the number of bytes to encode:
|
|
// MOVUPS (SI), X0
|
|
// ADDQ $16, SI
|
|
// MOVUPS X0, (DI)
|
|
// ADDQ $16, DI
|
|
// and 64 is the number of such blocks. See src/runtime/duff_amd64.s:duffcopy.
|
|
|
|
case ssa.OpCopy: // TODO: use MOVQreg for reg->reg copies instead of OpCopy?
|
|
if v.Type.IsMemory() {
|
|
return
|
|
}
|
|
x := v.Args[0].Reg()
|
|
y := v.Reg()
|
|
if x != y {
|
|
opregreg(s, moveByType(v.Type), y, x)
|
|
}
|
|
case ssa.OpLoadReg:
|
|
if v.Type.IsFlags() {
|
|
v.Fatalf("load flags not implemented: %v", v.LongString())
|
|
return
|
|
}
|
|
p := s.Prog(loadByType(v.Type))
|
|
gc.AddrAuto(&p.From, v.Args[0])
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
|
|
case ssa.OpStoreReg:
|
|
if v.Type.IsFlags() {
|
|
v.Fatalf("store flags not implemented: %v", v.LongString())
|
|
return
|
|
}
|
|
p := s.Prog(storeByType(v.Type))
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[0].Reg()
|
|
gc.AddrAuto(&p.To, v)
|
|
case ssa.OpAMD64LoweredHasCPUFeature:
|
|
p := s.Prog(x86.AMOVBQZX)
|
|
p.From.Type = obj.TYPE_MEM
|
|
gc.AddAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
case ssa.OpAMD64LoweredGetClosurePtr:
|
|
// Closure pointer is DX.
|
|
gc.CheckLoweredGetClosurePtr(v)
|
|
case ssa.OpAMD64LoweredGetG:
|
|
r := v.Reg()
|
|
// See the comments in cmd/internal/obj/x86/obj6.go
|
|
// near CanUse1InsnTLS for a detailed explanation of these instructions.
|
|
if x86.CanUse1InsnTLS(base.Ctxt) {
|
|
// MOVQ (TLS), r
|
|
p := s.Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = x86.REG_TLS
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
} else {
|
|
// MOVQ TLS, r
|
|
// MOVQ (r)(TLS*1), r
|
|
p := s.Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x86.REG_TLS
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
q := s.Prog(x86.AMOVQ)
|
|
q.From.Type = obj.TYPE_MEM
|
|
q.From.Reg = r
|
|
q.From.Index = x86.REG_TLS
|
|
q.From.Scale = 1
|
|
q.To.Type = obj.TYPE_REG
|
|
q.To.Reg = r
|
|
}
|
|
case ssa.OpAMD64CALLstatic, ssa.OpAMD64CALLclosure, ssa.OpAMD64CALLinter:
|
|
s.Call(v)
|
|
|
|
case ssa.OpAMD64LoweredGetCallerPC:
|
|
p := s.Prog(x86.AMOVQ)
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Offset = -8 // PC is stored 8 bytes below first parameter.
|
|
p.From.Name = obj.NAME_PARAM
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
|
|
case ssa.OpAMD64LoweredGetCallerSP:
|
|
// caller's SP is the address of the first arg
|
|
mov := x86.AMOVQ
|
|
if types.PtrSize == 4 {
|
|
mov = x86.AMOVL
|
|
}
|
|
p := s.Prog(mov)
|
|
p.From.Type = obj.TYPE_ADDR
|
|
p.From.Offset = -base.Ctxt.FixedFrameSize() // 0 on amd64, just to be consistent with other architectures
|
|
p.From.Name = obj.NAME_PARAM
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
|
|
case ssa.OpAMD64LoweredWB:
|
|
p := s.Prog(obj.ACALL)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
// arg0 is in DI. Set sym to match where regalloc put arg1.
|
|
p.To.Sym = gc.GCWriteBarrierReg[v.Args[1].Reg()]
|
|
|
|
case ssa.OpAMD64LoweredPanicBoundsA, ssa.OpAMD64LoweredPanicBoundsB, ssa.OpAMD64LoweredPanicBoundsC:
|
|
p := s.Prog(obj.ACALL)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = gc.BoundsCheckFunc[v.AuxInt]
|
|
s.UseArgs(int64(2 * types.PtrSize)) // space used in callee args area by assembly stubs
|
|
|
|
case ssa.OpAMD64NEGQ, ssa.OpAMD64NEGL,
|
|
ssa.OpAMD64BSWAPQ, ssa.OpAMD64BSWAPL,
|
|
ssa.OpAMD64NOTQ, ssa.OpAMD64NOTL:
|
|
r := v.Reg()
|
|
if r != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
p := s.Prog(v.Op.Asm())
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
|
|
case ssa.OpAMD64NEGLflags:
|
|
r := v.Reg0()
|
|
if r != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output not in same register %s", v.LongString())
|
|
}
|
|
p := s.Prog(v.Op.Asm())
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = r
|
|
|
|
case ssa.OpAMD64BSFQ, ssa.OpAMD64BSRQ, ssa.OpAMD64BSFL, ssa.OpAMD64BSRL, ssa.OpAMD64SQRTSD:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[0].Reg()
|
|
p.To.Type = obj.TYPE_REG
|
|
switch v.Op {
|
|
case ssa.OpAMD64BSFQ, ssa.OpAMD64BSRQ:
|
|
p.To.Reg = v.Reg0()
|
|
case ssa.OpAMD64BSFL, ssa.OpAMD64BSRL, ssa.OpAMD64SQRTSD:
|
|
p.To.Reg = v.Reg()
|
|
}
|
|
case ssa.OpAMD64ROUNDSD:
|
|
p := s.Prog(v.Op.Asm())
|
|
val := v.AuxInt
|
|
// 0 means math.RoundToEven, 1 Floor, 2 Ceil, 3 Trunc
|
|
if val < 0 || val > 3 {
|
|
v.Fatalf("Invalid rounding mode")
|
|
}
|
|
p.From.Offset = val
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.SetFrom3(obj.Addr{Type: obj.TYPE_REG, Reg: v.Args[0].Reg()})
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
case ssa.OpAMD64POPCNTQ, ssa.OpAMD64POPCNTL:
|
|
if v.Args[0].Reg() != v.Reg() {
|
|
// POPCNT on Intel has a false dependency on the destination register.
|
|
// Xor register with itself to break the dependency.
|
|
p := s.Prog(x86.AXORQ)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Reg()
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
}
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[0].Reg()
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
|
|
case ssa.OpAMD64SETEQ, ssa.OpAMD64SETNE,
|
|
ssa.OpAMD64SETL, ssa.OpAMD64SETLE,
|
|
ssa.OpAMD64SETG, ssa.OpAMD64SETGE,
|
|
ssa.OpAMD64SETGF, ssa.OpAMD64SETGEF,
|
|
ssa.OpAMD64SETB, ssa.OpAMD64SETBE,
|
|
ssa.OpAMD64SETORD, ssa.OpAMD64SETNAN,
|
|
ssa.OpAMD64SETA, ssa.OpAMD64SETAE,
|
|
ssa.OpAMD64SETO:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
|
|
case ssa.OpAMD64SETEQstore, ssa.OpAMD64SETNEstore,
|
|
ssa.OpAMD64SETLstore, ssa.OpAMD64SETLEstore,
|
|
ssa.OpAMD64SETGstore, ssa.OpAMD64SETGEstore,
|
|
ssa.OpAMD64SETBstore, ssa.OpAMD64SETBEstore,
|
|
ssa.OpAMD64SETAstore, ssa.OpAMD64SETAEstore:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = v.Args[0].Reg()
|
|
gc.AddAux(&p.To, v)
|
|
|
|
case ssa.OpAMD64SETNEF:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
q := s.Prog(x86.ASETPS)
|
|
q.To.Type = obj.TYPE_REG
|
|
q.To.Reg = x86.REG_AX
|
|
// ORL avoids partial register write and is smaller than ORQ, used by old compiler
|
|
opregreg(s, x86.AORL, v.Reg(), x86.REG_AX)
|
|
|
|
case ssa.OpAMD64SETEQF:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg()
|
|
q := s.Prog(x86.ASETPC)
|
|
q.To.Type = obj.TYPE_REG
|
|
q.To.Reg = x86.REG_AX
|
|
// ANDL avoids partial register write and is smaller than ANDQ, used by old compiler
|
|
opregreg(s, x86.AANDL, v.Reg(), x86.REG_AX)
|
|
|
|
case ssa.OpAMD64InvertFlags:
|
|
v.Fatalf("InvertFlags should never make it to codegen %v", v.LongString())
|
|
case ssa.OpAMD64FlagEQ, ssa.OpAMD64FlagLT_ULT, ssa.OpAMD64FlagLT_UGT, ssa.OpAMD64FlagGT_ULT, ssa.OpAMD64FlagGT_UGT:
|
|
v.Fatalf("Flag* ops should never make it to codegen %v", v.LongString())
|
|
case ssa.OpAMD64AddTupleFirst32, ssa.OpAMD64AddTupleFirst64:
|
|
v.Fatalf("AddTupleFirst* should never make it to codegen %v", v.LongString())
|
|
case ssa.OpAMD64REPSTOSQ:
|
|
s.Prog(x86.AREP)
|
|
s.Prog(x86.ASTOSQ)
|
|
case ssa.OpAMD64REPMOVSQ:
|
|
s.Prog(x86.AREP)
|
|
s.Prog(x86.AMOVSQ)
|
|
case ssa.OpAMD64LoweredNilCheck:
|
|
// Issue a load which will fault if the input is nil.
|
|
// TODO: We currently use the 2-byte instruction TESTB AX, (reg).
|
|
// Should we use the 3-byte TESTB $0, (reg) instead? It is larger
|
|
// but it doesn't have false dependency on AX.
|
|
// Or maybe allocate an output register and use MOVL (reg),reg2 ?
|
|
// That trades clobbering flags for clobbering a register.
|
|
p := s.Prog(x86.ATESTB)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x86.REG_AX
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = v.Args[0].Reg()
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(v.Pos, "nilcheck", "genssa", v.Block.Func.Name)
|
|
}
|
|
if base.Debug.Nil != 0 && v.Pos.Line() > 1 { // v.Pos.Line()==1 in generated wrappers
|
|
base.WarnfAt(v.Pos, "generated nil check")
|
|
}
|
|
case ssa.OpAMD64MOVBatomicload, ssa.OpAMD64MOVLatomicload, ssa.OpAMD64MOVQatomicload:
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_MEM
|
|
p.From.Reg = v.Args[0].Reg()
|
|
gc.AddAux(&p.From, v)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg0()
|
|
case ssa.OpAMD64XCHGB, ssa.OpAMD64XCHGL, ssa.OpAMD64XCHGQ:
|
|
r := v.Reg0()
|
|
if r != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output[0] not in same register %s", v.LongString())
|
|
}
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = v.Args[1].Reg()
|
|
gc.AddAux(&p.To, v)
|
|
case ssa.OpAMD64XADDLlock, ssa.OpAMD64XADDQlock:
|
|
r := v.Reg0()
|
|
if r != v.Args[0].Reg() {
|
|
v.Fatalf("input[0] and output[0] not in same register %s", v.LongString())
|
|
}
|
|
s.Prog(x86.ALOCK)
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = r
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = v.Args[1].Reg()
|
|
gc.AddAux(&p.To, v)
|
|
case ssa.OpAMD64CMPXCHGLlock, ssa.OpAMD64CMPXCHGQlock:
|
|
if v.Args[1].Reg() != x86.REG_AX {
|
|
v.Fatalf("input[1] not in AX %s", v.LongString())
|
|
}
|
|
s.Prog(x86.ALOCK)
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[2].Reg()
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = v.Args[0].Reg()
|
|
gc.AddAux(&p.To, v)
|
|
p = s.Prog(x86.ASETEQ)
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = v.Reg0()
|
|
case ssa.OpAMD64ANDBlock, ssa.OpAMD64ANDLlock, ssa.OpAMD64ORBlock, ssa.OpAMD64ORLlock:
|
|
s.Prog(x86.ALOCK)
|
|
p := s.Prog(v.Op.Asm())
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = v.Args[1].Reg()
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = v.Args[0].Reg()
|
|
gc.AddAux(&p.To, v)
|
|
case ssa.OpClobber:
|
|
p := s.Prog(x86.AMOVL)
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = 0xdeaddead
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = x86.REG_SP
|
|
gc.AddAux(&p.To, v)
|
|
p = s.Prog(x86.AMOVL)
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = 0xdeaddead
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Reg = x86.REG_SP
|
|
gc.AddAux(&p.To, v)
|
|
p.To.Offset += 4
|
|
default:
|
|
v.Fatalf("genValue not implemented: %s", v.LongString())
|
|
}
|
|
}
|
|
|
|
var blockJump = [...]struct {
|
|
asm, invasm obj.As
|
|
}{
|
|
ssa.BlockAMD64EQ: {x86.AJEQ, x86.AJNE},
|
|
ssa.BlockAMD64NE: {x86.AJNE, x86.AJEQ},
|
|
ssa.BlockAMD64LT: {x86.AJLT, x86.AJGE},
|
|
ssa.BlockAMD64GE: {x86.AJGE, x86.AJLT},
|
|
ssa.BlockAMD64LE: {x86.AJLE, x86.AJGT},
|
|
ssa.BlockAMD64GT: {x86.AJGT, x86.AJLE},
|
|
ssa.BlockAMD64OS: {x86.AJOS, x86.AJOC},
|
|
ssa.BlockAMD64OC: {x86.AJOC, x86.AJOS},
|
|
ssa.BlockAMD64ULT: {x86.AJCS, x86.AJCC},
|
|
ssa.BlockAMD64UGE: {x86.AJCC, x86.AJCS},
|
|
ssa.BlockAMD64UGT: {x86.AJHI, x86.AJLS},
|
|
ssa.BlockAMD64ULE: {x86.AJLS, x86.AJHI},
|
|
ssa.BlockAMD64ORD: {x86.AJPC, x86.AJPS},
|
|
ssa.BlockAMD64NAN: {x86.AJPS, x86.AJPC},
|
|
}
|
|
|
|
var eqfJumps = [2][2]gc.IndexJump{
|
|
{{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPS, Index: 1}}, // next == b.Succs[0]
|
|
{{Jump: x86.AJNE, Index: 1}, {Jump: x86.AJPC, Index: 0}}, // next == b.Succs[1]
|
|
}
|
|
var nefJumps = [2][2]gc.IndexJump{
|
|
{{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPC, Index: 1}}, // next == b.Succs[0]
|
|
{{Jump: x86.AJNE, Index: 0}, {Jump: x86.AJPS, Index: 0}}, // next == b.Succs[1]
|
|
}
|
|
|
|
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
|
|
switch b.Kind {
|
|
case ssa.BlockPlain:
|
|
if b.Succs[0].Block() != next {
|
|
p := s.Prog(obj.AJMP)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
|
|
}
|
|
case ssa.BlockDefer:
|
|
// defer returns in rax:
|
|
// 0 if we should continue executing
|
|
// 1 if we should jump to deferreturn call
|
|
p := s.Prog(x86.ATESTL)
|
|
p.From.Type = obj.TYPE_REG
|
|
p.From.Reg = x86.REG_AX
|
|
p.To.Type = obj.TYPE_REG
|
|
p.To.Reg = x86.REG_AX
|
|
p = s.Prog(x86.AJNE)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()})
|
|
if b.Succs[0].Block() != next {
|
|
p := s.Prog(obj.AJMP)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
|
|
}
|
|
case ssa.BlockExit:
|
|
case ssa.BlockRet:
|
|
s.Prog(obj.ARET)
|
|
case ssa.BlockRetJmp:
|
|
p := s.Prog(obj.ARET)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = b.Aux.(*obj.LSym)
|
|
|
|
case ssa.BlockAMD64EQF:
|
|
s.CombJump(b, next, &eqfJumps)
|
|
|
|
case ssa.BlockAMD64NEF:
|
|
s.CombJump(b, next, &nefJumps)
|
|
|
|
case ssa.BlockAMD64EQ, ssa.BlockAMD64NE,
|
|
ssa.BlockAMD64LT, ssa.BlockAMD64GE,
|
|
ssa.BlockAMD64LE, ssa.BlockAMD64GT,
|
|
ssa.BlockAMD64OS, ssa.BlockAMD64OC,
|
|
ssa.BlockAMD64ULT, ssa.BlockAMD64UGT,
|
|
ssa.BlockAMD64ULE, ssa.BlockAMD64UGE:
|
|
jmp := blockJump[b.Kind]
|
|
switch next {
|
|
case b.Succs[0].Block():
|
|
s.Br(jmp.invasm, b.Succs[1].Block())
|
|
case b.Succs[1].Block():
|
|
s.Br(jmp.asm, b.Succs[0].Block())
|
|
default:
|
|
if b.Likely != ssa.BranchUnlikely {
|
|
s.Br(jmp.asm, b.Succs[0].Block())
|
|
s.Br(obj.AJMP, b.Succs[1].Block())
|
|
} else {
|
|
s.Br(jmp.invasm, b.Succs[1].Block())
|
|
s.Br(obj.AJMP, b.Succs[0].Block())
|
|
}
|
|
}
|
|
|
|
default:
|
|
b.Fatalf("branch not implemented: %s", b.LongString())
|
|
}
|
|
}
|