mirror of
				https://github.com/golang/go.git
				synced 2025-11-03 18:20:59 +00:00 
			
		
		
		
	All multi-precision arithmetic is now based on math/big. - passes all.bash - added test cases for fixed bugs Fixes #7740. Fixes #6866. Change-Id: I67268b91766970ced3b928260053ccdce8753d58 Reviewed-on: https://go-review.googlesource.com/7912 Reviewed-by: Russ Cox <rsc@golang.org>
		
			
				
	
	
		
			80 lines
		
	
	
	
		
			1.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
	
		
			1.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// run
 | 
						|
 | 
						|
// Copyright 2015 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// WARNING: GENERATED FILE - DO NOT MODIFY MANUALLY!
 | 
						|
// (To generate, in go/types directory: go test -run=Hilbert -H=2 -out="h2.src")
 | 
						|
 | 
						|
// This program tests arbitrary precision constant arithmetic
 | 
						|
// by generating the constant elements of a Hilbert matrix H,
 | 
						|
// its inverse I, and the product P = H*I. The product should
 | 
						|
// be the identity matrix.
 | 
						|
package main
 | 
						|
 | 
						|
func main() {
 | 
						|
	if !ok {
 | 
						|
		print()
 | 
						|
		return
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Hilbert matrix, n = 2
 | 
						|
const (
 | 
						|
	h0_0, h0_1 = 1.0 / (iota + 1), 1.0 / (iota + 2)
 | 
						|
	h1_0, h1_1
 | 
						|
)
 | 
						|
 | 
						|
// Inverse Hilbert matrix
 | 
						|
const (
 | 
						|
	i0_0 = +1 * b2_1 * b2_1 * b0_0 * b0_0
 | 
						|
	i0_1 = -2 * b2_0 * b3_1 * b1_0 * b1_0
 | 
						|
 | 
						|
	i1_0 = -2 * b3_1 * b2_0 * b1_1 * b1_1
 | 
						|
	i1_1 = +3 * b3_0 * b3_0 * b2_1 * b2_1
 | 
						|
)
 | 
						|
 | 
						|
// Product matrix
 | 
						|
const (
 | 
						|
	p0_0 = h0_0*i0_0 + h0_1*i1_0
 | 
						|
	p0_1 = h0_0*i0_1 + h0_1*i1_1
 | 
						|
 | 
						|
	p1_0 = h1_0*i0_0 + h1_1*i1_0
 | 
						|
	p1_1 = h1_0*i0_1 + h1_1*i1_1
 | 
						|
)
 | 
						|
 | 
						|
// Verify that product is identity matrix
 | 
						|
const ok = p0_0 == 1 && p0_1 == 0 &&
 | 
						|
	p1_0 == 0 && p1_1 == 1 &&
 | 
						|
	true
 | 
						|
 | 
						|
func print() {
 | 
						|
	println(p0_0, p0_1)
 | 
						|
	println(p1_0, p1_1)
 | 
						|
}
 | 
						|
 | 
						|
// Binomials
 | 
						|
const (
 | 
						|
	b0_0 = f0 / (f0 * f0)
 | 
						|
 | 
						|
	b1_0 = f1 / (f0 * f1)
 | 
						|
	b1_1 = f1 / (f1 * f0)
 | 
						|
 | 
						|
	b2_0 = f2 / (f0 * f2)
 | 
						|
	b2_1 = f2 / (f1 * f1)
 | 
						|
	b2_2 = f2 / (f2 * f0)
 | 
						|
 | 
						|
	b3_0 = f3 / (f0 * f3)
 | 
						|
	b3_1 = f3 / (f1 * f2)
 | 
						|
	b3_2 = f3 / (f2 * f1)
 | 
						|
	b3_3 = f3 / (f3 * f0)
 | 
						|
)
 | 
						|
 | 
						|
// Factorials
 | 
						|
const (
 | 
						|
	f0 = 1
 | 
						|
	f1 = 1
 | 
						|
	f2 = f1 * 2
 | 
						|
	f3 = f2 * 3
 | 
						|
)
 |