go/src/cmd/compile/internal/noder/expr.go
Cuong Manh Le 131f981df0 [dev.unified] cmd/compile: make Unified IR always writes concrete type for const exprs
So we don't have to depend on typecheck pass to fixup the concrete
type for some constant expressions. Previously, the problem won't show up,
until CL 418475 sent, which removes an un-necessary type conversion in
"append(a, b...) to help the optimization kicks in.

For #53888

Change-Id: Idaecd38b7abbaa3ad5b00ff3b1fb0fd8bbeb6726
Reviewed-on: https://go-review.googlesource.com/c/go/+/418514
Run-TryBot: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: Dmitri Shuralyov <dmitshur@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
2022-07-22 16:26:22 +00:00

478 lines
13 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"fmt"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
func (g *irgen) expr(expr syntax.Expr) ir.Node {
expr = unparen(expr) // skip parens; unneeded after parse+typecheck
if expr == nil {
return nil
}
if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
return ir.BlankNode
}
tv, ok := g.info.Types[expr]
if !ok {
base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
}
switch {
case tv.IsBuiltin():
// Qualified builtins, such as unsafe.Add and unsafe.Slice.
if expr, ok := expr.(*syntax.SelectorExpr); ok {
if name, ok := expr.X.(*syntax.Name); ok {
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
return g.use(expr.Sel)
}
}
}
return g.use(expr.(*syntax.Name))
case tv.IsType():
return ir.TypeNode(g.typ(tv.Type))
case tv.IsValue(), tv.IsVoid():
// ok
default:
base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
}
base.Assert(g.exprStmtOK)
typ := idealType(tv)
if typ == nil {
base.FatalfAt(g.pos(expr), "unexpected untyped type: %v", tv.Type)
}
// Constant expression.
if tv.Value != nil {
typ := g.typ(typ)
value := FixValue(typ, tv.Value)
return OrigConst(g.pos(expr), typ, value, constExprOp(expr), syntax.String(expr))
}
n := g.expr0(typ, expr)
if n.Typecheck() != 1 && n.Typecheck() != 3 {
base.FatalfAt(g.pos(expr), "missed typecheck: %+v", n)
}
if n.Op() != ir.OFUNCINST && !g.match(n.Type(), typ, tv.HasOk()) {
base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, typ)
}
return n
}
func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
pos := g.pos(expr)
assert(pos.IsKnown())
// Set base.Pos for transformation code that still uses base.Pos, rather than
// the pos of the node being converted.
base.Pos = pos
switch expr := expr.(type) {
case *syntax.Name:
if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
return Nil(pos, g.typ(typ))
}
return g.use(expr)
case *syntax.CompositeLit:
return g.compLit(typ, expr)
case *syntax.FuncLit:
return g.funcLit(typ, expr)
case *syntax.AssertExpr:
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
case *syntax.CallExpr:
fun := g.expr(expr.Fun)
return g.callExpr(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)
case *syntax.IndexExpr:
args := unpackListExpr(expr.Index)
if len(args) == 1 {
tv, ok := g.info.Types[args[0]]
assert(ok)
if tv.IsValue() {
// This is just a normal index expression
n := Index(pos, g.typ(typ), g.expr(expr.X), g.expr(args[0]))
if !g.delayTransform() {
// transformIndex will modify n.Type() for OINDEXMAP.
transformIndex(n)
}
return n
}
}
// expr.Index is a list of type args, so we ignore it, since types2 has
// already provided this info with the Info.Instances map.
return g.expr(expr.X)
case *syntax.SelectorExpr:
// Qualified identifier.
if name, ok := expr.X.(*syntax.Name); ok {
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
return g.use(expr.Sel)
}
}
return g.selectorExpr(pos, typ, expr)
case *syntax.SliceExpr:
n := Slice(pos, g.typ(typ), g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
if !g.delayTransform() {
transformSlice(n)
}
return n
case *syntax.Operation:
if expr.Y == nil {
n := Unary(pos, g.typ(typ), g.op(expr.Op, unOps[:]), g.expr(expr.X))
if n.Op() == ir.OADDR && !g.delayTransform() {
transformAddr(n.(*ir.AddrExpr))
}
return n
}
switch op := g.op(expr.Op, binOps[:]); op {
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
n := Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
if !g.delayTransform() {
transformCompare(n)
}
return n
case ir.OANDAND, ir.OOROR:
x := g.expr(expr.X)
y := g.expr(expr.Y)
return typed(x.Type(), ir.NewLogicalExpr(pos, op, x, y))
default:
n := Binary(pos, op, g.typ(typ), g.expr(expr.X), g.expr(expr.Y))
if op == ir.OADD && !g.delayTransform() {
return transformAdd(n)
}
return n
}
default:
g.unhandled("expression", expr)
panic("unreachable")
}
}
// substType does a normal type substition, but tparams is in the form of a field
// list, and targs is in terms of a slice of type nodes. substType records any newly
// instantiated types into g.instTypeList.
func (g *irgen) substType(typ *types.Type, tparams *types.Type, targs []ir.Ntype) *types.Type {
fields := tparams.FieldSlice()
tparams1 := make([]*types.Type, len(fields))
for i, f := range fields {
tparams1[i] = f.Type
}
targs1 := make([]*types.Type, len(targs))
for i, n := range targs {
targs1[i] = n.Type()
}
ts := typecheck.Tsubster{
Tparams: tparams1,
Targs: targs1,
}
newt := ts.Typ(typ)
return newt
}
// callExpr creates a call expression (which might be a type conversion, built-in
// call, or a regular call) and does standard transforms, unless we are in a generic
// function.
func (g *irgen) callExpr(pos src.XPos, typ *types.Type, fun ir.Node, args []ir.Node, dots bool) ir.Node {
n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
n.IsDDD = dots
typed(typ, n)
if fun.Op() == ir.OTYPE {
// Actually a type conversion, not a function call.
if !g.delayTransform() {
return transformConvCall(n)
}
return n
}
if fun, ok := fun.(*ir.Name); ok && fun.BuiltinOp != 0 {
if !g.delayTransform() {
return transformBuiltin(n)
}
return n
}
// Add information, now that we know that fun is actually being called.
switch fun := fun.(type) {
case *ir.SelectorExpr:
if fun.Op() == ir.OMETHVALUE {
op := ir.ODOTMETH
if fun.X.Type().IsInterface() {
op = ir.ODOTINTER
}
fun.SetOp(op)
// Set the type to include the receiver, since that's what
// later parts of the compiler expect
fun.SetType(fun.Selection.Type)
}
}
// A function instantiation (even if fully concrete) shouldn't be
// transformed yet, because we need to add the dictionary during the
// transformation.
if fun.Op() != ir.OFUNCINST && !g.delayTransform() {
transformCall(n)
}
return n
}
// selectorExpr resolves the choice of ODOT, ODOTPTR, OMETHVALUE (eventually
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
// than in typecheck.go.
func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
x := g.expr(expr.X)
if x.Type().HasTParam() {
// Leave a method call on a type param as an OXDOT, since it can
// only be fully transformed once it has an instantiated type.
n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
typed(g.typ(typ), n)
return n
}
selinfo := g.info.Selections[expr]
// Everything up to the last selection is an implicit embedded field access,
// and the last selection is determined by selinfo.Kind().
index := selinfo.Index()
embeds, last := index[:len(index)-1], index[len(index)-1]
origx := x
for _, ix := range embeds {
x = Implicit(DotField(pos, x, ix))
}
kind := selinfo.Kind()
if kind == types2.FieldVal {
return DotField(pos, x, last)
}
var n ir.Node
method2 := selinfo.Obj().(*types2.Func)
if kind == types2.MethodExpr {
// OMETHEXPR is unusual in using directly the node and type of the
// original OTYPE node (origx) before passing through embedded
// fields, even though the method is selected from the type
// (x.Type()) reached after following the embedded fields. We will
// actually drop any ODOT nodes we created due to the embedded
// fields.
n = MethodExpr(pos, origx, x.Type(), last)
} else {
// Add implicit addr/deref for method values, if needed.
if x.Type().IsInterface() {
n = DotMethod(pos, x, last)
} else {
recvType2 := method2.Type().(*types2.Signature).Recv().Type()
_, wantPtr := recvType2.(*types2.Pointer)
havePtr := x.Type().IsPtr()
if havePtr != wantPtr {
if havePtr {
x = Implicit(Deref(pos, x.Type().Elem(), x))
} else {
x = Implicit(Addr(pos, x))
}
}
recvType2Base := recvType2
if wantPtr {
recvType2Base = types2.AsPointer(recvType2).Elem()
}
if recvType2Base.(*types2.Named).TypeParams().Len() > 0 {
// recvType2 is the original generic type that is
// instantiated for this method call.
// selinfo.Recv() is the instantiated type
recvType2 = recvType2Base
recvTypeSym := g.pkg(method2.Pkg()).Lookup(recvType2.(*types2.Named).Obj().Name())
recvType := recvTypeSym.Def.(*ir.Name).Type()
// method is the generic method associated with
// the base generic type. The instantiated type may not
// have method bodies filled in, if it was imported.
method := recvType.Methods().Index(last).Nname.(*ir.Name)
n = ir.NewSelectorExpr(pos, ir.OMETHVALUE, x, typecheck.Lookup(expr.Sel.Value))
n.(*ir.SelectorExpr).Selection = types.NewField(pos, method.Sym(), method.Type())
n.(*ir.SelectorExpr).Selection.Nname = method
typed(method.Type(), n)
xt := deref(x.Type())
targs := make([]ir.Ntype, len(xt.RParams()))
for i := range targs {
targs[i] = ir.TypeNode(xt.RParams()[i])
}
// Create function instantiation with the type
// args for the receiver type for the method call.
n = ir.NewInstExpr(pos, ir.OFUNCINST, n, targs)
typed(g.typ(typ), n)
return n
}
if !g.match(x.Type(), recvType2, false) {
base.FatalfAt(pos, "expected %L to have type %v", x, recvType2)
} else {
n = DotMethod(pos, x, last)
}
}
}
if have, want := n.Sym(), g.selector(method2); have != want {
base.FatalfAt(pos, "bad Sym: have %v, want %v", have, want)
}
return n
}
func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
return g.exprs(unpackListExpr(expr))
}
func unpackListExpr(expr syntax.Expr) []syntax.Expr {
switch expr := expr.(type) {
case nil:
return nil
case *syntax.ListExpr:
return expr.ElemList
default:
return []syntax.Expr{expr}
}
}
func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
nodes := make([]ir.Node, len(exprs))
for i, expr := range exprs {
nodes[i] = g.expr(expr)
}
return nodes
}
func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
if ptr, ok := types2.CoreType(typ).(*types2.Pointer); ok {
n := ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
n.SetOp(ir.OPTRLIT)
return typed(g.typ(typ), n)
}
_, isStruct := types2.CoreType(typ).(*types2.Struct)
exprs := make([]ir.Node, len(lit.ElemList))
for i, elem := range lit.ElemList {
switch elem := elem.(type) {
case *syntax.KeyValueExpr:
var key ir.Node
if isStruct {
key = ir.NewIdent(g.pos(elem.Key), g.name(elem.Key.(*syntax.Name)))
} else {
key = g.expr(elem.Key)
}
value := wrapname(g.pos(elem.Value), g.expr(elem.Value))
if value.Op() == ir.OPAREN {
// Make sure any PAREN node added by wrapper has a type
typed(value.(*ir.ParenExpr).X.Type(), value)
}
exprs[i] = ir.NewKeyExpr(g.pos(elem), key, value)
default:
exprs[i] = wrapname(g.pos(elem), g.expr(elem))
if exprs[i].Op() == ir.OPAREN {
// Make sure any PAREN node added by wrapper has a type
typed(exprs[i].(*ir.ParenExpr).X.Type(), exprs[i])
}
}
}
n := ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, nil, exprs)
typed(g.typ(typ), n)
var r ir.Node = n
if !g.delayTransform() {
r = transformCompLit(n)
}
return r
}
func (g *irgen) funcLit(typ2 types2.Type, expr *syntax.FuncLit) ir.Node {
fn := ir.NewClosureFunc(g.pos(expr), ir.CurFunc != nil)
ir.NameClosure(fn.OClosure, ir.CurFunc)
typ := g.typ(typ2)
typed(typ, fn.Nname)
typed(typ, fn.OClosure)
fn.SetTypecheck(1)
g.funcBody(fn, nil, expr.Type, expr.Body)
ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)
// TODO(mdempsky): ir.CaptureName should probably handle
// copying these fields from the canonical variable.
for _, cv := range fn.ClosureVars {
cv.SetType(cv.Canonical().Type())
cv.SetTypecheck(1)
}
if g.topFuncIsGeneric {
// Don't add any closure inside a generic function/method to the
// g.target.Decls list, even though it may not be generic itself.
// See issue #47514.
return ir.UseClosure(fn.OClosure, nil)
} else {
return ir.UseClosure(fn.OClosure, g.target)
}
}
func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
n := g.expr(typ)
if n.Op() != ir.OTYPE {
base.FatalfAt(g.pos(typ), "expected type: %L", n)
}
return n.Type()
}
// constExprOp returns an ir.Op that represents the outermost
// operation of the given constant expression. It's intended for use
// with ir.RawOrigExpr.
func constExprOp(expr syntax.Expr) ir.Op {
switch expr := expr.(type) {
default:
panic(fmt.Sprintf("%s: unexpected expression: %T", expr.Pos(), expr))
case *syntax.BasicLit:
return ir.OLITERAL
case *syntax.Name, *syntax.SelectorExpr:
return ir.ONAME
case *syntax.CallExpr:
return ir.OCALL
case *syntax.Operation:
if expr.Y == nil {
return unOps[expr.Op]
}
return binOps[expr.Op]
}
}
func unparen(expr syntax.Expr) syntax.Expr {
for {
paren, ok := expr.(*syntax.ParenExpr)
if !ok {
return expr
}
expr = paren.X
}
}