go/src/cmd/compile/internal/ssa/_gen/genericOps.go
Alexander Musman dda7c8253d cmd/compile,internal/bytealg: add MemEq intrinsic for runtime.memequal
Introduce a new MemEq SSA operation for runtime.memequal. The operation
is initially implemented for arm64. The change adds opt rules (following
existing rules for call to runtime.memequal), working with MemEq, and a
later op version LoweredMemEq which may be lowered differently for more
constant size cases in future (for other targets as well as for arm64).
The new MemEq SSA operation does not have memory result, allowing cse of
loads operations around it.

Code size difference (for arm64 linux):

Executable            Old .text  New .text     Change
-------------------------------------------------------
asm                     1970420    1969668     -0.04%
cgo                     1741220    1740212     -0.06%
compile                 8956756    8959428     +0.03%
cover                   1879332    1878772     -0.03%
link                    2574116    2572660     -0.06%
preprofile               867124     866820     -0.04%
vet                     2890404    2888596     -0.06%

Change-Id: I6ab507929b861884d17d5818cfbd152cf7879751
Reviewed-on: https://go-review.googlesource.com/c/go/+/686655
Reviewed-by: Keith Randall <khr@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Cherry Mui <cherryyz@google.com>
Auto-Submit: Keith Randall <khr@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2025-11-26 09:58:51 -08:00

752 lines
47 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
// Generic opcodes typically specify a width. The inputs and outputs
// of that op are the given number of bits wide. There is no notion of
// "sign", so Add32 can be used both for signed and unsigned 32-bit
// addition.
// Signed/unsigned is explicit with the extension ops
// (SignExt*/ZeroExt*) and implicit as the arg to some opcodes
// (e.g. the second argument to shifts is unsigned). If not mentioned,
// all args take signed inputs, or don't care whether their inputs
// are signed or unsigned.
var genericOps = []opData{
// Pseudo-op.
{name: "Last", argLength: -1}, // return last element of tuple; for "let" bindings
// 2-input arithmetic
// Types must be consistent with Go typing. Add, for example, must take two values
// of the same type and produces that same type.
{name: "Add8", argLength: 2, commutative: true}, // arg0 + arg1
{name: "Add16", argLength: 2, commutative: true},
{name: "Add32", argLength: 2, commutative: true},
{name: "Add64", argLength: 2, commutative: true},
{name: "AddPtr", argLength: 2}, // For address calculations. arg0 is a pointer and arg1 is an int.
{name: "Add32F", argLength: 2, commutative: true},
{name: "Add64F", argLength: 2, commutative: true},
{name: "Sub8", argLength: 2}, // arg0 - arg1
{name: "Sub16", argLength: 2},
{name: "Sub32", argLength: 2},
{name: "Sub64", argLength: 2},
{name: "SubPtr", argLength: 2},
{name: "Sub32F", argLength: 2},
{name: "Sub64F", argLength: 2},
{name: "Mul8", argLength: 2, commutative: true}, // arg0 * arg1
{name: "Mul16", argLength: 2, commutative: true},
{name: "Mul32", argLength: 2, commutative: true},
{name: "Mul64", argLength: 2, commutative: true},
{name: "Mul32F", argLength: 2, commutative: true},
{name: "Mul64F", argLength: 2, commutative: true},
{name: "Div32F", argLength: 2}, // arg0 / arg1
{name: "Div64F", argLength: 2},
{name: "Hmul32", argLength: 2, commutative: true},
{name: "Hmul32u", argLength: 2, commutative: true},
{name: "Hmul64", argLength: 2, commutative: true},
{name: "Hmul64u", argLength: 2, commutative: true},
{name: "Mul32uhilo", argLength: 2, typ: "(UInt32,UInt32)", commutative: true}, // arg0 * arg1, returns (hi, lo)
{name: "Mul64uhilo", argLength: 2, typ: "(UInt64,UInt64)", commutative: true}, // arg0 * arg1, returns (hi, lo)
{name: "Mul32uover", argLength: 2, typ: "(UInt32,Bool)", commutative: true}, // Let x = arg0*arg1 (full 32x32-> 64 unsigned multiply), returns (uint32(x), (uint32(x) != x))
{name: "Mul64uover", argLength: 2, typ: "(UInt64,Bool)", commutative: true}, // Let x = arg0*arg1 (full 64x64->128 unsigned multiply), returns (uint64(x), (uint64(x) != x))
// Weird special instructions for use in the strength reduction of divides.
// These ops compute unsigned (arg0 + arg1) / 2, correct to all
// 32/64 bits, even when the intermediate result of the add has 33/65 bits.
// These ops can assume arg0 >= arg1.
// Note: these ops aren't commutative!
{name: "Avg32u", argLength: 2, typ: "UInt32"}, // 32-bit platforms only
{name: "Avg64u", argLength: 2, typ: "UInt64"}, // 64-bit platforms only
// For Div16, Div32 and Div64, AuxInt non-zero means that the divisor has been proved to be not -1
// or that the dividend is not the most negative value.
{name: "Div8", argLength: 2}, // arg0 / arg1, signed
{name: "Div8u", argLength: 2}, // arg0 / arg1, unsigned
{name: "Div16", argLength: 2, aux: "Bool"},
{name: "Div16u", argLength: 2},
{name: "Div32", argLength: 2, aux: "Bool"},
{name: "Div32u", argLength: 2},
{name: "Div64", argLength: 2, aux: "Bool"},
{name: "Div64u", argLength: 2},
{name: "Div128u", argLength: 3}, // arg0:arg1 / arg2 (128-bit divided by 64-bit), returns (q, r)
// For Mod16, Mod32 and Mod64, AuxInt non-zero means that the divisor has been proved to be not -1.
{name: "Mod8", argLength: 2}, // arg0 % arg1, signed
{name: "Mod8u", argLength: 2}, // arg0 % arg1, unsigned
{name: "Mod16", argLength: 2, aux: "Bool"},
{name: "Mod16u", argLength: 2},
{name: "Mod32", argLength: 2, aux: "Bool"},
{name: "Mod32u", argLength: 2},
{name: "Mod64", argLength: 2, aux: "Bool"},
{name: "Mod64u", argLength: 2},
{name: "And8", argLength: 2, commutative: true}, // arg0 & arg1
{name: "And16", argLength: 2, commutative: true},
{name: "And32", argLength: 2, commutative: true},
{name: "And64", argLength: 2, commutative: true},
{name: "Or8", argLength: 2, commutative: true}, // arg0 | arg1
{name: "Or16", argLength: 2, commutative: true},
{name: "Or32", argLength: 2, commutative: true},
{name: "Or64", argLength: 2, commutative: true},
{name: "Xor8", argLength: 2, commutative: true}, // arg0 ^ arg1
{name: "Xor16", argLength: 2, commutative: true},
{name: "Xor32", argLength: 2, commutative: true},
{name: "Xor64", argLength: 2, commutative: true},
// For shifts, AxB means the shifted value has A bits and the shift amount has B bits.
// Shift amounts are considered unsigned.
// If arg1 is known to be nonnegative and less than the number of bits in arg0,
// then auxInt may be set to 1.
// This enables better code generation on some platforms.
{name: "Lsh8x8", argLength: 2, aux: "Bool"}, // arg0 << arg1
{name: "Lsh8x16", argLength: 2, aux: "Bool"},
{name: "Lsh8x32", argLength: 2, aux: "Bool"},
{name: "Lsh8x64", argLength: 2, aux: "Bool"},
{name: "Lsh16x8", argLength: 2, aux: "Bool"},
{name: "Lsh16x16", argLength: 2, aux: "Bool"},
{name: "Lsh16x32", argLength: 2, aux: "Bool"},
{name: "Lsh16x64", argLength: 2, aux: "Bool"},
{name: "Lsh32x8", argLength: 2, aux: "Bool"},
{name: "Lsh32x16", argLength: 2, aux: "Bool"},
{name: "Lsh32x32", argLength: 2, aux: "Bool"},
{name: "Lsh32x64", argLength: 2, aux: "Bool"},
{name: "Lsh64x8", argLength: 2, aux: "Bool"},
{name: "Lsh64x16", argLength: 2, aux: "Bool"},
{name: "Lsh64x32", argLength: 2, aux: "Bool"},
{name: "Lsh64x64", argLength: 2, aux: "Bool"},
{name: "Rsh8x8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, signed
{name: "Rsh8x16", argLength: 2, aux: "Bool"},
{name: "Rsh8x32", argLength: 2, aux: "Bool"},
{name: "Rsh8x64", argLength: 2, aux: "Bool"},
{name: "Rsh16x8", argLength: 2, aux: "Bool"},
{name: "Rsh16x16", argLength: 2, aux: "Bool"},
{name: "Rsh16x32", argLength: 2, aux: "Bool"},
{name: "Rsh16x64", argLength: 2, aux: "Bool"},
{name: "Rsh32x8", argLength: 2, aux: "Bool"},
{name: "Rsh32x16", argLength: 2, aux: "Bool"},
{name: "Rsh32x32", argLength: 2, aux: "Bool"},
{name: "Rsh32x64", argLength: 2, aux: "Bool"},
{name: "Rsh64x8", argLength: 2, aux: "Bool"},
{name: "Rsh64x16", argLength: 2, aux: "Bool"},
{name: "Rsh64x32", argLength: 2, aux: "Bool"},
{name: "Rsh64x64", argLength: 2, aux: "Bool"},
{name: "Rsh8Ux8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, unsigned
{name: "Rsh8Ux16", argLength: 2, aux: "Bool"},
{name: "Rsh8Ux32", argLength: 2, aux: "Bool"},
{name: "Rsh8Ux64", argLength: 2, aux: "Bool"},
{name: "Rsh16Ux8", argLength: 2, aux: "Bool"},
{name: "Rsh16Ux16", argLength: 2, aux: "Bool"},
{name: "Rsh16Ux32", argLength: 2, aux: "Bool"},
{name: "Rsh16Ux64", argLength: 2, aux: "Bool"},
{name: "Rsh32Ux8", argLength: 2, aux: "Bool"},
{name: "Rsh32Ux16", argLength: 2, aux: "Bool"},
{name: "Rsh32Ux32", argLength: 2, aux: "Bool"},
{name: "Rsh32Ux64", argLength: 2, aux: "Bool"},
{name: "Rsh64Ux8", argLength: 2, aux: "Bool"},
{name: "Rsh64Ux16", argLength: 2, aux: "Bool"},
{name: "Rsh64Ux32", argLength: 2, aux: "Bool"},
{name: "Rsh64Ux64", argLength: 2, aux: "Bool"},
// 2-input comparisons
{name: "Eq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 == arg1
{name: "Eq16", argLength: 2, commutative: true, typ: "Bool"},
{name: "Eq32", argLength: 2, commutative: true, typ: "Bool"},
{name: "Eq64", argLength: 2, commutative: true, typ: "Bool"},
{name: "EqPtr", argLength: 2, commutative: true, typ: "Bool"},
{name: "EqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
{name: "EqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
{name: "Eq32F", argLength: 2, commutative: true, typ: "Bool"},
{name: "Eq64F", argLength: 2, commutative: true, typ: "Bool"},
{name: "Neq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1
{name: "Neq16", argLength: 2, commutative: true, typ: "Bool"},
{name: "Neq32", argLength: 2, commutative: true, typ: "Bool"},
{name: "Neq64", argLength: 2, commutative: true, typ: "Bool"},
{name: "NeqPtr", argLength: 2, commutative: true, typ: "Bool"},
{name: "NeqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
{name: "NeqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
{name: "Neq32F", argLength: 2, commutative: true, typ: "Bool"},
{name: "Neq64F", argLength: 2, commutative: true, typ: "Bool"},
{name: "Less8", argLength: 2, typ: "Bool"}, // arg0 < arg1, signed
{name: "Less8U", argLength: 2, typ: "Bool"}, // arg0 < arg1, unsigned
{name: "Less16", argLength: 2, typ: "Bool"},
{name: "Less16U", argLength: 2, typ: "Bool"},
{name: "Less32", argLength: 2, typ: "Bool"},
{name: "Less32U", argLength: 2, typ: "Bool"},
{name: "Less64", argLength: 2, typ: "Bool"},
{name: "Less64U", argLength: 2, typ: "Bool"},
{name: "Less32F", argLength: 2, typ: "Bool"},
{name: "Less64F", argLength: 2, typ: "Bool"},
{name: "Leq8", argLength: 2, typ: "Bool"}, // arg0 <= arg1, signed
{name: "Leq8U", argLength: 2, typ: "Bool"}, // arg0 <= arg1, unsigned
{name: "Leq16", argLength: 2, typ: "Bool"},
{name: "Leq16U", argLength: 2, typ: "Bool"},
{name: "Leq32", argLength: 2, typ: "Bool"},
{name: "Leq32U", argLength: 2, typ: "Bool"},
{name: "Leq64", argLength: 2, typ: "Bool"},
{name: "Leq64U", argLength: 2, typ: "Bool"},
{name: "Leq32F", argLength: 2, typ: "Bool"},
{name: "Leq64F", argLength: 2, typ: "Bool"},
// the type of a CondSelect is the same as the type of its first
// two arguments, which should be register-width scalars; the third
// argument should be a boolean
{name: "CondSelect", argLength: 3}, // arg2 ? arg0 : arg1
// boolean ops
{name: "AndB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 && arg1 (not shortcircuited)
{name: "OrB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 || arg1 (not shortcircuited)
{name: "EqB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 == arg1
{name: "NeqB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1
{name: "Not", argLength: 1, typ: "Bool"}, // !arg0, boolean
// 1-input ops
{name: "Neg8", argLength: 1}, // -arg0
{name: "Neg16", argLength: 1},
{name: "Neg32", argLength: 1},
{name: "Neg64", argLength: 1},
{name: "Neg32F", argLength: 1},
{name: "Neg64F", argLength: 1},
{name: "Com8", argLength: 1}, // ^arg0
{name: "Com16", argLength: 1},
{name: "Com32", argLength: 1},
{name: "Com64", argLength: 1},
{name: "Ctz8", argLength: 1}, // Count trailing (low order) zeroes (returns 0-8)
{name: "Ctz16", argLength: 1}, // Count trailing (low order) zeroes (returns 0-16)
{name: "Ctz32", argLength: 1}, // Count trailing (low order) zeroes (returns 0-32)
{name: "Ctz64", argLength: 1}, // Count trailing (low order) zeroes (returns 0-64)
{name: "Ctz64On32", argLength: 2}, // Count trailing (low order) zeroes (returns 0-64) in arg[1]<<32+arg[0]
{name: "Ctz8NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-7
{name: "Ctz16NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-15
{name: "Ctz32NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-31
{name: "Ctz64NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-63
{name: "BitLen8", argLength: 1}, // Number of bits in arg[0] (returns 0-8)
{name: "BitLen16", argLength: 1}, // Number of bits in arg[0] (returns 0-16)
{name: "BitLen32", argLength: 1}, // Number of bits in arg[0] (returns 0-32)
{name: "BitLen64", argLength: 1}, // Number of bits in arg[0] (returns 0-64)
{name: "Bswap16", argLength: 1}, // Swap bytes
{name: "Bswap32", argLength: 1}, // Swap bytes
{name: "Bswap64", argLength: 1}, // Swap bytes
{name: "BitRev8", argLength: 1}, // Reverse the bits in arg[0]
{name: "BitRev16", argLength: 1}, // Reverse the bits in arg[0]
{name: "BitRev32", argLength: 1}, // Reverse the bits in arg[0]
{name: "BitRev64", argLength: 1}, // Reverse the bits in arg[0]
{name: "PopCount8", argLength: 1}, // Count bits in arg[0]
{name: "PopCount16", argLength: 1}, // Count bits in arg[0]
{name: "PopCount32", argLength: 1}, // Count bits in arg[0]
{name: "PopCount64", argLength: 1}, // Count bits in arg[0]
// RotateLeftX instructions rotate the X bits of arg[0] to the left
// by the low lg_2(X) bits of arg[1], interpreted as an unsigned value.
// Note that this works out regardless of the bit width or signedness of
// arg[1]. In particular, RotateLeft by x is the same as RotateRight by -x.
{name: "RotateLeft64", argLength: 2},
{name: "RotateLeft32", argLength: 2},
{name: "RotateLeft16", argLength: 2},
{name: "RotateLeft8", argLength: 2},
// Square root.
// Special cases:
// +∞ → +∞
// ±0 → ±0 (sign preserved)
// x<0 → NaN
// NaN → NaN
{name: "Sqrt", argLength: 1}, // √arg0 (floating point, double precision)
{name: "Sqrt32", argLength: 1}, // √arg0 (floating point, single precision)
// Round to integer, float64 only.
// Special cases:
// ±∞ → ±∞ (sign preserved)
// ±0 → ±0 (sign preserved)
// NaN → NaN
{name: "Floor", argLength: 1}, // round arg0 toward -∞
{name: "Ceil", argLength: 1}, // round arg0 toward +∞
{name: "Trunc", argLength: 1}, // round arg0 toward 0
{name: "Round", argLength: 1}, // round arg0 to nearest, ties away from 0
{name: "RoundToEven", argLength: 1}, // round arg0 to nearest, ties to even
// Modify the sign bit
{name: "Abs", argLength: 1}, // absolute value arg0
{name: "Copysign", argLength: 2}, // copy sign from arg0 to arg1
// Integer min/max implementation, if hardware is available.
{name: "Min64", argLength: 2}, // min(arg0,arg1), signed
{name: "Max64", argLength: 2}, // max(arg0,arg1), signed
{name: "Min64u", argLength: 2}, // min(arg0,arg1), unsigned
{name: "Max64u", argLength: 2}, // max(arg0,arg1), unsigned
// Float min/max implementation, if hardware is available.
{name: "Min64F", argLength: 2}, // min(arg0,arg1)
{name: "Min32F", argLength: 2}, // min(arg0,arg1)
{name: "Max64F", argLength: 2}, // max(arg0,arg1)
{name: "Max32F", argLength: 2}, // max(arg0,arg1)
// 3-input opcode.
// Fused-multiply-add, float64 only.
// When a*b+c is exactly zero (before rounding), then the result is +0 or -0.
// The 0's sign is determined according to the standard rules for the
// addition (-0 if both a*b and c are -0, +0 otherwise).
//
// Otherwise, when a*b+c rounds to zero, then the resulting 0's sign is
// determined by the sign of the exact result a*b+c.
// See section 6.3 in ieee754.
//
// When the multiply is an infinity times a zero, the result is NaN.
// See section 7.2 in ieee754.
{name: "FMA", argLength: 3}, // compute (a*b)+c without intermediate rounding
// Data movement. Max argument length for Phi is indefinite.
{name: "Phi", argLength: -1, zeroWidth: true}, // select an argument based on which predecessor block we came from
{name: "Copy", argLength: 1}, // output = arg0
// Convert converts between pointers and integers.
// We have a special op for this so as to not confuse GC
// (particularly stack maps). It takes a memory arg so it
// gets correctly ordered with respect to GC safepoints.
// It gets compiled to nothing, so its result must in the same
// register as its argument. regalloc knows it can use any
// allocatable integer register for OpConvert.
// arg0=ptr/int arg1=mem, output=int/ptr
{name: "Convert", argLength: 2, zeroWidth: true, resultInArg0: true},
// constants. Constant values are stored in the aux or
// auxint fields.
{name: "ConstBool", aux: "Bool"}, // auxint is 0 for false and 1 for true
{name: "ConstString", aux: "String"}, // value is aux.(string)
{name: "ConstNil", typ: "BytePtr"}, // nil pointer
{name: "Const8", aux: "Int8"}, // auxint is sign-extended 8 bits
{name: "Const16", aux: "Int16"}, // auxint is sign-extended 16 bits
{name: "Const32", aux: "Int32"}, // auxint is sign-extended 32 bits
// Note: ConstX are sign-extended even when the type of the value is unsigned.
// For instance, uint8(0xaa) is stored as auxint=0xffffffffffffffaa.
{name: "Const64", aux: "Int64"}, // value is auxint
// Note: for both Const32F and Const64F, we disallow encoding NaNs.
// Signaling NaNs are tricky because if you do anything with them, they become quiet.
// Particularly, converting a 32 bit sNaN to 64 bit and back converts it to a qNaN.
// See issue 36399 and 36400.
// Encodings of +inf, -inf, and -0 are fine.
{name: "Const32F", aux: "Float32"}, // value is math.Float64frombits(uint64(auxint)) and is exactly representable as float 32
{name: "Const64F", aux: "Float64"}, // value is math.Float64frombits(uint64(auxint))
{name: "ConstInterface"}, // nil interface
{name: "ConstSlice"}, // nil slice
// Constant-like things
{name: "InitMem", zeroWidth: true}, // memory input to the function.
{name: "Arg", aux: "SymOff", symEffect: "Read", zeroWidth: true}, // argument to the function. aux=GCNode of arg, off = offset in that arg.
// Like Arg, these are generic ops that survive lowering. AuxInt is a register index, and the actual output register for each index is defined by the architecture.
// AuxInt = integer argument index (not a register number). ABI-specified spill loc obtained from function
{name: "ArgIntReg", aux: "NameOffsetInt8", zeroWidth: true}, // argument to the function in an int reg.
{name: "ArgFloatReg", aux: "NameOffsetInt8", zeroWidth: true}, // argument to the function in a float reg.
// The address of a variable. arg0 is the base pointer.
// If the variable is a global, the base pointer will be SB and
// the Aux field will be a *obj.LSym.
// If the variable is a local, the base pointer will be SP and
// the Aux field will be a *ir.Name
{name: "Addr", argLength: 1, aux: "Sym", symEffect: "Addr"}, // Address of a variable. Arg0=SB. Aux identifies the variable.
{name: "LocalAddr", argLength: 2, aux: "Sym", symEffect: "Addr"}, // Address of a variable. Arg0=SP. Arg1=mem. Aux identifies the variable.
{name: "SP", zeroWidth: true, fixedReg: true}, // stack pointer
{name: "SB", typ: "Uintptr", zeroWidth: true, fixedReg: true}, // static base pointer (a.k.a. globals pointer)
{name: "Invalid"}, // unused value
{name: "SPanchored", typ: "Uintptr", argLength: 2, zeroWidth: true}, // arg0 = SP, arg1 = mem. Result is identical to arg0, but cannot be scheduled before memory state arg1.
// Memory operations
{name: "Load", argLength: 2}, // Load from arg0. arg1=memory
{name: "Dereference", argLength: 2}, // Load from arg0. arg1=memory. Helper op for arg/result passing, result is an otherwise not-SSA-able "value".
{name: "Store", argLength: 3, typ: "Mem", aux: "Typ"}, // Store arg1 to arg0. arg2=memory, aux=type. Returns memory.
// masked memory operations.
// TODO add 16 and 8
{name: "LoadMasked8", argLength: 3}, // Load from arg0, arg1 = mask of 8-bits, arg2 = memory
{name: "LoadMasked16", argLength: 3}, // Load from arg0, arg1 = mask of 16-bits, arg2 = memory
{name: "LoadMasked32", argLength: 3}, // Load from arg0, arg1 = mask of 32-bits, arg2 = memory
{name: "LoadMasked64", argLength: 3}, // Load from arg0, arg1 = mask of 64-bits, arg2 = memory
{name: "StoreMasked8", argLength: 4, typ: "Mem", aux: "Typ"}, // Store arg2 to arg0, arg1=mask of 8-bits, arg3 = memory
{name: "StoreMasked16", argLength: 4, typ: "Mem", aux: "Typ"}, // Store arg2 to arg0, arg1=mask of 16-bits, arg3 = memory
{name: "StoreMasked32", argLength: 4, typ: "Mem", aux: "Typ"}, // Store arg2 to arg0, arg1=mask of 32-bits, arg3 = memory
{name: "StoreMasked64", argLength: 4, typ: "Mem", aux: "Typ"}, // Store arg2 to arg0, arg1=mask of 64-bits, arg3 = memory
// Normally we require that the source and destination of Move do not overlap.
// There is an exception when we know all the loads will happen before all
// the stores. In that case, overlap is ok. See
// memmove inlining in generic.rules. When inlineablememmovesize (in ../rewrite.go)
// returns true, we must do all loads before all stores, when lowering Move.
// The type of Move is used for the write barrier pass to insert write barriers
// and for alignment on some architectures.
// For pointerless types, it is possible for the type to be inaccurate.
// For type alignment and pointer information, use the type in Aux;
// for type size, use the size in AuxInt.
// The "inline runtime.memmove" rewrite rule generates Moves with inaccurate types,
// such as type byte instead of the more accurate type [8]byte.
{name: "Move", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type. Returns memory.
{name: "Zero", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory.
// Memory operations with write barriers.
// Expand to runtime calls. Write barrier will be removed if write on stack.
{name: "StoreWB", argLength: 3, typ: "Mem", aux: "Typ"}, // Store arg1 to arg0. arg2=memory, aux=type. Returns memory.
{name: "MoveWB", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type. Returns memory.
{name: "ZeroWB", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory.
{name: "WBend", argLength: 1, typ: "Mem"}, // Write barrier code is done, interrupting is now allowed.
// WB invokes runtime.gcWriteBarrier. This is not a normal
// call: it takes arguments in registers, doesn't clobber
// general-purpose registers (the exact clobber set is
// arch-dependent), and is not a safe-point.
{name: "WB", argLength: 1, typ: "(BytePtr,Mem)", aux: "Int64"}, // arg0=mem, auxint=# of buffer entries needed. Returns buffer pointer and memory.
{name: "HasCPUFeature", argLength: 0, typ: "bool", aux: "Sym", symEffect: "None"}, // aux=place that this feature flag can be loaded from
// PanicBounds and PanicExtend generate a runtime panic.
// Their arguments provide index values to use in panic messages.
// Both PanicBounds and PanicExtend have an AuxInt value from the BoundsKind type (in ../op.go).
// PanicBounds' index is int sized.
// PanicExtend's index is int64 sized. (PanicExtend is only used on 32-bit archs.)
{name: "PanicBounds", argLength: 3, aux: "Int64", typ: "Mem", call: true}, // arg0=idx, arg1=len, arg2=mem, returns memory.
{name: "PanicExtend", argLength: 4, aux: "Int64", typ: "Mem", call: true}, // arg0=idxHi, arg1=idxLo, arg2=len, arg3=mem, returns memory.
// Function calls. Arguments to the call have already been written to the stack.
// Return values appear on the stack. The method receiver, if any, is treated
// as a phantom first argument.
// TODO(josharian): ClosureCall and InterCall should have Int32 aux
// to match StaticCall's 32 bit arg size limit.
// TODO(drchase,josharian): could the arg size limit be bundled into the rules for CallOff?
// Before lowering, LECalls receive their fixed inputs (first), memory (last),
// and a variable number of input values in the middle.
// They produce a variable number of result values.
// These values are not necessarily "SSA-able"; they can be too large,
// but in that case inputs are loaded immediately before with OpDereference,
// and outputs are stored immediately with OpStore.
//
// After call expansion, Calls have the same fixed-middle-memory arrangement of inputs,
// with the difference that the "middle" is only the register-resident inputs,
// and the non-register inputs are instead stored at ABI-defined offsets from SP
// (and the stores thread through the memory that is ultimately an input to the call).
// Outputs follow a similar pattern; register-resident outputs are the leading elements
// of a Result-typed output, with memory last, and any memory-resident outputs have been
// stored to ABI-defined locations. Each non-memory input or output fits in a register.
//
// Subsequent architecture-specific lowering only changes the opcode.
{name: "ClosureCall", argLength: -1, aux: "CallOff", call: true}, // arg0=code pointer, arg1=context ptr, arg2..argN-1 are register inputs, argN=memory. auxint=arg size. Returns Result of register results, plus memory.
{name: "StaticCall", argLength: -1, aux: "CallOff", call: true}, // call function aux.(*obj.LSym), arg0..argN-1 are register inputs, argN=memory. auxint=arg size. Returns Result of register results, plus memory.
{name: "InterCall", argLength: -1, aux: "CallOff", call: true}, // interface call. arg0=code pointer, arg1..argN-1 are register inputs, argN=memory, auxint=arg size. Returns Result of register results, plus memory.
{name: "TailCall", argLength: -1, aux: "CallOff", call: true}, // tail call function aux.(*obj.LSym), arg0..argN-1 are register inputs, argN=memory. auxint=arg size. Returns Result of register results, plus memory.
{name: "ClosureLECall", argLength: -1, aux: "CallOff", call: true}, // late-expanded closure call. arg0=code pointer, arg1=context ptr, arg2..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
{name: "StaticLECall", argLength: -1, aux: "CallOff", call: true}, // late-expanded static call function aux.(*ssa.AuxCall.Fn). arg0..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
{name: "InterLECall", argLength: -1, aux: "CallOff", call: true}, // late-expanded interface call. arg0=code pointer, arg1..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
{name: "TailLECall", argLength: -1, aux: "CallOff", call: true}, // late-expanded static tail call function aux.(*ssa.AuxCall.Fn). arg0..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
// Conversions: signed extensions, zero (unsigned) extensions, truncations
{name: "SignExt8to16", argLength: 1, typ: "Int16"},
{name: "SignExt8to32", argLength: 1, typ: "Int32"},
{name: "SignExt8to64", argLength: 1, typ: "Int64"},
{name: "SignExt16to32", argLength: 1, typ: "Int32"},
{name: "SignExt16to64", argLength: 1, typ: "Int64"},
{name: "SignExt32to64", argLength: 1, typ: "Int64"},
{name: "ZeroExt8to16", argLength: 1, typ: "UInt16"},
{name: "ZeroExt8to32", argLength: 1, typ: "UInt32"},
{name: "ZeroExt8to64", argLength: 1, typ: "UInt64"},
{name: "ZeroExt16to32", argLength: 1, typ: "UInt32"},
{name: "ZeroExt16to64", argLength: 1, typ: "UInt64"},
{name: "ZeroExt32to64", argLength: 1, typ: "UInt64"},
{name: "Trunc16to8", argLength: 1},
{name: "Trunc32to8", argLength: 1},
{name: "Trunc32to16", argLength: 1},
{name: "Trunc64to8", argLength: 1},
{name: "Trunc64to16", argLength: 1},
{name: "Trunc64to32", argLength: 1},
{name: "Cvt32to32F", argLength: 1},
{name: "Cvt32to64F", argLength: 1},
{name: "Cvt64to32F", argLength: 1},
{name: "Cvt64to64F", argLength: 1},
{name: "Cvt32Fto32", argLength: 1},
{name: "Cvt32Fto64", argLength: 1},
{name: "Cvt64Fto32", argLength: 1},
{name: "Cvt64Fto64", argLength: 1},
{name: "Cvt32Fto64F", argLength: 1},
{name: "Cvt64Fto32F", argLength: 1},
{name: "CvtBoolToUint8", argLength: 1},
// Force rounding to precision of type.
{name: "Round32F", argLength: 1},
{name: "Round64F", argLength: 1},
// Automatically inserted safety checks
{name: "IsNonNil", argLength: 1, typ: "Bool"}, // arg0 != nil
{name: "IsInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 < arg1. arg1 is guaranteed >= 0.
{name: "IsSliceInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 <= arg1. arg1 is guaranteed >= 0.
{name: "NilCheck", argLength: 2, nilCheck: true}, // arg0=ptr, arg1=mem. Panics if arg0 is nil. Returns the ptr unmodified.
// Pseudo-ops
{name: "GetG", argLength: 1, zeroWidth: true}, // runtime.getg() (read g pointer). arg0=mem
{name: "GetClosurePtr"}, // get closure pointer from dedicated register
{name: "GetCallerPC"}, // for GetCallerPC intrinsic
{name: "GetCallerSP", argLength: 1}, // for GetCallerSP intrinsic. arg0=mem.
// Indexing operations
{name: "PtrIndex", argLength: 2}, // arg0=ptr, arg1=index. Computes ptr+sizeof(*v.type)*index, where index is extended to ptrwidth type
{name: "OffPtr", argLength: 1, aux: "Int64"}, // arg0 + auxint (arg0 and result are pointers)
// Slices
{name: "SliceMake", argLength: 3}, // arg0=ptr, arg1=len, arg2=cap
{name: "SlicePtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0)
{name: "SliceLen", argLength: 1}, // len(arg0)
{name: "SliceCap", argLength: 1}, // cap(arg0)
// SlicePtrUnchecked, like SlicePtr, extracts the pointer from a slice.
// SlicePtr values are assumed non-nil, because they are guarded by bounds checks.
// SlicePtrUnchecked values can be nil.
{name: "SlicePtrUnchecked", argLength: 1},
// Complex (part/whole)
{name: "ComplexMake", argLength: 2}, // arg0=real, arg1=imag
{name: "ComplexReal", argLength: 1}, // real(arg0)
{name: "ComplexImag", argLength: 1}, // imag(arg0)
// Strings
{name: "StringMake", argLength: 2}, // arg0=ptr, arg1=len
{name: "StringPtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0)
{name: "StringLen", argLength: 1, typ: "Int"}, // len(arg0)
// Interfaces
{name: "IMake", argLength: 2}, // arg0=itab, arg1=data
{name: "ITab", argLength: 1, typ: "Uintptr"}, // arg0=interface, returns itable field
{name: "IData", argLength: 1}, // arg0=interface, returns data field
// Structs
{name: "StructMake", argLength: -1}, // args...=field0..n-1. Returns struct with n fields.
{name: "StructSelect", argLength: 1, aux: "Int64"}, // arg0=struct, auxint=field index. Returns the auxint'th field.
// Arrays
{name: "ArrayMake0"}, // Returns array with 0 elements
{name: "ArrayMake1", argLength: 1}, // Returns array with 1 element
{name: "ArraySelect", argLength: 1, aux: "Int64"}, // arg0=array, auxint=index. Returns a[i].
// Spill&restore ops for the register allocator. These are
// semantically identical to OpCopy; they do not take/return
// stores like regular memory ops do. We can get away without memory
// args because we know there is no aliasing of spill slots on the stack.
{name: "StoreReg", argLength: 1},
{name: "LoadReg", argLength: 1},
// Used during ssa construction. Like Copy, but the arg has not been specified yet.
{name: "FwdRef", aux: "Sym", symEffect: "None"},
// Unknown value. Used for Values whose values don't matter because they are dead code.
{name: "Unknown"},
{name: "VarDef", argLength: 1, aux: "Sym", typ: "Mem", symEffect: "None", zeroWidth: true}, // aux is a *ir.Name of a variable that is about to be initialized. arg0=mem, returns mem
// TODO: what's the difference between VarLive and KeepAlive?
{name: "VarLive", argLength: 1, aux: "Sym", symEffect: "Read", zeroWidth: true}, // aux is a *ir.Name of a variable that must be kept live. arg0=mem, returns mem
{name: "KeepAlive", argLength: 2, typ: "Mem", zeroWidth: true}, // arg[0] is a value that must be kept alive until this mark. arg[1]=mem, returns mem
// InlMark marks the start of an inlined function body. Its AuxInt field
// distinguishes which entry in the local inline tree it is marking.
{name: "InlMark", argLength: 1, aux: "Int32", typ: "Void"}, // arg[0]=mem, returns void.
// Ops for breaking 64-bit operations on 32-bit architectures
{name: "Int64Make", argLength: 2, typ: "UInt64"}, // arg0=hi, arg1=lo
{name: "Int64Hi", argLength: 1, typ: "UInt32"}, // high 32-bit of arg0
{name: "Int64Lo", argLength: 1, typ: "UInt32"}, // low 32-bit of arg0
{name: "Add32carry", argLength: 2, commutative: true, typ: "(UInt32,Flags)"}, // arg0 + arg1, returns (value, carry)
{name: "Add32withcarry", argLength: 3, commutative: true}, // arg0 + arg1 + arg2, arg2=carry (0 or 1)
{name: "Add32carrywithcarry", argLength: 3, commutative: true, typ: "(UInt32,Flags)"}, // arg0 + arg1 + arg2, arg2=carry, returns (value, carry)
{name: "Sub32carry", argLength: 2, typ: "(UInt32,Flags)"}, // arg0 - arg1, returns (value, carry)
{name: "Sub32withcarry", argLength: 3}, // arg0 - arg1 - arg2, arg2=carry (0 or 1)
{name: "Add64carry", argLength: 3, commutative: true, typ: "(UInt64,UInt64)"}, // arg0 + arg1 + arg2, arg2 must be 0 or 1. returns (value, value>>64)
{name: "Sub64borrow", argLength: 3, typ: "(UInt64,UInt64)"}, // arg0 - (arg1 + arg2), arg2 must be 0 or 1. returns (value, value>>64&1)
{name: "Signmask", argLength: 1, typ: "Int32"}, // 0 if arg0 >= 0, -1 if arg0 < 0
{name: "Zeromask", argLength: 1, typ: "UInt32"}, // 0 if arg0 == 0, 0xffffffff if arg0 != 0
{name: "Slicemask", argLength: 1}, // 0 if arg0 == 0, -1 if arg0 > 0, undef if arg0<0. Type is native int size.
{name: "SpectreIndex", argLength: 2}, // arg0 if 0 <= arg0 < arg1, 0 otherwise. Type is native int size.
{name: "SpectreSliceIndex", argLength: 2}, // arg0 if 0 <= arg0 <= arg1, 0 otherwise. Type is native int size.
{name: "Cvt32Uto32F", argLength: 1}, // uint32 -> float32, only used on 32-bit arch
{name: "Cvt32Uto64F", argLength: 1}, // uint32 -> float64, only used on 32-bit arch
{name: "Cvt32Fto32U", argLength: 1}, // float32 -> uint32, only used on 32-bit arch
{name: "Cvt64Fto32U", argLength: 1}, // float64 -> uint32, only used on 32-bit arch
{name: "Cvt64Uto32F", argLength: 1}, // uint64 -> float32, only used on archs that has the instruction
{name: "Cvt64Uto64F", argLength: 1}, // uint64 -> float64, only used on archs that has the instruction
{name: "Cvt32Fto64U", argLength: 1}, // float32 -> uint64, only used on archs that has the instruction
{name: "Cvt64Fto64U", argLength: 1}, // float64 -> uint64, only used on archs that has the instruction
// pseudo-ops for breaking Tuple
{name: "Select0", argLength: 1, zeroWidth: true}, // the first component of a tuple
{name: "Select1", argLength: 1, zeroWidth: true}, // the second component of a tuple
{name: "MakeTuple", argLength: 2}, // arg0 arg1 are components of a "Tuple" (like the result from a 128bits op).
{name: "SelectN", argLength: 1, aux: "Int64"}, // arg0=result, auxint=field index. Returns the auxint'th member.
{name: "SelectNAddr", argLength: 1, aux: "Int64"}, // arg0=result, auxint=field index. Returns the address of auxint'th member. Used for un-SSA-able result types.
{name: "MakeResult", argLength: -1}, // arg0 .. are components of a "Result" (like the result from a Call). The last arg should be memory (like the result from a call).
// Atomic operations used for semantically inlining sync/atomic and
// internal/runtime/atomic. Atomic loads return a new memory so that
// the loads are properly ordered with respect to other loads and
// stores.
{name: "AtomicLoad8", argLength: 2, typ: "(UInt8,Mem)"}, // Load from arg0. arg1=memory. Returns loaded value and new memory.
{name: "AtomicLoad32", argLength: 2, typ: "(UInt32,Mem)"}, // Load from arg0. arg1=memory. Returns loaded value and new memory.
{name: "AtomicLoad64", argLength: 2, typ: "(UInt64,Mem)"}, // Load from arg0. arg1=memory. Returns loaded value and new memory.
{name: "AtomicLoadPtr", argLength: 2, typ: "(BytePtr,Mem)"}, // Load from arg0. arg1=memory. Returns loaded value and new memory.
{name: "AtomicLoadAcq32", argLength: 2, typ: "(UInt32,Mem)"}, // Load from arg0. arg1=memory. Lock acquisition, returns loaded value and new memory.
{name: "AtomicLoadAcq64", argLength: 2, typ: "(UInt64,Mem)"}, // Load from arg0. arg1=memory. Lock acquisition, returns loaded value and new memory.
{name: "AtomicStore8", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory.
{name: "AtomicStore32", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory.
{name: "AtomicStore64", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory.
{name: "AtomicStorePtrNoWB", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory.
{name: "AtomicStoreRel32", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Lock release, returns memory.
{name: "AtomicStoreRel64", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Lock release, returns memory.
{name: "AtomicExchange8", argLength: 3, typ: "(UInt8,Mem)", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicExchange32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicExchange64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicAdd32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory.
{name: "AtomicAdd64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory.
{name: "AtomicCompareAndSwap32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2. Returns true if store happens and new memory.
{name: "AtomicCompareAndSwap64", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2. Returns true if store happens and new memory.
{name: "AtomicCompareAndSwapRel32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2. Lock release, reports whether store happens and new memory.
// Older atomic logical operations which don't return the old value.
{name: "AtomicAnd8", argLength: 3, typ: "Mem", hasSideEffects: true}, // *arg0 &= arg1. arg2=memory. Returns memory.
{name: "AtomicOr8", argLength: 3, typ: "Mem", hasSideEffects: true}, // *arg0 |= arg1. arg2=memory. Returns memory.
{name: "AtomicAnd32", argLength: 3, typ: "Mem", hasSideEffects: true}, // *arg0 &= arg1. arg2=memory. Returns memory.
{name: "AtomicOr32", argLength: 3, typ: "Mem", hasSideEffects: true}, // *arg0 |= arg1. arg2=memory. Returns memory.
// Newer atomic logical operations which return the old value.
{name: "AtomicAnd64value", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true}, // *arg0 &= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicAnd32value", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true}, // *arg0 &= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicAnd8value", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true}, // *arg0 &= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicOr64value", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true}, // *arg0 |= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicOr32value", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true}, // *arg0 |= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicOr8value", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true}, // *arg0 |= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
// Atomic operation variants
// These variants have the same semantics as above atomic operations.
// But they are used for generating more efficient code on certain modern machines, with run-time CPU feature detection.
// On ARM64, these are used when the LSE hardware feature is available (either known at compile time or detected at runtime). If LSE is not available,
// then the basic atomic operations are used instead.
{name: "AtomicStore8Variant", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory.
{name: "AtomicStore32Variant", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory.
{name: "AtomicStore64Variant", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns memory.
{name: "AtomicAdd32Variant", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory.
{name: "AtomicAdd64Variant", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true}, // Do *arg0 += arg1. arg2=memory. Returns sum and new memory.
{name: "AtomicExchange8Variant", argLength: 3, typ: "(UInt8,Mem)", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicExchange32Variant", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicExchange64Variant", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true}, // Store arg1 to *arg0. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicCompareAndSwap32Variant", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2. Returns true if store happens and new memory.
{name: "AtomicCompareAndSwap64Variant", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2. Returns true if store happens and new memory.
{name: "AtomicAnd64valueVariant", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true}, // *arg0 &= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicOr64valueVariant", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true}, // *arg0 |= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicAnd32valueVariant", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true}, // *arg0 &= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicOr32valueVariant", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true}, // *arg0 |= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicAnd8valueVariant", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true}, // *arg0 &= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
{name: "AtomicOr8valueVariant", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true}, // *arg0 |= arg1. arg2=memory. Returns old contents of *arg0 and new memory.
// Publication barrier
{name: "PubBarrier", argLength: 1, hasSideEffects: true}, // Do data barrier. arg0=memory.
// Clobber experiment op
{name: "Clobber", argLength: 0, typ: "Void", aux: "SymOff", symEffect: "None"}, // write an invalid pointer value to the given pointer slot of a stack variable
{name: "ClobberReg", argLength: 0, typ: "Void"}, // clobber a register
// Prefetch instruction
{name: "PrefetchCache", argLength: 2, hasSideEffects: true}, // Do prefetch arg0 to cache. arg0=addr, arg1=memory.
{name: "PrefetchCacheStreamed", argLength: 2, hasSideEffects: true}, // Do non-temporal or streamed prefetch arg0 to cache. arg0=addr, arg1=memory.
// Helper instruction which is semantically equivalent to calling runtime.memequal, but some targets may prefer to custom lower it later, e.g. for specific constant sizes.
{name: "MemEq", argLength: 4, commutative: true, typ: "Bool"}, // arg0=ptr0, arg1=ptr1, arg2=size, arg3=memory.
// SIMD
{name: "ZeroSIMD", argLength: 0}, // zero value of a vector
// Convert integers to masks
{name: "Cvt16toMask8x16", argLength: 1}, // arg0 = integer mask value
{name: "Cvt32toMask8x32", argLength: 1}, // arg0 = integer mask value
{name: "Cvt64toMask8x64", argLength: 1}, // arg0 = integer mask value
{name: "Cvt8toMask16x8", argLength: 1}, // arg0 = integer mask value
{name: "Cvt16toMask16x16", argLength: 1}, // arg0 = integer mask value
{name: "Cvt32toMask16x32", argLength: 1}, // arg0 = integer mask value
{name: "Cvt8toMask32x4", argLength: 1}, // arg0 = integer mask value
{name: "Cvt8toMask32x8", argLength: 1}, // arg0 = integer mask value
{name: "Cvt16toMask32x16", argLength: 1}, // arg0 = integer mask value
{name: "Cvt8toMask64x2", argLength: 1}, // arg0 = integer mask value
{name: "Cvt8toMask64x4", argLength: 1}, // arg0 = integer mask value
{name: "Cvt8toMask64x8", argLength: 1}, // arg0 = integer mask value
// Convert masks to integers
{name: "CvtMask8x16to16", argLength: 1}, // arg0 = mask
{name: "CvtMask8x32to32", argLength: 1}, // arg0 = mask
{name: "CvtMask8x64to64", argLength: 1}, // arg0 = mask
{name: "CvtMask16x8to8", argLength: 1}, // arg0 = mask
{name: "CvtMask16x16to16", argLength: 1}, // arg0 = mask
{name: "CvtMask16x32to32", argLength: 1}, // arg0 = mask
{name: "CvtMask32x4to8", argLength: 1}, // arg0 = mask
{name: "CvtMask32x8to8", argLength: 1}, // arg0 = mask
{name: "CvtMask32x16to16", argLength: 1}, // arg0 = mask
{name: "CvtMask64x2to8", argLength: 1}, // arg0 = mask
{name: "CvtMask64x4to8", argLength: 1}, // arg0 = mask
{name: "CvtMask64x8to8", argLength: 1}, // arg0 = mask
// Returns true if arg0 is all zero.
{name: "IsZeroVec", argLength: 1},
}
// kind controls successors implicit exit
// ------------------------------------------------------------
// Exit [return mem] [] yes
// Ret [return mem] [] yes
// RetJmp [return mem] [] yes
// Plain [] [next]
// If [boolean Value] [then, else]
// First [] [always, never]
// Defer [mem] [nopanic, recovery] (control opcode should be OpStaticCall to runtime.defer*)
// JumpTable [integer Value] [succ1,succ2,..]
var genericBlocks = []blockData{
{name: "Plain"}, // a single successor
{name: "If", controls: 1}, // if Controls[0] goto Succs[0] else goto Succs[1]
{name: "Defer", controls: 1}, // Succs[0]=defer queued, Succs[1]=defer recovery branch (jmp performed by runtime). Controls[0] is call op (of memory type).
{name: "Ret", controls: 1}, // no successors, Controls[0] value is memory result
{name: "RetJmp", controls: 1}, // no successors, Controls[0] value is a tail call
{name: "Exit", controls: 1}, // no successors, Controls[0] value generates a panic
{name: "JumpTable", controls: 1}, // multiple successors, the integer Controls[0] selects which one
// transient block state used for dead code removal
{name: "First"}, // 2 successors, always takes the first one (second is dead)
}
func init() {
genericOps = append(genericOps, simdGenericOps()...)
archs = append(archs, arch{
name: "generic",
ops: genericOps,
blocks: genericBlocks,
generic: true,
})
}