mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
The general idea is that we now export/import typeparams, typeparam lists for generic types and functions, and instantiated types (instantiations of generic types with either new typeparams or concrete types). This changes the export format -- the next CL in the stack adds the export versions and checks for it in the appropriate places. We always export/import generic function bodies, using the same code that we use for exporting/importing the bodies of inlineable functions. To avoid complicated scoping, we consider all type params as unique and give them unique names for types1. We therefore include the types2 ids (subscripts) in the export format and re-create on import. We always access the same unique types1 typeParam type for the same typeparam name. We create fully-instantiated generic types and functions in the original source package. We do an extra NeedRuntimeType() call to make sure that the correct DWARF information is written out. We call SetDupOK(true) for the functions/methods to have the linker automatically drop duplicate instantiations. Other miscellaneous details: - Export/import of typeparam bounds works for methods (but not typelists) for now, but will change with the typeset changes. - Added a new types.Instantiate function roughly analogous to the types2.Instantiate function recently added. - Always access methods info from the original/base generic type, since the methods of an instantiated type are not filled in (in types2 or types1). - New field OrigSym in types.Type to keep track of base generic type that instantiated type was based on. We use the generic type's symbol (OrigSym) as the link, rather than a Type pointer, since we haven't always created the base type yet when we want to set the link (during types2 to types1 conversion). - Added types2.AsTypeParam(), (*types2.TypeParam).SetId() - New test minimp.dir, which tests use of generic function Min across packages. Another test stringimp.dir, which also exports a generic function Stringify across packages, where the type param has a bound (Stringer) as well. New test pairimp.dir, which tests use of generic type Pair (with no methods) across packages. - New test valimp.dir, which tests use of generic type (with methods and related functions) across packages. - Modified several other tests (adder.go, settable.go, smallest.go, stringable.go, struct.go, sum.go) to export their generic functions/types to show that generic functions/types can be exported successfully (but this doesn't test import). Change-Id: Ie61ce9d54a46d368ddc7a76c41399378963bb57f Reviewed-on: https://go-review.googlesource.com/c/go/+/319930 Trust: Dan Scales <danscales@google.com> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
404 lines
12 KiB
Go
404 lines
12 KiB
Go
// Copyright 2021 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package noder
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/syntax"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/compile/internal/types2"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
func (g *irgen) expr(expr syntax.Expr) ir.Node {
|
|
if expr == nil {
|
|
return nil
|
|
}
|
|
|
|
if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
|
|
return ir.BlankNode
|
|
}
|
|
|
|
tv, ok := g.info.Types[expr]
|
|
if !ok {
|
|
base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
|
|
}
|
|
switch {
|
|
case tv.IsBuiltin():
|
|
// Qualified builtins, such as unsafe.Add and unsafe.Slice.
|
|
if expr, ok := expr.(*syntax.SelectorExpr); ok {
|
|
if name, ok := expr.X.(*syntax.Name); ok {
|
|
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
|
|
return g.use(expr.Sel)
|
|
}
|
|
}
|
|
}
|
|
return g.use(expr.(*syntax.Name))
|
|
case tv.IsType():
|
|
return ir.TypeNode(g.typ(tv.Type))
|
|
case tv.IsValue(), tv.IsVoid():
|
|
// ok
|
|
default:
|
|
base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
|
|
}
|
|
|
|
// The gc backend expects all expressions to have a concrete type, and
|
|
// types2 mostly satisfies this expectation already. But there are a few
|
|
// cases where the Go spec doesn't require converting to concrete type,
|
|
// and so types2 leaves them untyped. So we need to fix those up here.
|
|
typ := tv.Type
|
|
if basic, ok := typ.(*types2.Basic); ok && basic.Info()&types2.IsUntyped != 0 {
|
|
switch basic.Kind() {
|
|
case types2.UntypedNil:
|
|
// ok; can appear in type switch case clauses
|
|
// TODO(mdempsky): Handle as part of type switches instead?
|
|
case types2.UntypedBool:
|
|
typ = types2.Typ[types2.Bool] // expression in "if" or "for" condition
|
|
case types2.UntypedString:
|
|
typ = types2.Typ[types2.String] // argument to "append" or "copy" calls
|
|
default:
|
|
base.FatalfAt(g.pos(expr), "unexpected untyped type: %v", basic)
|
|
}
|
|
}
|
|
|
|
// Constant expression.
|
|
if tv.Value != nil {
|
|
return Const(g.pos(expr), g.typ(typ), tv.Value)
|
|
}
|
|
|
|
n := g.expr0(typ, expr)
|
|
if n.Typecheck() != 1 && n.Typecheck() != 3 {
|
|
base.FatalfAt(g.pos(expr), "missed typecheck: %+v", n)
|
|
}
|
|
if !g.match(n.Type(), typ, tv.HasOk()) {
|
|
base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, typ)
|
|
}
|
|
return n
|
|
}
|
|
|
|
func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
|
|
pos := g.pos(expr)
|
|
|
|
switch expr := expr.(type) {
|
|
case *syntax.Name:
|
|
if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
|
|
return Nil(pos, g.typ(typ))
|
|
}
|
|
return g.use(expr)
|
|
|
|
case *syntax.CompositeLit:
|
|
return g.compLit(typ, expr)
|
|
|
|
case *syntax.FuncLit:
|
|
return g.funcLit(typ, expr)
|
|
|
|
case *syntax.AssertExpr:
|
|
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
|
|
|
|
case *syntax.CallExpr:
|
|
fun := g.expr(expr.Fun)
|
|
|
|
// The key for the Inferred map is the CallExpr (if inferring
|
|
// types required the function arguments) or the IndexExpr below
|
|
// (if types could be inferred without the function arguments).
|
|
if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.Targs) > 0 {
|
|
// This is the case where inferring types required the
|
|
// types of the function arguments.
|
|
targs := make([]ir.Node, len(inferred.Targs))
|
|
for i, targ := range inferred.Targs {
|
|
targs[i] = ir.TypeNode(g.typ(targ))
|
|
}
|
|
if fun.Op() == ir.OFUNCINST {
|
|
// Replace explicit type args with the full list that
|
|
// includes the additional inferred type args
|
|
fun.(*ir.InstExpr).Targs = targs
|
|
} else {
|
|
// Create a function instantiation here, given
|
|
// there are only inferred type args (e.g.
|
|
// min(5,6), where min is a generic function)
|
|
inst := ir.NewInstExpr(pos, ir.OFUNCINST, fun, targs)
|
|
typed(fun.Type(), inst)
|
|
fun = inst
|
|
}
|
|
|
|
}
|
|
return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)
|
|
|
|
case *syntax.IndexExpr:
|
|
var targs []ir.Node
|
|
|
|
if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.Targs) > 0 {
|
|
// This is the partial type inference case where the types
|
|
// can be inferred from other type arguments without using
|
|
// the types of the function arguments.
|
|
targs = make([]ir.Node, len(inferred.Targs))
|
|
for i, targ := range inferred.Targs {
|
|
targs[i] = ir.TypeNode(g.typ(targ))
|
|
}
|
|
} else if _, ok := expr.Index.(*syntax.ListExpr); ok {
|
|
targs = g.exprList(expr.Index)
|
|
} else {
|
|
index := g.expr(expr.Index)
|
|
if index.Op() != ir.OTYPE {
|
|
// This is just a normal index expression
|
|
return Index(pos, g.typ(typ), g.expr(expr.X), index)
|
|
}
|
|
// This is generic function instantiation with a single type
|
|
targs = []ir.Node{index}
|
|
}
|
|
// This is a generic function instantiation (e.g. min[int]).
|
|
// Generic type instantiation is handled in the type
|
|
// section of expr() above (using g.typ).
|
|
x := g.expr(expr.X)
|
|
if x.Op() != ir.ONAME || x.Type().Kind() != types.TFUNC {
|
|
panic("Incorrect argument for generic func instantiation")
|
|
}
|
|
n := ir.NewInstExpr(pos, ir.OFUNCINST, x, targs)
|
|
typed(g.typ(typ), n)
|
|
return n
|
|
|
|
case *syntax.ParenExpr:
|
|
return g.expr(expr.X) // skip parens; unneeded after parse+typecheck
|
|
|
|
case *syntax.SelectorExpr:
|
|
// Qualified identifier.
|
|
if name, ok := expr.X.(*syntax.Name); ok {
|
|
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
|
|
return g.use(expr.Sel)
|
|
}
|
|
}
|
|
return g.selectorExpr(pos, typ, expr)
|
|
|
|
case *syntax.SliceExpr:
|
|
return Slice(pos, g.typ(typ), g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
|
|
|
|
case *syntax.Operation:
|
|
if expr.Y == nil {
|
|
return Unary(pos, g.typ(typ), g.op(expr.Op, unOps[:]), g.expr(expr.X))
|
|
}
|
|
switch op := g.op(expr.Op, binOps[:]); op {
|
|
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
|
|
return Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
|
|
default:
|
|
return Binary(pos, op, g.typ(typ), g.expr(expr.X), g.expr(expr.Y))
|
|
}
|
|
|
|
default:
|
|
g.unhandled("expression", expr)
|
|
panic("unreachable")
|
|
}
|
|
}
|
|
|
|
// selectorExpr resolves the choice of ODOT, ODOTPTR, OCALLPART (eventually
|
|
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
|
|
// than in typecheck.go.
|
|
func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
|
|
x := g.expr(expr.X)
|
|
if x.Type().HasTParam() {
|
|
// Leave a method call on a type param as an OXDOT, since it can
|
|
// only be fully transformed once it has an instantiated type.
|
|
n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
|
|
typed(g.typ(typ), n)
|
|
return n
|
|
}
|
|
|
|
selinfo := g.info.Selections[expr]
|
|
// Everything up to the last selection is an implicit embedded field access,
|
|
// and the last selection is determined by selinfo.Kind().
|
|
index := selinfo.Index()
|
|
embeds, last := index[:len(index)-1], index[len(index)-1]
|
|
|
|
origx := x
|
|
for _, ix := range embeds {
|
|
x = Implicit(DotField(pos, x, ix))
|
|
}
|
|
|
|
kind := selinfo.Kind()
|
|
if kind == types2.FieldVal {
|
|
return DotField(pos, x, last)
|
|
}
|
|
|
|
// TODO(danscales,mdempsky): Interface method sets are not sorted the
|
|
// same between types and types2. In particular, using "last" here
|
|
// without conversion will likely fail if an interface contains
|
|
// unexported methods from two different packages (due to cross-package
|
|
// interface embedding).
|
|
|
|
var n ir.Node
|
|
method2 := selinfo.Obj().(*types2.Func)
|
|
|
|
if kind == types2.MethodExpr {
|
|
// OMETHEXPR is unusual in using directly the node and type of the
|
|
// original OTYPE node (origx) before passing through embedded
|
|
// fields, even though the method is selected from the type
|
|
// (x.Type()) reached after following the embedded fields. We will
|
|
// actually drop any ODOT nodes we created due to the embedded
|
|
// fields.
|
|
n = MethodExpr(pos, origx, x.Type(), last)
|
|
} else {
|
|
// Add implicit addr/deref for method values, if needed.
|
|
if x.Type().IsInterface() {
|
|
n = DotMethod(pos, x, last)
|
|
} else {
|
|
recvType2 := method2.Type().(*types2.Signature).Recv().Type()
|
|
_, wantPtr := recvType2.(*types2.Pointer)
|
|
havePtr := x.Type().IsPtr()
|
|
|
|
if havePtr != wantPtr {
|
|
if havePtr {
|
|
x = Implicit(Deref(pos, x.Type().Elem(), x))
|
|
} else {
|
|
x = Implicit(Addr(pos, x))
|
|
}
|
|
}
|
|
recvType2Base := recvType2
|
|
if wantPtr {
|
|
recvType2Base = types2.AsPointer(recvType2).Elem()
|
|
}
|
|
if len(types2.AsNamed(recvType2Base).TParams()) > 0 {
|
|
// recvType2 is the original generic type that is
|
|
// instantiated for this method call.
|
|
// selinfo.Recv() is the instantiated type
|
|
recvType2 = recvType2Base
|
|
recvTypeSym := g.pkg(method2.Pkg()).Lookup(recvType2.(*types2.Named).Obj().Name())
|
|
recvType := recvTypeSym.Def.(*ir.Name).Type()
|
|
// method is the generic method associated with
|
|
// the base generic type. The instantiated type may not
|
|
// have method bodies filled in, if it was imported.
|
|
method := recvType.Methods().Index(last).Nname.(*ir.Name)
|
|
n = ir.NewSelectorExpr(pos, ir.OCALLPART, x, typecheck.Lookup(expr.Sel.Value))
|
|
n.(*ir.SelectorExpr).Selection = types.NewField(pos, method.Sym(), method.Type())
|
|
n.(*ir.SelectorExpr).Selection.Nname = method
|
|
typed(method.Type(), n)
|
|
|
|
// selinfo.Targs() are the types used to
|
|
// instantiate the type of receiver
|
|
targs2 := getTargs(selinfo)
|
|
targs := make([]ir.Node, len(targs2))
|
|
for i, targ2 := range targs2 {
|
|
targs[i] = ir.TypeNode(g.typ(targ2))
|
|
}
|
|
|
|
// Create function instantiation with the type
|
|
// args for the receiver type for the method call.
|
|
n = ir.NewInstExpr(pos, ir.OFUNCINST, n, targs)
|
|
typed(g.typ(typ), n)
|
|
return n
|
|
}
|
|
|
|
if !g.match(x.Type(), recvType2, false) {
|
|
base.FatalfAt(pos, "expected %L to have type %v", x, recvType2)
|
|
} else {
|
|
n = DotMethod(pos, x, last)
|
|
}
|
|
}
|
|
}
|
|
if have, want := n.Sym(), g.selector(method2); have != want {
|
|
base.FatalfAt(pos, "bad Sym: have %v, want %v", have, want)
|
|
}
|
|
return n
|
|
}
|
|
|
|
// getTargs gets the targs associated with the receiver of a selected method
|
|
func getTargs(selinfo *types2.Selection) []types2.Type {
|
|
r := selinfo.Recv()
|
|
if p := types2.AsPointer(r); p != nil {
|
|
r = p.Elem()
|
|
}
|
|
n := types2.AsNamed(r)
|
|
if n == nil {
|
|
base.Fatalf("Incorrect type for selinfo %v", selinfo)
|
|
}
|
|
return n.TArgs()
|
|
}
|
|
|
|
func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
|
|
switch expr := expr.(type) {
|
|
case nil:
|
|
return nil
|
|
case *syntax.ListExpr:
|
|
return g.exprs(expr.ElemList)
|
|
default:
|
|
return []ir.Node{g.expr(expr)}
|
|
}
|
|
}
|
|
|
|
func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
|
|
nodes := make([]ir.Node, len(exprs))
|
|
for i, expr := range exprs {
|
|
nodes[i] = g.expr(expr)
|
|
}
|
|
return nodes
|
|
}
|
|
|
|
func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
|
|
if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
|
|
n := ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
|
|
n.SetOp(ir.OPTRLIT)
|
|
return typed(g.typ(typ), n)
|
|
}
|
|
|
|
_, isStruct := typ.Underlying().(*types2.Struct)
|
|
|
|
exprs := make([]ir.Node, len(lit.ElemList))
|
|
for i, elem := range lit.ElemList {
|
|
switch elem := elem.(type) {
|
|
case *syntax.KeyValueExpr:
|
|
if isStruct {
|
|
exprs[i] = ir.NewStructKeyExpr(g.pos(elem), g.name(elem.Key.(*syntax.Name)), g.expr(elem.Value))
|
|
} else {
|
|
exprs[i] = ir.NewKeyExpr(g.pos(elem), g.expr(elem.Key), g.expr(elem.Value))
|
|
}
|
|
default:
|
|
exprs[i] = g.expr(elem)
|
|
}
|
|
}
|
|
|
|
n := ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, nil, exprs)
|
|
typed(g.typ(typ), n)
|
|
return transformCompLit(n)
|
|
}
|
|
|
|
func (g *irgen) funcLit(typ2 types2.Type, expr *syntax.FuncLit) ir.Node {
|
|
fn := ir.NewFunc(g.pos(expr))
|
|
fn.SetIsHiddenClosure(ir.CurFunc != nil)
|
|
|
|
fn.Nname = ir.NewNameAt(g.pos(expr), typecheck.ClosureName(ir.CurFunc))
|
|
ir.MarkFunc(fn.Nname)
|
|
typ := g.typ(typ2)
|
|
fn.Nname.Func = fn
|
|
fn.Nname.Defn = fn
|
|
typed(typ, fn.Nname)
|
|
fn.SetTypecheck(1)
|
|
|
|
fn.OClosure = ir.NewClosureExpr(g.pos(expr), fn)
|
|
typed(typ, fn.OClosure)
|
|
|
|
g.funcBody(fn, nil, expr.Type, expr.Body)
|
|
|
|
ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)
|
|
|
|
// TODO(mdempsky): ir.CaptureName should probably handle
|
|
// copying these fields from the canonical variable.
|
|
for _, cv := range fn.ClosureVars {
|
|
cv.SetType(cv.Canonical().Type())
|
|
cv.SetTypecheck(1)
|
|
cv.SetWalkdef(1)
|
|
}
|
|
|
|
g.target.Decls = append(g.target.Decls, fn)
|
|
|
|
return fn.OClosure
|
|
}
|
|
|
|
func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
|
|
n := g.expr(typ)
|
|
if n.Op() != ir.OTYPE {
|
|
base.FatalfAt(g.pos(typ), "expected type: %L", n)
|
|
}
|
|
return n.Type()
|
|
}
|