go/src/pkg/math/exp.go
Robert Griesemer a3d1045fb7 1) Change default gofmt default settings for
parsing and printing to new syntax.

   Use -oldparser to parse the old syntax,
   use -oldprinter to print the old syntax.

2) Change default gofmt formatting settings
   to use tabs for indentation only and to use
   spaces for alignment. This will make the code
   alignment insensitive to an editor's tabwidth.

   Use -spaces=false to use tabs for alignment.

3) Manually changed src/exp/parser/parser_test.go
   so that it doesn't try to parse the parser's
   source files using the old syntax (they have
   new syntax now).

4) gofmt -w src misc test/bench

3rd set of files.

R=rsc
CC=golang-dev
https://golang.org/cl/180048
2009-12-15 15:35:38 -08:00

139 lines
4.3 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
//
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// exp(x)
// Returns the exponential of x.
//
// Method
// 1. Argument reduction:
// Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
// Given x, find r and integer k such that
//
// x = k*ln2 + r, |r| <= 0.5*ln2.
//
// Here r will be represented as r = hi-lo for better
// accuracy.
//
// 2. Approximation of exp(r) by a special rational function on
// the interval [0,0.34658]:
// Write
// R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
// We use a special Remes algorithm on [0,0.34658] to generate
// a polynomial of degree 5 to approximate R. The maximum error
// of this polynomial approximation is bounded by 2**-59. In
// other words,
// R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
// (where z=r*r, and the values of P1 to P5 are listed below)
// and
// | 5 | -59
// | 2.0+P1*z+...+P5*z - R(z) | <= 2
// | |
// The computation of exp(r) thus becomes
// 2*r
// exp(r) = 1 + -------
// R - r
// r*R1(r)
// = 1 + r + ----------- (for better accuracy)
// 2 - R1(r)
// where
// 2 4 10
// R1(r) = r - (P1*r + P2*r + ... + P5*r ).
//
// 3. Scale back to obtain exp(x):
// From step 1, we have
// exp(x) = 2^k * exp(r)
//
// Special cases:
// exp(INF) is INF, exp(NaN) is NaN;
// exp(-INF) is 0, and
// for finite argument, only exp(0)=1 is exact.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Misc. info.
// For IEEE double
// if x > 7.09782712893383973096e+02 then exp(x) overflow
// if x < -7.45133219101941108420e+02 then exp(x) underflow
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
// Exp returns e^x, the base-e exponential of x.
//
// Special cases are:
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
// Very large values overflow to -Inf or +Inf.
// Very small values underflow to 1.
func Exp(x float64) float64 {
const (
Ln2Hi = 6.93147180369123816490e-01
Ln2Lo = 1.90821492927058770002e-10
Log2e = 1.44269504088896338700e+00
P1 = 1.66666666666666019037e-01 /* 0x3FC55555; 0x5555553E */
P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */
P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */
P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */
Overflow = 7.09782712893383973096e+02
Underflow = -7.45133219101941108420e+02
NearZero = 1.0 / (1 << 28) // 2^-28
)
// special cases
switch {
case IsNaN(x) || IsInf(x, 1):
return x
case IsInf(x, -1):
return 0
case x > Overflow:
return Inf(1)
case x < Underflow:
return 0
case -NearZero < x && x < NearZero:
return 1
}
// reduce; computed as r = hi - lo for extra precision.
var k int
switch {
case x < 0:
k = int(Log2e*x - 0.5)
case x > 0:
k = int(Log2e*x + 0.5)
}
hi := x - float64(k)*Ln2Hi
lo := float64(k) * Ln2Lo
r := hi - lo
// compute
t := r * r
c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
y := 1 - ((lo - (r*c)/(2-c)) - hi)
// TODO(rsc): make sure Ldexp can handle boundary k
return Ldexp(y, k)
}