mirror of
https://github.com/golang/go.git
synced 2025-12-08 06:10:04 +00:00
Now that Nodes is a slice, most of the methods can be removed
in favor of direct slice operations, reducing the new API that must
be understood to:
Copy
Take
Append
Prepend
Format
Passes buildall w/ toolstash -cmp.
[git-generate]
cd src/cmd/compile/internal/ir
rf '
ex . ../gc {
var ns Nodes
var pns *Nodes
var n, n2, n3 Node
var i int
var slice []Node
ns.Len() -> len(ns)
ns.Slice() -> ns
ns.First() -> ns[0]
ns.Second() -> ns[1]
ns.Index(i) -> ns[i]
ns.Addr(i) -> &ns[i]
ns.SetIndex(i, n) -> ns[i] = n
ns.SetFirst(n) -> ns[0] = n
ns.SetSecond(n) -> ns[1] = n
ns.Set1(n) -> ns = []Node{n}
ns.Set2(n, n2) -> ns = []Node{n, n2}
ns.Set3(n, n2, n3) -> ns = []Node{n, n2, n3}
ns.Set1(n) -> ns = []Node{n}
ns.Set2(n, n2) -> ns = []Node{n, n2}
ns.Set3(n, n2, n3) -> ns = []Node{n, n2, n3}
AsNodes(slice) -> Nodes(slice)
ns.AppendNodes(pns) -> ns.Append(pns.Take()...)
ns.MoveNodes(pns) -> ns = pns.Take()
}
rm \
Nodes.Len Nodes.Slice \
Nodes.First Nodes.Second Nodes.Index Nodes.Addr \
Nodes.SetIndex Nodes.SetFirst Nodes.SetSecond \
Nodes.Set1 Nodes.Set2 Nodes.Set3 \
AsNodes \
Nodes.AppendNodes Nodes.MoveNodes
'
Change-Id: Iee86434ced52e67861c3fa71bdd6d994a8cba735
Reviewed-on: https://go-review.googlesource.com/c/go/+/277936
Trust: Russ Cox <rsc@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
763 lines
20 KiB
Go
763 lines
20 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/src"
|
|
"go/constant"
|
|
"go/token"
|
|
"sort"
|
|
)
|
|
|
|
// typecheckswitch typechecks a switch statement.
|
|
func typecheckswitch(n *ir.SwitchStmt) {
|
|
typecheckslice(n.Init(), ctxStmt)
|
|
if n.Tag != nil && n.Tag.Op() == ir.OTYPESW {
|
|
typecheckTypeSwitch(n)
|
|
} else {
|
|
typecheckExprSwitch(n)
|
|
}
|
|
}
|
|
|
|
func typecheckTypeSwitch(n *ir.SwitchStmt) {
|
|
guard := n.Tag.(*ir.TypeSwitchGuard)
|
|
guard.X = typecheck(guard.X, ctxExpr)
|
|
t := guard.X.Type()
|
|
if t != nil && !t.IsInterface() {
|
|
base.ErrorfAt(n.Pos(), "cannot type switch on non-interface value %L", guard.X)
|
|
t = nil
|
|
}
|
|
|
|
// We don't actually declare the type switch's guarded
|
|
// declaration itself. So if there are no cases, we won't
|
|
// notice that it went unused.
|
|
if v := guard.Tag; v != nil && !ir.IsBlank(v) && len(n.Cases) == 0 {
|
|
base.ErrorfAt(v.Pos(), "%v declared but not used", v.Sym())
|
|
}
|
|
|
|
var defCase, nilCase ir.Node
|
|
var ts typeSet
|
|
for _, ncase := range n.Cases {
|
|
ncase := ncase.(*ir.CaseStmt)
|
|
ls := ncase.List
|
|
if len(ls) == 0 { // default:
|
|
if defCase != nil {
|
|
base.ErrorfAt(ncase.Pos(), "multiple defaults in switch (first at %v)", ir.Line(defCase))
|
|
} else {
|
|
defCase = ncase
|
|
}
|
|
}
|
|
|
|
for i := range ls {
|
|
ls[i] = typecheck(ls[i], ctxExpr|ctxType)
|
|
n1 := ls[i]
|
|
if t == nil || n1.Type() == nil {
|
|
continue
|
|
}
|
|
|
|
var missing, have *types.Field
|
|
var ptr int
|
|
if ir.IsNil(n1) { // case nil:
|
|
if nilCase != nil {
|
|
base.ErrorfAt(ncase.Pos(), "multiple nil cases in type switch (first at %v)", ir.Line(nilCase))
|
|
} else {
|
|
nilCase = ncase
|
|
}
|
|
continue
|
|
}
|
|
if n1.Op() != ir.OTYPE {
|
|
base.ErrorfAt(ncase.Pos(), "%L is not a type", n1)
|
|
continue
|
|
}
|
|
if !n1.Type().IsInterface() && !implements(n1.Type(), t, &missing, &have, &ptr) && !missing.Broke() {
|
|
if have != nil && !have.Broke() {
|
|
base.ErrorfAt(ncase.Pos(), "impossible type switch case: %L cannot have dynamic type %v"+
|
|
" (wrong type for %v method)\n\thave %v%S\n\twant %v%S", guard.X, n1.Type(), missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
|
|
} else if ptr != 0 {
|
|
base.ErrorfAt(ncase.Pos(), "impossible type switch case: %L cannot have dynamic type %v"+
|
|
" (%v method has pointer receiver)", guard.X, n1.Type(), missing.Sym)
|
|
} else {
|
|
base.ErrorfAt(ncase.Pos(), "impossible type switch case: %L cannot have dynamic type %v"+
|
|
" (missing %v method)", guard.X, n1.Type(), missing.Sym)
|
|
}
|
|
continue
|
|
}
|
|
|
|
ts.add(ncase.Pos(), n1.Type())
|
|
}
|
|
|
|
if len(ncase.Vars) != 0 {
|
|
// Assign the clause variable's type.
|
|
vt := t
|
|
if len(ls) == 1 {
|
|
if ls[0].Op() == ir.OTYPE {
|
|
vt = ls[0].Type()
|
|
} else if !ir.IsNil(ls[0]) {
|
|
// Invalid single-type case;
|
|
// mark variable as broken.
|
|
vt = nil
|
|
}
|
|
}
|
|
|
|
nvar := ncase.Vars[0]
|
|
nvar.SetType(vt)
|
|
if vt != nil {
|
|
nvar = typecheck(nvar, ctxExpr|ctxAssign)
|
|
} else {
|
|
// Clause variable is broken; prevent typechecking.
|
|
nvar.SetTypecheck(1)
|
|
nvar.SetWalkdef(1)
|
|
}
|
|
ncase.Vars[0] = nvar
|
|
}
|
|
|
|
typecheckslice(ncase.Body, ctxStmt)
|
|
}
|
|
}
|
|
|
|
type typeSet struct {
|
|
m map[string][]typeSetEntry
|
|
}
|
|
|
|
type typeSetEntry struct {
|
|
pos src.XPos
|
|
typ *types.Type
|
|
}
|
|
|
|
func (s *typeSet) add(pos src.XPos, typ *types.Type) {
|
|
if s.m == nil {
|
|
s.m = make(map[string][]typeSetEntry)
|
|
}
|
|
|
|
// LongString does not uniquely identify types, so we need to
|
|
// disambiguate collisions with types.Identical.
|
|
// TODO(mdempsky): Add a method that *is* unique.
|
|
ls := typ.LongString()
|
|
prevs := s.m[ls]
|
|
for _, prev := range prevs {
|
|
if types.Identical(typ, prev.typ) {
|
|
base.ErrorfAt(pos, "duplicate case %v in type switch\n\tprevious case at %s", typ, base.FmtPos(prev.pos))
|
|
return
|
|
}
|
|
}
|
|
s.m[ls] = append(prevs, typeSetEntry{pos, typ})
|
|
}
|
|
|
|
func typecheckExprSwitch(n *ir.SwitchStmt) {
|
|
t := types.Types[types.TBOOL]
|
|
if n.Tag != nil {
|
|
n.Tag = typecheck(n.Tag, ctxExpr)
|
|
n.Tag = defaultlit(n.Tag, nil)
|
|
t = n.Tag.Type()
|
|
}
|
|
|
|
var nilonly string
|
|
if t != nil {
|
|
switch {
|
|
case t.IsMap():
|
|
nilonly = "map"
|
|
case t.Kind() == types.TFUNC:
|
|
nilonly = "func"
|
|
case t.IsSlice():
|
|
nilonly = "slice"
|
|
|
|
case !IsComparable(t):
|
|
if t.IsStruct() {
|
|
base.ErrorfAt(n.Pos(), "cannot switch on %L (struct containing %v cannot be compared)", n.Tag, IncomparableField(t).Type)
|
|
} else {
|
|
base.ErrorfAt(n.Pos(), "cannot switch on %L", n.Tag)
|
|
}
|
|
t = nil
|
|
}
|
|
}
|
|
|
|
var defCase ir.Node
|
|
var cs constSet
|
|
for _, ncase := range n.Cases {
|
|
ncase := ncase.(*ir.CaseStmt)
|
|
ls := ncase.List
|
|
if len(ls) == 0 { // default:
|
|
if defCase != nil {
|
|
base.ErrorfAt(ncase.Pos(), "multiple defaults in switch (first at %v)", ir.Line(defCase))
|
|
} else {
|
|
defCase = ncase
|
|
}
|
|
}
|
|
|
|
for i := range ls {
|
|
setlineno(ncase)
|
|
ls[i] = typecheck(ls[i], ctxExpr)
|
|
ls[i] = defaultlit(ls[i], t)
|
|
n1 := ls[i]
|
|
if t == nil || n1.Type() == nil {
|
|
continue
|
|
}
|
|
|
|
if nilonly != "" && !ir.IsNil(n1) {
|
|
base.ErrorfAt(ncase.Pos(), "invalid case %v in switch (can only compare %s %v to nil)", n1, nilonly, n.Tag)
|
|
} else if t.IsInterface() && !n1.Type().IsInterface() && !IsComparable(n1.Type()) {
|
|
base.ErrorfAt(ncase.Pos(), "invalid case %L in switch (incomparable type)", n1)
|
|
} else {
|
|
op1, _ := assignop(n1.Type(), t)
|
|
op2, _ := assignop(t, n1.Type())
|
|
if op1 == ir.OXXX && op2 == ir.OXXX {
|
|
if n.Tag != nil {
|
|
base.ErrorfAt(ncase.Pos(), "invalid case %v in switch on %v (mismatched types %v and %v)", n1, n.Tag, n1.Type(), t)
|
|
} else {
|
|
base.ErrorfAt(ncase.Pos(), "invalid case %v in switch (mismatched types %v and bool)", n1, n1.Type())
|
|
}
|
|
}
|
|
}
|
|
|
|
// Don't check for duplicate bools. Although the spec allows it,
|
|
// (1) the compiler hasn't checked it in the past, so compatibility mandates it, and
|
|
// (2) it would disallow useful things like
|
|
// case GOARCH == "arm" && GOARM == "5":
|
|
// case GOARCH == "arm":
|
|
// which would both evaluate to false for non-ARM compiles.
|
|
if !n1.Type().IsBoolean() {
|
|
cs.add(ncase.Pos(), n1, "case", "switch")
|
|
}
|
|
}
|
|
|
|
typecheckslice(ncase.Body, ctxStmt)
|
|
}
|
|
}
|
|
|
|
// walkswitch walks a switch statement.
|
|
func walkswitch(sw *ir.SwitchStmt) {
|
|
// Guard against double walk, see #25776.
|
|
if len(sw.Cases) == 0 && len(sw.Compiled) > 0 {
|
|
return // Was fatal, but eliminating every possible source of double-walking is hard
|
|
}
|
|
|
|
if sw.Tag != nil && sw.Tag.Op() == ir.OTYPESW {
|
|
walkTypeSwitch(sw)
|
|
} else {
|
|
walkExprSwitch(sw)
|
|
}
|
|
}
|
|
|
|
// walkExprSwitch generates an AST implementing sw. sw is an
|
|
// expression switch.
|
|
func walkExprSwitch(sw *ir.SwitchStmt) {
|
|
lno := setlineno(sw)
|
|
|
|
cond := sw.Tag
|
|
sw.Tag = nil
|
|
|
|
// convert switch {...} to switch true {...}
|
|
if cond == nil {
|
|
cond = nodbool(true)
|
|
cond = typecheck(cond, ctxExpr)
|
|
cond = defaultlit(cond, nil)
|
|
}
|
|
|
|
// Given "switch string(byteslice)",
|
|
// with all cases being side-effect free,
|
|
// use a zero-cost alias of the byte slice.
|
|
// Do this before calling walkexpr on cond,
|
|
// because walkexpr will lower the string
|
|
// conversion into a runtime call.
|
|
// See issue 24937 for more discussion.
|
|
if cond.Op() == ir.OBYTES2STR && allCaseExprsAreSideEffectFree(sw) {
|
|
cond := cond.(*ir.ConvExpr)
|
|
cond.SetOp(ir.OBYTES2STRTMP)
|
|
}
|
|
|
|
cond = walkexpr(cond, sw.PtrInit())
|
|
if cond.Op() != ir.OLITERAL && cond.Op() != ir.ONIL {
|
|
cond = copyexpr(cond, cond.Type(), &sw.Compiled)
|
|
}
|
|
|
|
base.Pos = lno
|
|
|
|
s := exprSwitch{
|
|
exprname: cond,
|
|
}
|
|
|
|
var defaultGoto ir.Node
|
|
var body ir.Nodes
|
|
for _, ncase := range sw.Cases {
|
|
ncase := ncase.(*ir.CaseStmt)
|
|
label := autolabel(".s")
|
|
jmp := ir.NewBranchStmt(ncase.Pos(), ir.OGOTO, label)
|
|
|
|
// Process case dispatch.
|
|
if len(ncase.List) == 0 {
|
|
if defaultGoto != nil {
|
|
base.Fatalf("duplicate default case not detected during typechecking")
|
|
}
|
|
defaultGoto = jmp
|
|
}
|
|
|
|
for _, n1 := range ncase.List {
|
|
s.Add(ncase.Pos(), n1, jmp)
|
|
}
|
|
|
|
// Process body.
|
|
body.Append(ir.NewLabelStmt(ncase.Pos(), label))
|
|
body.Append(ncase.Body...)
|
|
if fall, pos := endsInFallthrough(ncase.Body); !fall {
|
|
br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil)
|
|
br.SetPos(pos)
|
|
body.Append(br)
|
|
}
|
|
}
|
|
sw.Cases.Set(nil)
|
|
|
|
if defaultGoto == nil {
|
|
br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil)
|
|
br.SetPos(br.Pos().WithNotStmt())
|
|
defaultGoto = br
|
|
}
|
|
|
|
s.Emit(&sw.Compiled)
|
|
sw.Compiled.Append(defaultGoto)
|
|
sw.Compiled.Append(body.Take()...)
|
|
walkstmtlist(sw.Compiled)
|
|
}
|
|
|
|
// An exprSwitch walks an expression switch.
|
|
type exprSwitch struct {
|
|
exprname ir.Node // value being switched on
|
|
|
|
done ir.Nodes
|
|
clauses []exprClause
|
|
}
|
|
|
|
type exprClause struct {
|
|
pos src.XPos
|
|
lo, hi ir.Node
|
|
jmp ir.Node
|
|
}
|
|
|
|
func (s *exprSwitch) Add(pos src.XPos, expr, jmp ir.Node) {
|
|
c := exprClause{pos: pos, lo: expr, hi: expr, jmp: jmp}
|
|
if okforcmp[s.exprname.Type().Kind()] && expr.Op() == ir.OLITERAL {
|
|
s.clauses = append(s.clauses, c)
|
|
return
|
|
}
|
|
|
|
s.flush()
|
|
s.clauses = append(s.clauses, c)
|
|
s.flush()
|
|
}
|
|
|
|
func (s *exprSwitch) Emit(out *ir.Nodes) {
|
|
s.flush()
|
|
out.Append(s.done.Take()...)
|
|
}
|
|
|
|
func (s *exprSwitch) flush() {
|
|
cc := s.clauses
|
|
s.clauses = nil
|
|
if len(cc) == 0 {
|
|
return
|
|
}
|
|
|
|
// Caution: If len(cc) == 1, then cc[0] might not an OLITERAL.
|
|
// The code below is structured to implicitly handle this case
|
|
// (e.g., sort.Slice doesn't need to invoke the less function
|
|
// when there's only a single slice element).
|
|
|
|
if s.exprname.Type().IsString() && len(cc) >= 2 {
|
|
// Sort strings by length and then by value. It is
|
|
// much cheaper to compare lengths than values, and
|
|
// all we need here is consistency. We respect this
|
|
// sorting below.
|
|
sort.Slice(cc, func(i, j int) bool {
|
|
si := ir.StringVal(cc[i].lo)
|
|
sj := ir.StringVal(cc[j].lo)
|
|
if len(si) != len(sj) {
|
|
return len(si) < len(sj)
|
|
}
|
|
return si < sj
|
|
})
|
|
|
|
// runLen returns the string length associated with a
|
|
// particular run of exprClauses.
|
|
runLen := func(run []exprClause) int64 { return int64(len(ir.StringVal(run[0].lo))) }
|
|
|
|
// Collapse runs of consecutive strings with the same length.
|
|
var runs [][]exprClause
|
|
start := 0
|
|
for i := 1; i < len(cc); i++ {
|
|
if runLen(cc[start:]) != runLen(cc[i:]) {
|
|
runs = append(runs, cc[start:i])
|
|
start = i
|
|
}
|
|
}
|
|
runs = append(runs, cc[start:])
|
|
|
|
// Perform two-level binary search.
|
|
binarySearch(len(runs), &s.done,
|
|
func(i int) ir.Node {
|
|
return ir.NewBinaryExpr(base.Pos, ir.OLE, ir.NewUnaryExpr(base.Pos, ir.OLEN, s.exprname), nodintconst(runLen(runs[i-1])))
|
|
},
|
|
func(i int, nif *ir.IfStmt) {
|
|
run := runs[i]
|
|
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, ir.NewUnaryExpr(base.Pos, ir.OLEN, s.exprname), nodintconst(runLen(run)))
|
|
s.search(run, &nif.Body)
|
|
},
|
|
)
|
|
return
|
|
}
|
|
|
|
sort.Slice(cc, func(i, j int) bool {
|
|
return constant.Compare(cc[i].lo.Val(), token.LSS, cc[j].lo.Val())
|
|
})
|
|
|
|
// Merge consecutive integer cases.
|
|
if s.exprname.Type().IsInteger() {
|
|
merged := cc[:1]
|
|
for _, c := range cc[1:] {
|
|
last := &merged[len(merged)-1]
|
|
if last.jmp == c.jmp && ir.Int64Val(last.hi)+1 == ir.Int64Val(c.lo) {
|
|
last.hi = c.lo
|
|
} else {
|
|
merged = append(merged, c)
|
|
}
|
|
}
|
|
cc = merged
|
|
}
|
|
|
|
s.search(cc, &s.done)
|
|
}
|
|
|
|
func (s *exprSwitch) search(cc []exprClause, out *ir.Nodes) {
|
|
binarySearch(len(cc), out,
|
|
func(i int) ir.Node {
|
|
return ir.NewBinaryExpr(base.Pos, ir.OLE, s.exprname, cc[i-1].hi)
|
|
},
|
|
func(i int, nif *ir.IfStmt) {
|
|
c := &cc[i]
|
|
nif.Cond = c.test(s.exprname)
|
|
nif.Body = []ir.Node{c.jmp}
|
|
},
|
|
)
|
|
}
|
|
|
|
func (c *exprClause) test(exprname ir.Node) ir.Node {
|
|
// Integer range.
|
|
if c.hi != c.lo {
|
|
low := ir.NewBinaryExpr(c.pos, ir.OGE, exprname, c.lo)
|
|
high := ir.NewBinaryExpr(c.pos, ir.OLE, exprname, c.hi)
|
|
return ir.NewLogicalExpr(c.pos, ir.OANDAND, low, high)
|
|
}
|
|
|
|
// Optimize "switch true { ...}" and "switch false { ... }".
|
|
if ir.IsConst(exprname, constant.Bool) && !c.lo.Type().IsInterface() {
|
|
if ir.BoolVal(exprname) {
|
|
return c.lo
|
|
} else {
|
|
return ir.NewUnaryExpr(c.pos, ir.ONOT, c.lo)
|
|
}
|
|
}
|
|
|
|
return ir.NewBinaryExpr(c.pos, ir.OEQ, exprname, c.lo)
|
|
}
|
|
|
|
func allCaseExprsAreSideEffectFree(sw *ir.SwitchStmt) bool {
|
|
// In theory, we could be more aggressive, allowing any
|
|
// side-effect-free expressions in cases, but it's a bit
|
|
// tricky because some of that information is unavailable due
|
|
// to the introduction of temporaries during order.
|
|
// Restricting to constants is simple and probably powerful
|
|
// enough.
|
|
|
|
for _, ncase := range sw.Cases {
|
|
ncase := ncase.(*ir.CaseStmt)
|
|
for _, v := range ncase.List {
|
|
if v.Op() != ir.OLITERAL {
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// endsInFallthrough reports whether stmts ends with a "fallthrough" statement.
|
|
func endsInFallthrough(stmts []ir.Node) (bool, src.XPos) {
|
|
// Search backwards for the index of the fallthrough
|
|
// statement. Do not assume it'll be in the last
|
|
// position, since in some cases (e.g. when the statement
|
|
// list contains autotmp_ variables), one or more OVARKILL
|
|
// nodes will be at the end of the list.
|
|
|
|
i := len(stmts) - 1
|
|
for i >= 0 && stmts[i].Op() == ir.OVARKILL {
|
|
i--
|
|
}
|
|
if i < 0 {
|
|
return false, src.NoXPos
|
|
}
|
|
return stmts[i].Op() == ir.OFALL, stmts[i].Pos()
|
|
}
|
|
|
|
// walkTypeSwitch generates an AST that implements sw, where sw is a
|
|
// type switch.
|
|
func walkTypeSwitch(sw *ir.SwitchStmt) {
|
|
var s typeSwitch
|
|
s.facename = sw.Tag.(*ir.TypeSwitchGuard).X
|
|
sw.Tag = nil
|
|
|
|
s.facename = walkexpr(s.facename, sw.PtrInit())
|
|
s.facename = copyexpr(s.facename, s.facename.Type(), &sw.Compiled)
|
|
s.okname = temp(types.Types[types.TBOOL])
|
|
|
|
// Get interface descriptor word.
|
|
// For empty interfaces this will be the type.
|
|
// For non-empty interfaces this will be the itab.
|
|
itab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s.facename)
|
|
|
|
// For empty interfaces, do:
|
|
// if e._type == nil {
|
|
// do nil case if it exists, otherwise default
|
|
// }
|
|
// h := e._type.hash
|
|
// Use a similar strategy for non-empty interfaces.
|
|
ifNil := ir.NewIfStmt(base.Pos, nil, nil, nil)
|
|
ifNil.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, itab, nodnil())
|
|
base.Pos = base.Pos.WithNotStmt() // disable statement marks after the first check.
|
|
ifNil.Cond = typecheck(ifNil.Cond, ctxExpr)
|
|
ifNil.Cond = defaultlit(ifNil.Cond, nil)
|
|
// ifNil.Nbody assigned at end.
|
|
sw.Compiled.Append(ifNil)
|
|
|
|
// Load hash from type or itab.
|
|
dotHash := ir.NewSelectorExpr(base.Pos, ir.ODOTPTR, itab, nil)
|
|
dotHash.SetType(types.Types[types.TUINT32])
|
|
dotHash.SetTypecheck(1)
|
|
if s.facename.Type().IsEmptyInterface() {
|
|
dotHash.Offset = int64(2 * Widthptr) // offset of hash in runtime._type
|
|
} else {
|
|
dotHash.Offset = int64(2 * Widthptr) // offset of hash in runtime.itab
|
|
}
|
|
dotHash.SetBounded(true) // guaranteed not to fault
|
|
s.hashname = copyexpr(dotHash, dotHash.Type(), &sw.Compiled)
|
|
|
|
br := ir.NewBranchStmt(base.Pos, ir.OBREAK, nil)
|
|
var defaultGoto, nilGoto ir.Node
|
|
var body ir.Nodes
|
|
for _, ncase := range sw.Cases {
|
|
ncase := ncase.(*ir.CaseStmt)
|
|
var caseVar ir.Node
|
|
if len(ncase.Vars) != 0 {
|
|
caseVar = ncase.Vars[0]
|
|
}
|
|
|
|
// For single-type cases with an interface type,
|
|
// we initialize the case variable as part of the type assertion.
|
|
// In other cases, we initialize it in the body.
|
|
var singleType *types.Type
|
|
if len(ncase.List) == 1 && ncase.List[0].Op() == ir.OTYPE {
|
|
singleType = ncase.List[0].Type()
|
|
}
|
|
caseVarInitialized := false
|
|
|
|
label := autolabel(".s")
|
|
jmp := ir.NewBranchStmt(ncase.Pos(), ir.OGOTO, label)
|
|
|
|
if len(ncase.List) == 0 { // default:
|
|
if defaultGoto != nil {
|
|
base.Fatalf("duplicate default case not detected during typechecking")
|
|
}
|
|
defaultGoto = jmp
|
|
}
|
|
|
|
for _, n1 := range ncase.List {
|
|
if ir.IsNil(n1) { // case nil:
|
|
if nilGoto != nil {
|
|
base.Fatalf("duplicate nil case not detected during typechecking")
|
|
}
|
|
nilGoto = jmp
|
|
continue
|
|
}
|
|
|
|
if singleType != nil && singleType.IsInterface() {
|
|
s.Add(ncase.Pos(), n1.Type(), caseVar, jmp)
|
|
caseVarInitialized = true
|
|
} else {
|
|
s.Add(ncase.Pos(), n1.Type(), nil, jmp)
|
|
}
|
|
}
|
|
|
|
body.Append(ir.NewLabelStmt(ncase.Pos(), label))
|
|
if caseVar != nil && !caseVarInitialized {
|
|
val := s.facename
|
|
if singleType != nil {
|
|
// We have a single concrete type. Extract the data.
|
|
if singleType.IsInterface() {
|
|
base.Fatalf("singleType interface should have been handled in Add")
|
|
}
|
|
val = ifaceData(ncase.Pos(), s.facename, singleType)
|
|
}
|
|
l := []ir.Node{
|
|
ir.NewDecl(ncase.Pos(), ir.ODCL, caseVar),
|
|
ir.NewAssignStmt(ncase.Pos(), caseVar, val),
|
|
}
|
|
typecheckslice(l, ctxStmt)
|
|
body.Append(l...)
|
|
}
|
|
body.Append(ncase.Body...)
|
|
body.Append(br)
|
|
}
|
|
sw.Cases.Set(nil)
|
|
|
|
if defaultGoto == nil {
|
|
defaultGoto = br
|
|
}
|
|
if nilGoto == nil {
|
|
nilGoto = defaultGoto
|
|
}
|
|
ifNil.Body = []ir.Node{nilGoto}
|
|
|
|
s.Emit(&sw.Compiled)
|
|
sw.Compiled.Append(defaultGoto)
|
|
sw.Compiled.Append(body.Take()...)
|
|
|
|
walkstmtlist(sw.Compiled)
|
|
}
|
|
|
|
// A typeSwitch walks a type switch.
|
|
type typeSwitch struct {
|
|
// Temporary variables (i.e., ONAMEs) used by type switch dispatch logic:
|
|
facename ir.Node // value being type-switched on
|
|
hashname ir.Node // type hash of the value being type-switched on
|
|
okname ir.Node // boolean used for comma-ok type assertions
|
|
|
|
done ir.Nodes
|
|
clauses []typeClause
|
|
}
|
|
|
|
type typeClause struct {
|
|
hash uint32
|
|
body ir.Nodes
|
|
}
|
|
|
|
func (s *typeSwitch) Add(pos src.XPos, typ *types.Type, caseVar, jmp ir.Node) {
|
|
var body ir.Nodes
|
|
if caseVar != nil {
|
|
l := []ir.Node{
|
|
ir.NewDecl(pos, ir.ODCL, caseVar),
|
|
ir.NewAssignStmt(pos, caseVar, nil),
|
|
}
|
|
typecheckslice(l, ctxStmt)
|
|
body.Append(l...)
|
|
} else {
|
|
caseVar = ir.BlankNode
|
|
}
|
|
|
|
// cv, ok = iface.(type)
|
|
as := ir.NewAssignListStmt(pos, ir.OAS2, nil, nil)
|
|
as.Lhs = []ir.Node{caseVar, s.okname} // cv, ok =
|
|
dot := ir.NewTypeAssertExpr(pos, s.facename, nil)
|
|
dot.SetType(typ) // iface.(type)
|
|
as.Rhs = []ir.Node{dot}
|
|
appendWalkStmt(&body, as)
|
|
|
|
// if ok { goto label }
|
|
nif := ir.NewIfStmt(pos, nil, nil, nil)
|
|
nif.Cond = s.okname
|
|
nif.Body = []ir.Node{jmp}
|
|
body.Append(nif)
|
|
|
|
if !typ.IsInterface() {
|
|
s.clauses = append(s.clauses, typeClause{
|
|
hash: typehash(typ),
|
|
body: body,
|
|
})
|
|
return
|
|
}
|
|
|
|
s.flush()
|
|
s.done.Append(body.Take()...)
|
|
}
|
|
|
|
func (s *typeSwitch) Emit(out *ir.Nodes) {
|
|
s.flush()
|
|
out.Append(s.done.Take()...)
|
|
}
|
|
|
|
func (s *typeSwitch) flush() {
|
|
cc := s.clauses
|
|
s.clauses = nil
|
|
if len(cc) == 0 {
|
|
return
|
|
}
|
|
|
|
sort.Slice(cc, func(i, j int) bool { return cc[i].hash < cc[j].hash })
|
|
|
|
// Combine adjacent cases with the same hash.
|
|
merged := cc[:1]
|
|
for _, c := range cc[1:] {
|
|
last := &merged[len(merged)-1]
|
|
if last.hash == c.hash {
|
|
last.body.Append(c.body.Take()...)
|
|
} else {
|
|
merged = append(merged, c)
|
|
}
|
|
}
|
|
cc = merged
|
|
|
|
binarySearch(len(cc), &s.done,
|
|
func(i int) ir.Node {
|
|
return ir.NewBinaryExpr(base.Pos, ir.OLE, s.hashname, nodintconst(int64(cc[i-1].hash)))
|
|
},
|
|
func(i int, nif *ir.IfStmt) {
|
|
// TODO(mdempsky): Omit hash equality check if
|
|
// there's only one type.
|
|
c := cc[i]
|
|
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, s.hashname, nodintconst(int64(c.hash)))
|
|
nif.Body.Append(c.body.Take()...)
|
|
},
|
|
)
|
|
}
|
|
|
|
// binarySearch constructs a binary search tree for handling n cases,
|
|
// and appends it to out. It's used for efficiently implementing
|
|
// switch statements.
|
|
//
|
|
// less(i) should return a boolean expression. If it evaluates true,
|
|
// then cases before i will be tested; otherwise, cases i and later.
|
|
//
|
|
// leaf(i, nif) should setup nif (an OIF node) to test case i. In
|
|
// particular, it should set nif.Left and nif.Nbody.
|
|
func binarySearch(n int, out *ir.Nodes, less func(i int) ir.Node, leaf func(i int, nif *ir.IfStmt)) {
|
|
const binarySearchMin = 4 // minimum number of cases for binary search
|
|
|
|
var do func(lo, hi int, out *ir.Nodes)
|
|
do = func(lo, hi int, out *ir.Nodes) {
|
|
n := hi - lo
|
|
if n < binarySearchMin {
|
|
for i := lo; i < hi; i++ {
|
|
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
|
|
leaf(i, nif)
|
|
base.Pos = base.Pos.WithNotStmt()
|
|
nif.Cond = typecheck(nif.Cond, ctxExpr)
|
|
nif.Cond = defaultlit(nif.Cond, nil)
|
|
out.Append(nif)
|
|
out = &nif.Else
|
|
}
|
|
return
|
|
}
|
|
|
|
half := lo + n/2
|
|
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
|
|
nif.Cond = less(half)
|
|
base.Pos = base.Pos.WithNotStmt()
|
|
nif.Cond = typecheck(nif.Cond, ctxExpr)
|
|
nif.Cond = defaultlit(nif.Cond, nil)
|
|
do(lo, half, &nif.Body)
|
|
do(half, hi, &nif.Else)
|
|
out.Append(nif)
|
|
}
|
|
|
|
do(0, n, out)
|
|
}
|