go/src/cmd/internal/obj/util.go
Clément Chigot 4295ed9bef cmd: fix symbols addressing for aix/ppc64
This commit changes the code generated for addressing symbols on AIX
operating system.

On AIX, every symbol accesses must be done via another symbol near the TOC,
named TOC anchor or TOC entry. This TOC anchor is a pointer to the symbol
address.
During Progedit function, when a symbol access is detected, its instructions
are modified to create a load on its TOC anchor and retrieve the symbol.

Change-Id: I00cf8f49c13004bc99fa8af13d549a709320f797
Reviewed-on: https://go-review.googlesource.com/c/151039
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-11-27 21:06:16 +00:00

567 lines
13 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package obj
import (
"bytes"
"cmd/internal/objabi"
"fmt"
"strings"
)
const REG_NONE = 0
// Line returns a string containing the filename and line number for p
func (p *Prog) Line() string {
return p.Ctxt.OutermostPos(p.Pos).Format(false, true)
}
// InnermostLineNumber returns a string containing the line number for the
// innermost inlined function (if any inlining) at p's position
func (p *Prog) InnermostLineNumber() string {
return p.Ctxt.InnermostPos(p.Pos).LineNumber()
}
// InnermostLineNumberHTML returns a string containing the line number for the
// innermost inlined function (if any inlining) at p's position
func (p *Prog) InnermostLineNumberHTML() string {
return p.Ctxt.InnermostPos(p.Pos).LineNumberHTML()
}
// InnermostFilename returns a string containing the innermost
// (in inlining) filename at p's position
func (p *Prog) InnermostFilename() string {
// TODO For now, this is only used for debugging output, and if we need more/better information, it might change.
// An example of what we might want to see is the full stack of positions for inlined code, so we get some visibility into what is recorded there.
pos := p.Ctxt.InnermostPos(p.Pos)
if !pos.IsKnown() {
return "<unknown file name>"
}
return pos.Filename()
}
var armCondCode = []string{
".EQ",
".NE",
".CS",
".CC",
".MI",
".PL",
".VS",
".VC",
".HI",
".LS",
".GE",
".LT",
".GT",
".LE",
"",
".NV",
}
/* ARM scond byte */
const (
C_SCOND = (1 << 4) - 1
C_SBIT = 1 << 4
C_PBIT = 1 << 5
C_WBIT = 1 << 6
C_FBIT = 1 << 7
C_UBIT = 1 << 7
C_SCOND_XOR = 14
)
// CConv formats opcode suffix bits (Prog.Scond).
func CConv(s uint8) string {
if s == 0 {
return ""
}
for i := range opSuffixSpace {
sset := &opSuffixSpace[i]
if sset.arch == objabi.GOARCH {
return sset.cconv(s)
}
}
return fmt.Sprintf("SC???%d", s)
}
// CConvARM formats ARM opcode suffix bits (mostly condition codes).
func CConvARM(s uint8) string {
// TODO: could be great to move suffix-related things into
// ARM asm backends some day.
// obj/x86 can be used as an example.
sc := armCondCode[(s&C_SCOND)^C_SCOND_XOR]
if s&C_SBIT != 0 {
sc += ".S"
}
if s&C_PBIT != 0 {
sc += ".P"
}
if s&C_WBIT != 0 {
sc += ".W"
}
if s&C_UBIT != 0 { /* ambiguous with FBIT */
sc += ".U"
}
return sc
}
func (p *Prog) String() string {
if p == nil {
return "<nil Prog>"
}
if p.Ctxt == nil {
return "<Prog without ctxt>"
}
return fmt.Sprintf("%.5d (%v)\t%s", p.Pc, p.Line(), p.InstructionString())
}
// InstructionString returns a string representation of the instruction without preceding
// program counter or file and line number.
func (p *Prog) InstructionString() string {
if p == nil {
return "<nil Prog>"
}
if p.Ctxt == nil {
return "<Prog without ctxt>"
}
sc := CConv(p.Scond)
var buf bytes.Buffer
fmt.Fprintf(&buf, "%v%s", p.As, sc)
sep := "\t"
if p.From.Type != TYPE_NONE {
fmt.Fprintf(&buf, "%s%v", sep, Dconv(p, &p.From))
sep = ", "
}
if p.Reg != REG_NONE {
// Should not happen but might as well show it if it does.
fmt.Fprintf(&buf, "%s%v", sep, Rconv(int(p.Reg)))
sep = ", "
}
for i := range p.RestArgs {
fmt.Fprintf(&buf, "%s%v", sep, Dconv(p, &p.RestArgs[i]))
sep = ", "
}
if p.As == ATEXT {
// If there are attributes, print them. Otherwise, skip the comma.
// In short, print one of these two:
// TEXT foo(SB), DUPOK|NOSPLIT, $0
// TEXT foo(SB), $0
s := p.From.Sym.Attribute.TextAttrString()
if s != "" {
fmt.Fprintf(&buf, "%s%s", sep, s)
sep = ", "
}
}
if p.To.Type != TYPE_NONE {
fmt.Fprintf(&buf, "%s%v", sep, Dconv(p, &p.To))
}
if p.RegTo2 != REG_NONE {
fmt.Fprintf(&buf, "%s%v", sep, Rconv(int(p.RegTo2)))
}
return buf.String()
}
func (ctxt *Link) NewProg() *Prog {
p := new(Prog)
p.Ctxt = ctxt
return p
}
func (ctxt *Link) CanReuseProgs() bool {
return !ctxt.Debugasm
}
func Dconv(p *Prog, a *Addr) string {
var str string
switch a.Type {
default:
str = fmt.Sprintf("type=%d", a.Type)
case TYPE_NONE:
str = ""
if a.Name != NAME_NONE || a.Reg != 0 || a.Sym != nil {
str = fmt.Sprintf("%v(%v)(NONE)", Mconv(a), Rconv(int(a.Reg)))
}
case TYPE_REG:
// TODO(rsc): This special case is for x86 instructions like
// PINSRQ CX,$1,X6
// where the $1 is included in the p->to Addr.
// Move into a new field.
if a.Offset != 0 && (a.Reg < RBaseARM64 || a.Reg >= RBaseMIPS) {
str = fmt.Sprintf("$%d,%v", a.Offset, Rconv(int(a.Reg)))
break
}
str = Rconv(int(a.Reg))
if a.Name != NAME_NONE || a.Sym != nil {
str = fmt.Sprintf("%v(%v)(REG)", Mconv(a), Rconv(int(a.Reg)))
}
if (RBaseARM64+1<<10+1<<9) /* arm64.REG_ELEM */ <= a.Reg &&
a.Reg < (RBaseARM64+1<<11) /* arm64.REG_ELEM_END */ {
str += fmt.Sprintf("[%d]", a.Index)
}
case TYPE_BRANCH:
if a.Sym != nil {
str = fmt.Sprintf("%s(SB)", a.Sym.Name)
} else if p != nil && p.Pcond != nil {
str = fmt.Sprint(p.Pcond.Pc)
} else if a.Val != nil {
str = fmt.Sprint(a.Val.(*Prog).Pc)
} else {
str = fmt.Sprintf("%d(PC)", a.Offset)
}
case TYPE_INDIR:
str = fmt.Sprintf("*%s", Mconv(a))
case TYPE_MEM:
str = Mconv(a)
if a.Index != REG_NONE {
if a.Scale == 0 {
// arm64 shifted or extended register offset, scale = 0.
str += fmt.Sprintf("(%v)", Rconv(int(a.Index)))
} else {
str += fmt.Sprintf("(%v*%d)", Rconv(int(a.Index)), int(a.Scale))
}
}
case TYPE_CONST:
if a.Reg != 0 {
str = fmt.Sprintf("$%v(%v)", Mconv(a), Rconv(int(a.Reg)))
} else {
str = fmt.Sprintf("$%v", Mconv(a))
}
case TYPE_TEXTSIZE:
if a.Val.(int32) == objabi.ArgsSizeUnknown {
str = fmt.Sprintf("$%d", a.Offset)
} else {
str = fmt.Sprintf("$%d-%d", a.Offset, a.Val.(int32))
}
case TYPE_FCONST:
str = fmt.Sprintf("%.17g", a.Val.(float64))
// Make sure 1 prints as 1.0
if !strings.ContainsAny(str, ".e") {
str += ".0"
}
str = fmt.Sprintf("$(%s)", str)
case TYPE_SCONST:
str = fmt.Sprintf("$%q", a.Val.(string))
case TYPE_ADDR:
str = fmt.Sprintf("$%s", Mconv(a))
case TYPE_SHIFT:
v := int(a.Offset)
ops := "<<>>->@>"
switch objabi.GOARCH {
case "arm":
op := ops[((v>>5)&3)<<1:]
if v&(1<<4) != 0 {
str = fmt.Sprintf("R%d%c%cR%d", v&15, op[0], op[1], (v>>8)&15)
} else {
str = fmt.Sprintf("R%d%c%c%d", v&15, op[0], op[1], (v>>7)&31)
}
if a.Reg != 0 {
str += fmt.Sprintf("(%v)", Rconv(int(a.Reg)))
}
case "arm64":
op := ops[((v>>22)&3)<<1:]
r := (v >> 16) & 31
str = fmt.Sprintf("%s%c%c%d", Rconv(r+RBaseARM64), op[0], op[1], (v>>10)&63)
default:
panic("TYPE_SHIFT is not supported on " + objabi.GOARCH)
}
case TYPE_REGREG:
str = fmt.Sprintf("(%v, %v)", Rconv(int(a.Reg)), Rconv(int(a.Offset)))
case TYPE_REGREG2:
str = fmt.Sprintf("%v, %v", Rconv(int(a.Offset)), Rconv(int(a.Reg)))
case TYPE_REGLIST:
str = RLconv(a.Offset)
}
return str
}
func Mconv(a *Addr) string {
var str string
switch a.Name {
default:
str = fmt.Sprintf("name=%d", a.Name)
case NAME_NONE:
switch {
case a.Reg == REG_NONE:
str = fmt.Sprint(a.Offset)
case a.Offset == 0:
str = fmt.Sprintf("(%v)", Rconv(int(a.Reg)))
case a.Offset != 0:
str = fmt.Sprintf("%d(%v)", a.Offset, Rconv(int(a.Reg)))
}
// Note: a.Reg == REG_NONE encodes the default base register for the NAME_ type.
case NAME_EXTERN:
reg := "SB"
if a.Reg != REG_NONE {
reg = Rconv(int(a.Reg))
}
if a.Sym != nil {
str = fmt.Sprintf("%s%s(%s)", a.Sym.Name, offConv(a.Offset), reg)
} else {
str = fmt.Sprintf("%s(%s)", offConv(a.Offset), reg)
}
case NAME_GOTREF:
reg := "SB"
if a.Reg != REG_NONE {
reg = Rconv(int(a.Reg))
}
if a.Sym != nil {
str = fmt.Sprintf("%s%s@GOT(%s)", a.Sym.Name, offConv(a.Offset), reg)
} else {
str = fmt.Sprintf("%s@GOT(%s)", offConv(a.Offset), reg)
}
case NAME_STATIC:
reg := "SB"
if a.Reg != REG_NONE {
reg = Rconv(int(a.Reg))
}
if a.Sym != nil {
str = fmt.Sprintf("%s<>%s(%s)", a.Sym.Name, offConv(a.Offset), reg)
} else {
str = fmt.Sprintf("<>%s(%s)", offConv(a.Offset), reg)
}
case NAME_AUTO:
reg := "SP"
if a.Reg != REG_NONE {
reg = Rconv(int(a.Reg))
}
if a.Sym != nil {
str = fmt.Sprintf("%s%s(%s)", a.Sym.Name, offConv(a.Offset), reg)
} else {
str = fmt.Sprintf("%s(%s)", offConv(a.Offset), reg)
}
case NAME_PARAM:
reg := "FP"
if a.Reg != REG_NONE {
reg = Rconv(int(a.Reg))
}
if a.Sym != nil {
str = fmt.Sprintf("%s%s(%s)", a.Sym.Name, offConv(a.Offset), reg)
} else {
str = fmt.Sprintf("%s(%s)", offConv(a.Offset), reg)
}
case NAME_TOCREF:
reg := "SB"
if a.Reg != REG_NONE {
reg = Rconv(int(a.Reg))
}
if a.Sym != nil {
str = fmt.Sprintf("%s%s(%s)", a.Sym.Name, offConv(a.Offset), reg)
} else {
str = fmt.Sprintf("%s(%s)", offConv(a.Offset), reg)
}
}
return str
}
func offConv(off int64) string {
if off == 0 {
return ""
}
return fmt.Sprintf("%+d", off)
}
// opSuffixSet is like regListSet, but for opcode suffixes.
//
// Unlike some other similar structures, uint8 space is not
// divided by its own values set (because there are only 256 of them).
// Instead, every arch may interpret/format all 8 bits as they like,
// as long as they register proper cconv function for it.
type opSuffixSet struct {
arch string
cconv func(suffix uint8) string
}
var opSuffixSpace []opSuffixSet
// RegisterOpSuffix assigns cconv function for formatting opcode suffixes
// when compiling for GOARCH=arch.
//
// cconv is never called with 0 argument.
func RegisterOpSuffix(arch string, cconv func(uint8) string) {
opSuffixSpace = append(opSuffixSpace, opSuffixSet{
arch: arch,
cconv: cconv,
})
}
type regSet struct {
lo int
hi int
Rconv func(int) string
}
// Few enough architectures that a linear scan is fastest.
// Not even worth sorting.
var regSpace []regSet
/*
Each architecture defines a register space as a unique
integer range.
Here is the list of architectures and the base of their register spaces.
*/
const (
// Because of masking operations in the encodings, each register
// space should start at 0 modulo some power of 2.
RBase386 = 1 * 1024
RBaseAMD64 = 2 * 1024
RBaseARM = 3 * 1024
RBasePPC64 = 4 * 1024 // range [4k, 8k)
RBaseARM64 = 8 * 1024 // range [8k, 13k)
RBaseMIPS = 13 * 1024 // range [13k, 14k)
RBaseS390X = 14 * 1024 // range [14k, 15k)
RBaseWasm = 16 * 1024
)
// RegisterRegister binds a pretty-printer (Rconv) for register
// numbers to a given register number range. Lo is inclusive,
// hi exclusive (valid registers are lo through hi-1).
func RegisterRegister(lo, hi int, Rconv func(int) string) {
regSpace = append(regSpace, regSet{lo, hi, Rconv})
}
func Rconv(reg int) string {
if reg == REG_NONE {
return "NONE"
}
for i := range regSpace {
rs := &regSpace[i]
if rs.lo <= reg && reg < rs.hi {
return rs.Rconv(reg)
}
}
return fmt.Sprintf("R???%d", reg)
}
type regListSet struct {
lo int64
hi int64
RLconv func(int64) string
}
var regListSpace []regListSet
// Each architecture is allotted a distinct subspace: [Lo, Hi) for declaring its
// arch-specific register list numbers.
const (
RegListARMLo = 0
RegListARMHi = 1 << 16
// arm64 uses the 60th bit to differentiate from other archs
RegListARM64Lo = 1 << 60
RegListARM64Hi = 1<<61 - 1
// x86 uses the 61th bit to differentiate from other archs
RegListX86Lo = 1 << 61
RegListX86Hi = 1<<62 - 1
)
// RegisterRegisterList binds a pretty-printer (RLconv) for register list
// numbers to a given register list number range. Lo is inclusive,
// hi exclusive (valid register list are lo through hi-1).
func RegisterRegisterList(lo, hi int64, rlconv func(int64) string) {
regListSpace = append(regListSpace, regListSet{lo, hi, rlconv})
}
func RLconv(list int64) string {
for i := range regListSpace {
rls := &regListSpace[i]
if rls.lo <= list && list < rls.hi {
return rls.RLconv(list)
}
}
return fmt.Sprintf("RL???%d", list)
}
type opSet struct {
lo As
names []string
}
// Not even worth sorting
var aSpace []opSet
// RegisterOpcode binds a list of instruction names
// to a given instruction number range.
func RegisterOpcode(lo As, Anames []string) {
if len(Anames) > AllowedOpCodes {
panic(fmt.Sprintf("too many instructions, have %d max %d", len(Anames), AllowedOpCodes))
}
aSpace = append(aSpace, opSet{lo, Anames})
}
func (a As) String() string {
if 0 <= a && int(a) < len(Anames) {
return Anames[a]
}
for i := range aSpace {
as := &aSpace[i]
if as.lo <= a && int(a-as.lo) < len(as.names) {
return as.names[a-as.lo]
}
}
return fmt.Sprintf("A???%d", a)
}
var Anames = []string{
"XXX",
"CALL",
"DUFFCOPY",
"DUFFZERO",
"END",
"FUNCDATA",
"JMP",
"NOP",
"PCALIGN",
"PCDATA",
"RET",
"GETCALLERPC",
"TEXT",
"UNDEF",
}
func Bool2int(b bool) int {
// The compiler currently only optimizes this form.
// See issue 6011.
var i int
if b {
i = 1
} else {
i = 0
}
return i
}