mirror of
				https://github.com/golang/go.git
				synced 2025-11-04 02:30:57 +00:00 
			
		
		
		
	- created new package cmd/compile/internal/types - moved Pkg, Sym, Type to new package - to break cycles, for now we need the (ugly) types/utils.go file which contains a handful of functions that must be installed early by the gc frontend - to break cycles, for now we need two functions to convert between *gc.Node and *types.Node (the latter is a dummy type) - adjusted the gc's code to use the new package and the conversion functions as needed - made several Pkg, Sym, and Type methods functions as needed - renamed constructors typ, typPtr, typArray, etc. to types.New, types.NewPtr, types.NewArray, etc. Passes toolstash-check -all. Change-Id: I8adfa5e85c731645d0a7fd2030375ed6ebf54b72 Reviewed-on: https://go-review.googlesource.com/39855 Reviewed-by: Matthew Dempsky <mdempsky@google.com>
		
			
				
	
	
		
			1822 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1822 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2009 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package gc
 | 
						|
 | 
						|
import (
 | 
						|
	"cmd/compile/internal/types"
 | 
						|
	"cmd/internal/gcprog"
 | 
						|
	"cmd/internal/obj"
 | 
						|
	"cmd/internal/src"
 | 
						|
	"fmt"
 | 
						|
	"os"
 | 
						|
	"sort"
 | 
						|
	"strings"
 | 
						|
)
 | 
						|
 | 
						|
type itabEntry struct {
 | 
						|
	t, itype *types.Type
 | 
						|
	sym      *types.Sym
 | 
						|
 | 
						|
	// symbol of the itab itself;
 | 
						|
	// filled in lazily after typecheck
 | 
						|
	lsym *obj.LSym
 | 
						|
 | 
						|
	// symbols of each method in
 | 
						|
	// the itab, sorted by byte offset;
 | 
						|
	// filled in at the same time as lsym
 | 
						|
	entries []*obj.LSym
 | 
						|
}
 | 
						|
 | 
						|
type ptabEntry struct {
 | 
						|
	s *types.Sym
 | 
						|
	t *types.Type
 | 
						|
}
 | 
						|
 | 
						|
// runtime interface and reflection data structures
 | 
						|
var signatlist []*types.Type
 | 
						|
var itabs []itabEntry
 | 
						|
var ptabs []ptabEntry
 | 
						|
 | 
						|
type Sig struct {
 | 
						|
	name   string
 | 
						|
	pkg    *types.Pkg
 | 
						|
	isym   *types.Sym
 | 
						|
	tsym   *types.Sym
 | 
						|
	type_  *types.Type
 | 
						|
	mtype  *types.Type
 | 
						|
	offset int32
 | 
						|
}
 | 
						|
 | 
						|
// byMethodNameAndPackagePath sorts method signatures by name, then package path.
 | 
						|
type byMethodNameAndPackagePath []*Sig
 | 
						|
 | 
						|
func (x byMethodNameAndPackagePath) Len() int      { return len(x) }
 | 
						|
func (x byMethodNameAndPackagePath) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
 | 
						|
func (x byMethodNameAndPackagePath) Less(i, j int) bool {
 | 
						|
	return siglt(x[i], x[j])
 | 
						|
}
 | 
						|
 | 
						|
// siglt reports whether a < b
 | 
						|
func siglt(a, b *Sig) bool {
 | 
						|
	if a.name != b.name {
 | 
						|
		return a.name < b.name
 | 
						|
	}
 | 
						|
	if a.pkg == b.pkg {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	if a.pkg == nil {
 | 
						|
		return true
 | 
						|
	}
 | 
						|
	if b.pkg == nil {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	return a.pkg.Path < b.pkg.Path
 | 
						|
}
 | 
						|
 | 
						|
// Builds a type representing a Bucket structure for
 | 
						|
// the given map type. This type is not visible to users -
 | 
						|
// we include only enough information to generate a correct GC
 | 
						|
// program for it.
 | 
						|
// Make sure this stays in sync with ../../../../runtime/hashmap.go!
 | 
						|
const (
 | 
						|
	BUCKETSIZE = 8
 | 
						|
	MAXKEYSIZE = 128
 | 
						|
	MAXVALSIZE = 128
 | 
						|
)
 | 
						|
 | 
						|
func structfieldSize() int             { return 3 * Widthptr } // Sizeof(runtime.structfield{})
 | 
						|
func imethodSize() int                 { return 4 + 4 }        // Sizeof(runtime.imethod{})
 | 
						|
func uncommonSize(t *types.Type) int { // Sizeof(runtime.uncommontype{})
 | 
						|
	if t.Sym == nil && len(methods(t)) == 0 {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
	return 4 + 2 + 2 + 4 + 4
 | 
						|
}
 | 
						|
 | 
						|
func makefield(name string, t *types.Type) *types.Field {
 | 
						|
	f := types.NewField()
 | 
						|
	f.Type = t
 | 
						|
	f.Sym = types.Nopkg.Lookup(name)
 | 
						|
	return f
 | 
						|
}
 | 
						|
 | 
						|
func mapbucket(t *types.Type) *types.Type {
 | 
						|
	if t.MapType().Bucket != nil {
 | 
						|
		return t.MapType().Bucket
 | 
						|
	}
 | 
						|
 | 
						|
	bucket := types.New(TSTRUCT)
 | 
						|
	keytype := t.Key()
 | 
						|
	valtype := t.Val()
 | 
						|
	dowidth(keytype)
 | 
						|
	dowidth(valtype)
 | 
						|
	if keytype.Width > MAXKEYSIZE {
 | 
						|
		keytype = types.NewPtr(keytype)
 | 
						|
	}
 | 
						|
	if valtype.Width > MAXVALSIZE {
 | 
						|
		valtype = types.NewPtr(valtype)
 | 
						|
	}
 | 
						|
 | 
						|
	field := make([]*types.Field, 0, 5)
 | 
						|
 | 
						|
	// The first field is: uint8 topbits[BUCKETSIZE].
 | 
						|
	arr := types.NewArray(types.Types[TUINT8], BUCKETSIZE)
 | 
						|
	field = append(field, makefield("topbits", arr))
 | 
						|
 | 
						|
	arr = types.NewArray(keytype, BUCKETSIZE)
 | 
						|
	arr.SetNoalg(true)
 | 
						|
	field = append(field, makefield("keys", arr))
 | 
						|
 | 
						|
	arr = types.NewArray(valtype, BUCKETSIZE)
 | 
						|
	arr.SetNoalg(true)
 | 
						|
	field = append(field, makefield("values", arr))
 | 
						|
 | 
						|
	// Make sure the overflow pointer is the last memory in the struct,
 | 
						|
	// because the runtime assumes it can use size-ptrSize as the
 | 
						|
	// offset of the overflow pointer. We double-check that property
 | 
						|
	// below once the offsets and size are computed.
 | 
						|
	//
 | 
						|
	// BUCKETSIZE is 8, so the struct is aligned to 64 bits to this point.
 | 
						|
	// On 32-bit systems, the max alignment is 32-bit, and the
 | 
						|
	// overflow pointer will add another 32-bit field, and the struct
 | 
						|
	// will end with no padding.
 | 
						|
	// On 64-bit systems, the max alignment is 64-bit, and the
 | 
						|
	// overflow pointer will add another 64-bit field, and the struct
 | 
						|
	// will end with no padding.
 | 
						|
	// On nacl/amd64p32, however, the max alignment is 64-bit,
 | 
						|
	// but the overflow pointer will add only a 32-bit field,
 | 
						|
	// so if the struct needs 64-bit padding (because a key or value does)
 | 
						|
	// then it would end with an extra 32-bit padding field.
 | 
						|
	// Preempt that by emitting the padding here.
 | 
						|
	if int(t.Val().Align) > Widthptr || int(t.Key().Align) > Widthptr {
 | 
						|
		field = append(field, makefield("pad", types.Types[TUINTPTR]))
 | 
						|
	}
 | 
						|
 | 
						|
	// If keys and values have no pointers, the map implementation
 | 
						|
	// can keep a list of overflow pointers on the side so that
 | 
						|
	// buckets can be marked as having no pointers.
 | 
						|
	// Arrange for the bucket to have no pointers by changing
 | 
						|
	// the type of the overflow field to uintptr in this case.
 | 
						|
	// See comment on hmap.overflow in ../../../../runtime/hashmap.go.
 | 
						|
	otyp := types.NewPtr(bucket)
 | 
						|
	if !types.Haspointers(t.Val()) && !types.Haspointers(t.Key()) && t.Val().Width <= MAXVALSIZE && t.Key().Width <= MAXKEYSIZE {
 | 
						|
		otyp = types.Types[TUINTPTR]
 | 
						|
	}
 | 
						|
	ovf := makefield("overflow", otyp)
 | 
						|
	field = append(field, ovf)
 | 
						|
 | 
						|
	// link up fields
 | 
						|
	bucket.SetNoalg(true)
 | 
						|
	bucket.SetLocal(t.Local())
 | 
						|
	bucket.SetFields(field[:])
 | 
						|
	dowidth(bucket)
 | 
						|
 | 
						|
	// Double-check that overflow field is final memory in struct,
 | 
						|
	// with no padding at end. See comment above.
 | 
						|
	if ovf.Offset != bucket.Width-int64(Widthptr) {
 | 
						|
		Fatalf("bad math in mapbucket for %v", t)
 | 
						|
	}
 | 
						|
 | 
						|
	t.MapType().Bucket = bucket
 | 
						|
 | 
						|
	bucket.StructType().Map = t
 | 
						|
	return bucket
 | 
						|
}
 | 
						|
 | 
						|
// Builds a type representing a Hmap structure for the given map type.
 | 
						|
// Make sure this stays in sync with ../../../../runtime/hashmap.go!
 | 
						|
func hmap(t *types.Type) *types.Type {
 | 
						|
	if t.MapType().Hmap != nil {
 | 
						|
		return t.MapType().Hmap
 | 
						|
	}
 | 
						|
 | 
						|
	bucket := mapbucket(t)
 | 
						|
	fields := []*types.Field{
 | 
						|
		makefield("count", types.Types[TINT]),
 | 
						|
		makefield("flags", types.Types[TUINT8]),
 | 
						|
		makefield("B", types.Types[TUINT8]),
 | 
						|
		makefield("noverflow", types.Types[TUINT16]),
 | 
						|
		makefield("hash0", types.Types[TUINT32]),
 | 
						|
		makefield("buckets", types.NewPtr(bucket)),
 | 
						|
		makefield("oldbuckets", types.NewPtr(bucket)),
 | 
						|
		makefield("nevacuate", types.Types[TUINTPTR]),
 | 
						|
		makefield("overflow", types.Types[TUNSAFEPTR]),
 | 
						|
	}
 | 
						|
 | 
						|
	h := types.New(TSTRUCT)
 | 
						|
	h.SetNoalg(true)
 | 
						|
	h.SetLocal(t.Local())
 | 
						|
	h.SetFields(fields)
 | 
						|
	dowidth(h)
 | 
						|
	t.MapType().Hmap = h
 | 
						|
	h.StructType().Map = t
 | 
						|
	return h
 | 
						|
}
 | 
						|
 | 
						|
func hiter(t *types.Type) *types.Type {
 | 
						|
	if t.MapType().Hiter != nil {
 | 
						|
		return t.MapType().Hiter
 | 
						|
	}
 | 
						|
 | 
						|
	// build a struct:
 | 
						|
	// hiter {
 | 
						|
	//    key *Key
 | 
						|
	//    val *Value
 | 
						|
	//    t *MapType
 | 
						|
	//    h *Hmap
 | 
						|
	//    buckets *Bucket
 | 
						|
	//    bptr *Bucket
 | 
						|
	//    overflow0 unsafe.Pointer
 | 
						|
	//    overflow1 unsafe.Pointer
 | 
						|
	//    startBucket uintptr
 | 
						|
	//    stuff uintptr
 | 
						|
	//    bucket uintptr
 | 
						|
	//    checkBucket uintptr
 | 
						|
	// }
 | 
						|
	// must match ../../../../runtime/hashmap.go:hiter.
 | 
						|
	var field [12]*types.Field
 | 
						|
	field[0] = makefield("key", types.NewPtr(t.Key()))
 | 
						|
	field[1] = makefield("val", types.NewPtr(t.Val()))
 | 
						|
	field[2] = makefield("t", types.NewPtr(types.Types[TUINT8]))
 | 
						|
	field[3] = makefield("h", types.NewPtr(hmap(t)))
 | 
						|
	field[4] = makefield("buckets", types.NewPtr(mapbucket(t)))
 | 
						|
	field[5] = makefield("bptr", types.NewPtr(mapbucket(t)))
 | 
						|
	field[6] = makefield("overflow0", types.Types[TUNSAFEPTR])
 | 
						|
	field[7] = makefield("overflow1", types.Types[TUNSAFEPTR])
 | 
						|
	field[8] = makefield("startBucket", types.Types[TUINTPTR])
 | 
						|
	field[9] = makefield("stuff", types.Types[TUINTPTR]) // offset+wrapped+B+I
 | 
						|
	field[10] = makefield("bucket", types.Types[TUINTPTR])
 | 
						|
	field[11] = makefield("checkBucket", types.Types[TUINTPTR])
 | 
						|
 | 
						|
	// build iterator struct holding the above fields
 | 
						|
	i := types.New(TSTRUCT)
 | 
						|
	i.SetNoalg(true)
 | 
						|
	i.SetFields(field[:])
 | 
						|
	dowidth(i)
 | 
						|
	if i.Width != int64(12*Widthptr) {
 | 
						|
		Fatalf("hash_iter size not correct %d %d", i.Width, 12*Widthptr)
 | 
						|
	}
 | 
						|
	t.MapType().Hiter = i
 | 
						|
	i.StructType().Map = t
 | 
						|
	return i
 | 
						|
}
 | 
						|
 | 
						|
// f is method type, with receiver.
 | 
						|
// return function type, receiver as first argument (or not).
 | 
						|
func methodfunc(f *types.Type, receiver *types.Type) *types.Type {
 | 
						|
	var in []*Node
 | 
						|
	if receiver != nil {
 | 
						|
		d := nod(ODCLFIELD, nil, nil)
 | 
						|
		d.Type = receiver
 | 
						|
		in = append(in, d)
 | 
						|
	}
 | 
						|
 | 
						|
	var d *Node
 | 
						|
	for _, t := range f.Params().Fields().Slice() {
 | 
						|
		d = nod(ODCLFIELD, nil, nil)
 | 
						|
		d.Type = t.Type
 | 
						|
		d.SetIsddd(t.Isddd())
 | 
						|
		in = append(in, d)
 | 
						|
	}
 | 
						|
 | 
						|
	var out []*Node
 | 
						|
	for _, t := range f.Results().Fields().Slice() {
 | 
						|
		d = nod(ODCLFIELD, nil, nil)
 | 
						|
		d.Type = t.Type
 | 
						|
		out = append(out, d)
 | 
						|
	}
 | 
						|
 | 
						|
	t := functype(nil, in, out)
 | 
						|
	if f.Nname() != nil {
 | 
						|
		// Link to name of original method function.
 | 
						|
		t.SetNname(f.Nname())
 | 
						|
	}
 | 
						|
 | 
						|
	return t
 | 
						|
}
 | 
						|
 | 
						|
// methods returns the methods of the non-interface type t, sorted by name.
 | 
						|
// Generates stub functions as needed.
 | 
						|
func methods(t *types.Type) []*Sig {
 | 
						|
	// method type
 | 
						|
	mt := methtype(t)
 | 
						|
 | 
						|
	if mt == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	expandmeth(mt)
 | 
						|
 | 
						|
	// type stored in interface word
 | 
						|
	it := t
 | 
						|
 | 
						|
	if !isdirectiface(it) {
 | 
						|
		it = types.NewPtr(t)
 | 
						|
	}
 | 
						|
 | 
						|
	// make list of methods for t,
 | 
						|
	// generating code if necessary.
 | 
						|
	var ms []*Sig
 | 
						|
	for _, f := range mt.AllMethods().Slice() {
 | 
						|
		if f.Type.Etype != TFUNC || f.Type.Recv() == nil {
 | 
						|
			Fatalf("non-method on %v method %v %v\n", mt, f.Sym, f)
 | 
						|
		}
 | 
						|
		if f.Type.Recv() == nil {
 | 
						|
			Fatalf("receiver with no type on %v method %v %v\n", mt, f.Sym, f)
 | 
						|
		}
 | 
						|
		if f.Nointerface() {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		method := f.Sym
 | 
						|
		if method == nil {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		// get receiver type for this particular method.
 | 
						|
		// if pointer receiver but non-pointer t and
 | 
						|
		// this is not an embedded pointer inside a struct,
 | 
						|
		// method does not apply.
 | 
						|
		this := f.Type.Recv().Type
 | 
						|
 | 
						|
		if this.IsPtr() && this.Elem() == t {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		if this.IsPtr() && !t.IsPtr() && f.Embedded != 2 && !isifacemethod(f.Type) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		var sig Sig
 | 
						|
		ms = append(ms, &sig)
 | 
						|
 | 
						|
		sig.name = method.Name
 | 
						|
		if !exportname(method.Name) {
 | 
						|
			if method.Pkg == nil {
 | 
						|
				Fatalf("methods: missing package")
 | 
						|
			}
 | 
						|
			sig.pkg = method.Pkg
 | 
						|
		}
 | 
						|
 | 
						|
		sig.isym = methodsym(method, it, true)
 | 
						|
		sig.tsym = methodsym(method, t, false)
 | 
						|
		sig.type_ = methodfunc(f.Type, t)
 | 
						|
		sig.mtype = methodfunc(f.Type, nil)
 | 
						|
 | 
						|
		if !sig.isym.Siggen() {
 | 
						|
			sig.isym.SetSiggen(true)
 | 
						|
			if !eqtype(this, it) || this.Width < int64(Widthptr) {
 | 
						|
				compiling_wrappers = 1
 | 
						|
				genwrapper(it, f, sig.isym, 1)
 | 
						|
				compiling_wrappers = 0
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if !sig.tsym.Siggen() {
 | 
						|
			sig.tsym.SetSiggen(true)
 | 
						|
			if !eqtype(this, t) {
 | 
						|
				compiling_wrappers = 1
 | 
						|
				genwrapper(t, f, sig.tsym, 0)
 | 
						|
				compiling_wrappers = 0
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	sort.Sort(byMethodNameAndPackagePath(ms))
 | 
						|
	return ms
 | 
						|
}
 | 
						|
 | 
						|
// imethods returns the methods of the interface type t, sorted by name.
 | 
						|
func imethods(t *types.Type) []*Sig {
 | 
						|
	var methods []*Sig
 | 
						|
	for _, f := range t.Fields().Slice() {
 | 
						|
		if f.Type.Etype != TFUNC || f.Sym == nil {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		method := f.Sym
 | 
						|
		var sig = Sig{
 | 
						|
			name: method.Name,
 | 
						|
		}
 | 
						|
		if !exportname(method.Name) {
 | 
						|
			if method.Pkg == nil {
 | 
						|
				Fatalf("imethods: missing package")
 | 
						|
			}
 | 
						|
			sig.pkg = method.Pkg
 | 
						|
		}
 | 
						|
 | 
						|
		sig.mtype = f.Type
 | 
						|
		sig.offset = 0
 | 
						|
		sig.type_ = methodfunc(f.Type, nil)
 | 
						|
 | 
						|
		if n := len(methods); n > 0 {
 | 
						|
			last := methods[n-1]
 | 
						|
			if !(siglt(last, &sig)) {
 | 
						|
				Fatalf("sigcmp vs sortinter %s %s", last.name, sig.name)
 | 
						|
			}
 | 
						|
		}
 | 
						|
		methods = append(methods, &sig)
 | 
						|
 | 
						|
		// Compiler can only refer to wrappers for non-blank methods.
 | 
						|
		if isblanksym(method) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		// NOTE(rsc): Perhaps an oversight that
 | 
						|
		// IfaceType.Method is not in the reflect data.
 | 
						|
		// Generate the method body, so that compiled
 | 
						|
		// code can refer to it.
 | 
						|
		isym := methodsym(method, t, false)
 | 
						|
		if !isym.Siggen() {
 | 
						|
			isym.SetSiggen(true)
 | 
						|
			genwrapper(t, f, isym, 0)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return methods
 | 
						|
}
 | 
						|
 | 
						|
func dimportpath(p *types.Pkg) {
 | 
						|
	if p.Pathsym != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// If we are compiling the runtime package, there are two runtime packages around
 | 
						|
	// -- localpkg and Runtimepkg. We don't want to produce import path symbols for
 | 
						|
	// both of them, so just produce one for localpkg.
 | 
						|
	if myimportpath == "runtime" && p == Runtimepkg {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	var str string
 | 
						|
	if p == localpkg {
 | 
						|
		// Note: myimportpath != "", or else dgopkgpath won't call dimportpath.
 | 
						|
		str = myimportpath
 | 
						|
	} else {
 | 
						|
		str = p.Path
 | 
						|
	}
 | 
						|
 | 
						|
	s := Ctxt.Lookup("type..importpath."+p.Prefix+".", 0)
 | 
						|
	ot := dnameData(s, 0, str, "", nil, false)
 | 
						|
	ggloblLSym(s, int32(ot), obj.DUPOK|obj.RODATA)
 | 
						|
	p.Pathsym = s
 | 
						|
}
 | 
						|
 | 
						|
func dgopkgpath(s *types.Sym, ot int, pkg *types.Pkg) int {
 | 
						|
	return dgopkgpathLSym(Linksym(s), ot, pkg)
 | 
						|
}
 | 
						|
 | 
						|
func dgopkgpathLSym(s *obj.LSym, ot int, pkg *types.Pkg) int {
 | 
						|
	if pkg == nil {
 | 
						|
		return duintxxLSym(s, ot, 0, Widthptr)
 | 
						|
	}
 | 
						|
 | 
						|
	if pkg == localpkg && myimportpath == "" {
 | 
						|
		// If we don't know the full import path of the package being compiled
 | 
						|
		// (i.e. -p was not passed on the compiler command line), emit a reference to
 | 
						|
		// type..importpath.""., which the linker will rewrite using the correct import path.
 | 
						|
		// Every package that imports this one directly defines the symbol.
 | 
						|
		// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
 | 
						|
		ns := Ctxt.Lookup(`type..importpath."".`, 0)
 | 
						|
		return dsymptrLSym(s, ot, ns, 0)
 | 
						|
	}
 | 
						|
 | 
						|
	dimportpath(pkg)
 | 
						|
	return dsymptrLSym(s, ot, pkg.Pathsym, 0)
 | 
						|
}
 | 
						|
 | 
						|
// dgopkgpathOffLSym writes an offset relocation in s at offset ot to the pkg path symbol.
 | 
						|
func dgopkgpathOffLSym(s *obj.LSym, ot int, pkg *types.Pkg) int {
 | 
						|
	if pkg == nil {
 | 
						|
		return duintxxLSym(s, ot, 0, 4)
 | 
						|
	}
 | 
						|
	if pkg == localpkg && myimportpath == "" {
 | 
						|
		// If we don't know the full import path of the package being compiled
 | 
						|
		// (i.e. -p was not passed on the compiler command line), emit a reference to
 | 
						|
		// type..importpath.""., which the linker will rewrite using the correct import path.
 | 
						|
		// Every package that imports this one directly defines the symbol.
 | 
						|
		// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
 | 
						|
		ns := Ctxt.Lookup(`type..importpath."".`, 0)
 | 
						|
		return dsymptrOffLSym(s, ot, ns, 0)
 | 
						|
	}
 | 
						|
 | 
						|
	dimportpath(pkg)
 | 
						|
	return dsymptrOffLSym(s, ot, pkg.Pathsym, 0)
 | 
						|
}
 | 
						|
 | 
						|
// isExportedField reports whether a struct field is exported.
 | 
						|
// It also returns the package to use for PkgPath for an unexported field.
 | 
						|
func isExportedField(ft *types.Field) (bool, *types.Pkg) {
 | 
						|
	if ft.Sym != nil && ft.Embedded == 0 {
 | 
						|
		return exportname(ft.Sym.Name), ft.Sym.Pkg
 | 
						|
	} else {
 | 
						|
		if ft.Type.Sym != nil &&
 | 
						|
			(ft.Type.Sym.Pkg == builtinpkg || !exportname(ft.Type.Sym.Name)) {
 | 
						|
			return false, ft.Type.Sym.Pkg
 | 
						|
		} else {
 | 
						|
			return true, nil
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// dnameField dumps a reflect.name for a struct field.
 | 
						|
func dnameField(s *types.Sym, ot int, spkg *types.Pkg, ft *types.Field) int {
 | 
						|
	var name string
 | 
						|
	if ft.Sym != nil {
 | 
						|
		name = ft.Sym.Name
 | 
						|
	}
 | 
						|
	isExported, fpkg := isExportedField(ft)
 | 
						|
	if isExported || fpkg == spkg {
 | 
						|
		fpkg = nil
 | 
						|
	}
 | 
						|
	nsym := dname(name, ft.Note, fpkg, isExported)
 | 
						|
	return dsymptrLSym(Linksym(s), ot, nsym, 0)
 | 
						|
}
 | 
						|
 | 
						|
// dnameData writes the contents of a reflect.name into s at offset ot.
 | 
						|
func dnameData(s *obj.LSym, ot int, name, tag string, pkg *types.Pkg, exported bool) int {
 | 
						|
	if len(name) > 1<<16-1 {
 | 
						|
		Fatalf("name too long: %s", name)
 | 
						|
	}
 | 
						|
	if len(tag) > 1<<16-1 {
 | 
						|
		Fatalf("tag too long: %s", tag)
 | 
						|
	}
 | 
						|
 | 
						|
	// Encode name and tag. See reflect/type.go for details.
 | 
						|
	var bits byte
 | 
						|
	l := 1 + 2 + len(name)
 | 
						|
	if exported {
 | 
						|
		bits |= 1 << 0
 | 
						|
	}
 | 
						|
	if len(tag) > 0 {
 | 
						|
		l += 2 + len(tag)
 | 
						|
		bits |= 1 << 1
 | 
						|
	}
 | 
						|
	if pkg != nil {
 | 
						|
		bits |= 1 << 2
 | 
						|
	}
 | 
						|
	b := make([]byte, l)
 | 
						|
	b[0] = bits
 | 
						|
	b[1] = uint8(len(name) >> 8)
 | 
						|
	b[2] = uint8(len(name))
 | 
						|
	copy(b[3:], name)
 | 
						|
	if len(tag) > 0 {
 | 
						|
		tb := b[3+len(name):]
 | 
						|
		tb[0] = uint8(len(tag) >> 8)
 | 
						|
		tb[1] = uint8(len(tag))
 | 
						|
		copy(tb[2:], tag)
 | 
						|
	}
 | 
						|
 | 
						|
	ot = int(s.WriteBytes(Ctxt, int64(ot), b))
 | 
						|
 | 
						|
	if pkg != nil {
 | 
						|
		ot = dgopkgpathOffLSym(s, ot, pkg)
 | 
						|
	}
 | 
						|
 | 
						|
	return ot
 | 
						|
}
 | 
						|
 | 
						|
var dnameCount int
 | 
						|
 | 
						|
// dname creates a reflect.name for a struct field or method.
 | 
						|
func dname(name, tag string, pkg *types.Pkg, exported bool) *obj.LSym {
 | 
						|
	// Write out data as "type.." to signal two things to the
 | 
						|
	// linker, first that when dynamically linking, the symbol
 | 
						|
	// should be moved to a relro section, and second that the
 | 
						|
	// contents should not be decoded as a type.
 | 
						|
	sname := "type..namedata."
 | 
						|
	if pkg == nil {
 | 
						|
		// In the common case, share data with other packages.
 | 
						|
		if name == "" {
 | 
						|
			if exported {
 | 
						|
				sname += "-noname-exported." + tag
 | 
						|
			} else {
 | 
						|
				sname += "-noname-unexported." + tag
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			sname += name + "." + tag
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		sname = fmt.Sprintf(`%s"".%d`, sname, dnameCount)
 | 
						|
		dnameCount++
 | 
						|
	}
 | 
						|
	s := Ctxt.Lookup(sname, 0)
 | 
						|
	if len(s.P) > 0 {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
	ot := dnameData(s, 0, name, tag, pkg, exported)
 | 
						|
	ggloblLSym(s, int32(ot), obj.DUPOK|obj.RODATA)
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
// dextratype dumps the fields of a runtime.uncommontype.
 | 
						|
// dataAdd is the offset in bytes after the header where the
 | 
						|
// backing array of the []method field is written (by dextratypeData).
 | 
						|
func dextratype(s *types.Sym, ot int, t *types.Type, dataAdd int) int {
 | 
						|
	m := methods(t)
 | 
						|
	if t.Sym == nil && len(m) == 0 {
 | 
						|
		return ot
 | 
						|
	}
 | 
						|
	noff := int(Rnd(int64(ot), int64(Widthptr)))
 | 
						|
	if noff != ot {
 | 
						|
		Fatalf("unexpected alignment in dextratype for %v", t)
 | 
						|
	}
 | 
						|
 | 
						|
	for _, a := range m {
 | 
						|
		dtypesym(a.type_)
 | 
						|
	}
 | 
						|
 | 
						|
	ot = dgopkgpathOffLSym(Linksym(s), ot, typePkg(t))
 | 
						|
 | 
						|
	dataAdd += uncommonSize(t)
 | 
						|
	mcount := len(m)
 | 
						|
	if mcount != int(uint16(mcount)) {
 | 
						|
		Fatalf("too many methods on %v: %d", t, mcount)
 | 
						|
	}
 | 
						|
	if dataAdd != int(uint32(dataAdd)) {
 | 
						|
		Fatalf("methods are too far away on %v: %d", t, dataAdd)
 | 
						|
	}
 | 
						|
 | 
						|
	ot = duint16(s, ot, uint16(mcount))
 | 
						|
	ot = duint16(s, ot, 0)
 | 
						|
	ot = duint32(s, ot, uint32(dataAdd))
 | 
						|
	ot = duint32(s, ot, 0)
 | 
						|
	return ot
 | 
						|
}
 | 
						|
 | 
						|
func typePkg(t *types.Type) *types.Pkg {
 | 
						|
	tsym := t.Sym
 | 
						|
	if tsym == nil {
 | 
						|
		switch t.Etype {
 | 
						|
		case TARRAY, TSLICE, TPTR32, TPTR64, TCHAN:
 | 
						|
			if t.Elem() != nil {
 | 
						|
				tsym = t.Elem().Sym
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if tsym != nil && t != types.Types[t.Etype] && t != types.Errortype {
 | 
						|
		return tsym.Pkg
 | 
						|
	}
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// dextratypeData dumps the backing array for the []method field of
 | 
						|
// runtime.uncommontype.
 | 
						|
func dextratypeData(s *types.Sym, ot int, t *types.Type) int {
 | 
						|
	lsym := Linksym(s)
 | 
						|
	for _, a := range methods(t) {
 | 
						|
		// ../../../../runtime/type.go:/method
 | 
						|
		exported := exportname(a.name)
 | 
						|
		var pkg *types.Pkg
 | 
						|
		if !exported && a.pkg != typePkg(t) {
 | 
						|
			pkg = a.pkg
 | 
						|
		}
 | 
						|
		nsym := dname(a.name, "", pkg, exported)
 | 
						|
 | 
						|
		ot = dsymptrOffLSym(lsym, ot, nsym, 0)
 | 
						|
		ot = dmethodptrOffLSym(lsym, ot, Linksym(dtypesym(a.mtype)))
 | 
						|
		ot = dmethodptrOffLSym(lsym, ot, Linksym(a.isym))
 | 
						|
		ot = dmethodptrOffLSym(lsym, ot, Linksym(a.tsym))
 | 
						|
	}
 | 
						|
	return ot
 | 
						|
}
 | 
						|
 | 
						|
func dmethodptrOffLSym(s *obj.LSym, ot int, x *obj.LSym) int {
 | 
						|
	duintxxLSym(s, ot, 0, 4)
 | 
						|
	r := obj.Addrel(s)
 | 
						|
	r.Off = int32(ot)
 | 
						|
	r.Siz = 4
 | 
						|
	r.Sym = x
 | 
						|
	r.Type = obj.R_METHODOFF
 | 
						|
	return ot + 4
 | 
						|
}
 | 
						|
 | 
						|
var kinds = []int{
 | 
						|
	TINT:        obj.KindInt,
 | 
						|
	TUINT:       obj.KindUint,
 | 
						|
	TINT8:       obj.KindInt8,
 | 
						|
	TUINT8:      obj.KindUint8,
 | 
						|
	TINT16:      obj.KindInt16,
 | 
						|
	TUINT16:     obj.KindUint16,
 | 
						|
	TINT32:      obj.KindInt32,
 | 
						|
	TUINT32:     obj.KindUint32,
 | 
						|
	TINT64:      obj.KindInt64,
 | 
						|
	TUINT64:     obj.KindUint64,
 | 
						|
	TUINTPTR:    obj.KindUintptr,
 | 
						|
	TFLOAT32:    obj.KindFloat32,
 | 
						|
	TFLOAT64:    obj.KindFloat64,
 | 
						|
	TBOOL:       obj.KindBool,
 | 
						|
	TSTRING:     obj.KindString,
 | 
						|
	TPTR32:      obj.KindPtr,
 | 
						|
	TPTR64:      obj.KindPtr,
 | 
						|
	TSTRUCT:     obj.KindStruct,
 | 
						|
	TINTER:      obj.KindInterface,
 | 
						|
	TCHAN:       obj.KindChan,
 | 
						|
	TMAP:        obj.KindMap,
 | 
						|
	TARRAY:      obj.KindArray,
 | 
						|
	TSLICE:      obj.KindSlice,
 | 
						|
	TFUNC:       obj.KindFunc,
 | 
						|
	TCOMPLEX64:  obj.KindComplex64,
 | 
						|
	TCOMPLEX128: obj.KindComplex128,
 | 
						|
	TUNSAFEPTR:  obj.KindUnsafePointer,
 | 
						|
}
 | 
						|
 | 
						|
// typeptrdata returns the length in bytes of the prefix of t
 | 
						|
// containing pointer data. Anything after this offset is scalar data.
 | 
						|
func typeptrdata(t *types.Type) int64 {
 | 
						|
	if !types.Haspointers(t) {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
 | 
						|
	switch t.Etype {
 | 
						|
	case TPTR32,
 | 
						|
		TPTR64,
 | 
						|
		TUNSAFEPTR,
 | 
						|
		TFUNC,
 | 
						|
		TCHAN,
 | 
						|
		TMAP:
 | 
						|
		return int64(Widthptr)
 | 
						|
 | 
						|
	case TSTRING:
 | 
						|
		// struct { byte *str; intgo len; }
 | 
						|
		return int64(Widthptr)
 | 
						|
 | 
						|
	case TINTER:
 | 
						|
		// struct { Itab *tab;	void *data; } or
 | 
						|
		// struct { Type *type; void *data; }
 | 
						|
		return 2 * int64(Widthptr)
 | 
						|
 | 
						|
	case TSLICE:
 | 
						|
		// struct { byte *array; uintgo len; uintgo cap; }
 | 
						|
		return int64(Widthptr)
 | 
						|
 | 
						|
	case TARRAY:
 | 
						|
		// haspointers already eliminated t.NumElem() == 0.
 | 
						|
		return (t.NumElem()-1)*t.Elem().Width + typeptrdata(t.Elem())
 | 
						|
 | 
						|
	case TSTRUCT:
 | 
						|
		// Find the last field that has pointers.
 | 
						|
		var lastPtrField *types.Field
 | 
						|
		for _, t1 := range t.Fields().Slice() {
 | 
						|
			if types.Haspointers(t1.Type) {
 | 
						|
				lastPtrField = t1
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return lastPtrField.Offset + typeptrdata(lastPtrField.Type)
 | 
						|
 | 
						|
	default:
 | 
						|
		Fatalf("typeptrdata: unexpected type, %v", t)
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// tflag is documented in reflect/type.go.
 | 
						|
//
 | 
						|
// tflag values must be kept in sync with copies in:
 | 
						|
//	cmd/compile/internal/gc/reflect.go
 | 
						|
//	cmd/link/internal/ld/decodesym.go
 | 
						|
//	reflect/type.go
 | 
						|
//	runtime/type.go
 | 
						|
const (
 | 
						|
	tflagUncommon  = 1 << 0
 | 
						|
	tflagExtraStar = 1 << 1
 | 
						|
	tflagNamed     = 1 << 2
 | 
						|
)
 | 
						|
 | 
						|
var dcommontype_algarray *types.Sym
 | 
						|
 | 
						|
// dcommontype dumps the contents of a reflect.rtype (runtime._type).
 | 
						|
func dcommontype(s *types.Sym, ot int, t *types.Type) int {
 | 
						|
	if ot != 0 {
 | 
						|
		Fatalf("dcommontype %d", ot)
 | 
						|
	}
 | 
						|
 | 
						|
	sizeofAlg := 2 * Widthptr
 | 
						|
	if dcommontype_algarray == nil {
 | 
						|
		dcommontype_algarray = Runtimepkg.Lookup("algarray")
 | 
						|
	}
 | 
						|
	dowidth(t)
 | 
						|
	alg := algtype(t)
 | 
						|
	var algsym *types.Sym
 | 
						|
	if alg == ASPECIAL || alg == AMEM {
 | 
						|
		algsym = dalgsym(t)
 | 
						|
	}
 | 
						|
 | 
						|
	sptrWeak := true
 | 
						|
	var sptr *types.Sym
 | 
						|
	if !t.IsPtr() || t.PtrBase != nil {
 | 
						|
		tptr := types.NewPtr(t)
 | 
						|
		if t.Sym != nil || methods(tptr) != nil {
 | 
						|
			sptrWeak = false
 | 
						|
		}
 | 
						|
		sptr = dtypesym(tptr)
 | 
						|
	}
 | 
						|
 | 
						|
	gcsym, useGCProg, ptrdata := dgcsym(t)
 | 
						|
 | 
						|
	// ../../../../reflect/type.go:/^type.rtype
 | 
						|
	// actual type structure
 | 
						|
	//	type rtype struct {
 | 
						|
	//		size          uintptr
 | 
						|
	//		ptrdata       uintptr
 | 
						|
	//		hash          uint32
 | 
						|
	//		tflag         tflag
 | 
						|
	//		align         uint8
 | 
						|
	//		fieldAlign    uint8
 | 
						|
	//		kind          uint8
 | 
						|
	//		alg           *typeAlg
 | 
						|
	//		gcdata        *byte
 | 
						|
	//		str           nameOff
 | 
						|
	//		ptrToThis     typeOff
 | 
						|
	//	}
 | 
						|
	ot = duintptr(s, ot, uint64(t.Width))
 | 
						|
	ot = duintptr(s, ot, uint64(ptrdata))
 | 
						|
 | 
						|
	ot = duint32(s, ot, typehash(t))
 | 
						|
 | 
						|
	var tflag uint8
 | 
						|
	if uncommonSize(t) != 0 {
 | 
						|
		tflag |= tflagUncommon
 | 
						|
	}
 | 
						|
	if t.Sym != nil && t.Sym.Name != "" {
 | 
						|
		tflag |= tflagNamed
 | 
						|
	}
 | 
						|
 | 
						|
	exported := false
 | 
						|
	p := t.LongString()
 | 
						|
	// If we're writing out type T,
 | 
						|
	// we are very likely to write out type *T as well.
 | 
						|
	// Use the string "*T"[1:] for "T", so that the two
 | 
						|
	// share storage. This is a cheap way to reduce the
 | 
						|
	// amount of space taken up by reflect strings.
 | 
						|
	if !strings.HasPrefix(p, "*") {
 | 
						|
		p = "*" + p
 | 
						|
		tflag |= tflagExtraStar
 | 
						|
		if t.Sym != nil {
 | 
						|
			exported = exportname(t.Sym.Name)
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if t.Elem() != nil && t.Elem().Sym != nil {
 | 
						|
			exported = exportname(t.Elem().Sym.Name)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ot = duint8(s, ot, tflag)
 | 
						|
 | 
						|
	// runtime (and common sense) expects alignment to be a power of two.
 | 
						|
	i := int(t.Align)
 | 
						|
 | 
						|
	if i == 0 {
 | 
						|
		i = 1
 | 
						|
	}
 | 
						|
	if i&(i-1) != 0 {
 | 
						|
		Fatalf("invalid alignment %d for %v", t.Align, t)
 | 
						|
	}
 | 
						|
	ot = duint8(s, ot, t.Align) // align
 | 
						|
	ot = duint8(s, ot, t.Align) // fieldAlign
 | 
						|
 | 
						|
	i = kinds[t.Etype]
 | 
						|
	if !types.Haspointers(t) {
 | 
						|
		i |= obj.KindNoPointers
 | 
						|
	}
 | 
						|
	if isdirectiface(t) {
 | 
						|
		i |= obj.KindDirectIface
 | 
						|
	}
 | 
						|
	if useGCProg {
 | 
						|
		i |= obj.KindGCProg
 | 
						|
	}
 | 
						|
	ot = duint8(s, ot, uint8(i)) // kind
 | 
						|
	if algsym == nil {
 | 
						|
		ot = dsymptr(s, ot, dcommontype_algarray, int(alg)*sizeofAlg)
 | 
						|
	} else {
 | 
						|
		ot = dsymptr(s, ot, algsym, 0)
 | 
						|
	}
 | 
						|
	ot = dsymptr(s, ot, gcsym, 0) // gcdata
 | 
						|
 | 
						|
	nsym := dname(p, "", nil, exported)
 | 
						|
	ot = dsymptrOffLSym(Linksym(s), ot, nsym, 0) // str
 | 
						|
	// ptrToThis
 | 
						|
	if sptr == nil {
 | 
						|
		ot = duint32(s, ot, 0)
 | 
						|
	} else if sptrWeak {
 | 
						|
		ot = dsymptrWeakOffLSym(Linksym(s), ot, Linksym(sptr))
 | 
						|
	} else {
 | 
						|
		ot = dsymptrOffLSym(Linksym(s), ot, Linksym(sptr), 0)
 | 
						|
	}
 | 
						|
 | 
						|
	return ot
 | 
						|
}
 | 
						|
 | 
						|
func typesym(t *types.Type) *types.Sym {
 | 
						|
	name := t.ShortString()
 | 
						|
 | 
						|
	// Use a separate symbol name for Noalg types for #17752.
 | 
						|
	if a, bad := algtype1(t); a == ANOEQ && bad.Noalg() {
 | 
						|
		name = "noalg." + name
 | 
						|
	}
 | 
						|
 | 
						|
	return typepkg.Lookup(name)
 | 
						|
}
 | 
						|
 | 
						|
// tracksym returns the symbol for tracking use of field/method f, assumed
 | 
						|
// to be a member of struct/interface type t.
 | 
						|
func tracksym(t *types.Type, f *types.Field) *types.Sym {
 | 
						|
	return trackpkg.Lookup(t.ShortString() + "." + f.Sym.Name)
 | 
						|
}
 | 
						|
 | 
						|
func typesymprefix(prefix string, t *types.Type) *types.Sym {
 | 
						|
	p := prefix + "." + t.ShortString()
 | 
						|
	s := typepkg.Lookup(p)
 | 
						|
 | 
						|
	//print("algsym: %s -> %+S\n", p, s);
 | 
						|
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
func typenamesym(t *types.Type) *types.Sym {
 | 
						|
	if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() {
 | 
						|
		Fatalf("typename %v", t)
 | 
						|
	}
 | 
						|
	s := typesym(t)
 | 
						|
	if s.Def == nil {
 | 
						|
		n := newnamel(src.NoXPos, s)
 | 
						|
		n.Type = types.Types[TUINT8]
 | 
						|
		n.Class = PEXTERN
 | 
						|
		n.Typecheck = 1
 | 
						|
		s.Def = asTypesNode(n)
 | 
						|
 | 
						|
		signatlist = append(signatlist, t)
 | 
						|
	}
 | 
						|
 | 
						|
	return asNode(s.Def).Sym
 | 
						|
}
 | 
						|
 | 
						|
func typename(t *types.Type) *Node {
 | 
						|
	s := typenamesym(t)
 | 
						|
	n := nod(OADDR, asNode(s.Def), nil)
 | 
						|
	n.Type = types.NewPtr(asNode(s.Def).Type)
 | 
						|
	n.SetAddable(true)
 | 
						|
	n.Typecheck = 1
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
func itabname(t, itype *types.Type) *Node {
 | 
						|
	if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() || !itype.IsInterface() || itype.IsEmptyInterface() {
 | 
						|
		Fatalf("itabname(%v, %v)", t, itype)
 | 
						|
	}
 | 
						|
	s := itabpkg.Lookup(t.ShortString() + "," + itype.ShortString())
 | 
						|
	if s.Def == nil {
 | 
						|
		n := newname(s)
 | 
						|
		n.Type = types.Types[TUINT8]
 | 
						|
		n.Class = PEXTERN
 | 
						|
		n.Typecheck = 1
 | 
						|
		s.Def = asTypesNode(n)
 | 
						|
 | 
						|
		itabs = append(itabs, itabEntry{t: t, itype: itype, sym: s})
 | 
						|
	}
 | 
						|
 | 
						|
	n := nod(OADDR, asNode(s.Def), nil)
 | 
						|
	n.Type = types.NewPtr(asNode(s.Def).Type)
 | 
						|
	n.SetAddable(true)
 | 
						|
	n.Typecheck = 1
 | 
						|
	return n
 | 
						|
}
 | 
						|
 | 
						|
// isreflexive reports whether t has a reflexive equality operator.
 | 
						|
// That is, if x==x for all x of type t.
 | 
						|
func isreflexive(t *types.Type) bool {
 | 
						|
	switch t.Etype {
 | 
						|
	case TBOOL,
 | 
						|
		TINT,
 | 
						|
		TUINT,
 | 
						|
		TINT8,
 | 
						|
		TUINT8,
 | 
						|
		TINT16,
 | 
						|
		TUINT16,
 | 
						|
		TINT32,
 | 
						|
		TUINT32,
 | 
						|
		TINT64,
 | 
						|
		TUINT64,
 | 
						|
		TUINTPTR,
 | 
						|
		TPTR32,
 | 
						|
		TPTR64,
 | 
						|
		TUNSAFEPTR,
 | 
						|
		TSTRING,
 | 
						|
		TCHAN:
 | 
						|
		return true
 | 
						|
 | 
						|
	case TFLOAT32,
 | 
						|
		TFLOAT64,
 | 
						|
		TCOMPLEX64,
 | 
						|
		TCOMPLEX128,
 | 
						|
		TINTER:
 | 
						|
		return false
 | 
						|
 | 
						|
	case TARRAY:
 | 
						|
		return isreflexive(t.Elem())
 | 
						|
 | 
						|
	case TSTRUCT:
 | 
						|
		for _, t1 := range t.Fields().Slice() {
 | 
						|
			if !isreflexive(t1.Type) {
 | 
						|
				return false
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return true
 | 
						|
 | 
						|
	default:
 | 
						|
		Fatalf("bad type for map key: %v", t)
 | 
						|
		return false
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// needkeyupdate reports whether map updates with t as a key
 | 
						|
// need the key to be updated.
 | 
						|
func needkeyupdate(t *types.Type) bool {
 | 
						|
	switch t.Etype {
 | 
						|
	case TBOOL,
 | 
						|
		TINT,
 | 
						|
		TUINT,
 | 
						|
		TINT8,
 | 
						|
		TUINT8,
 | 
						|
		TINT16,
 | 
						|
		TUINT16,
 | 
						|
		TINT32,
 | 
						|
		TUINT32,
 | 
						|
		TINT64,
 | 
						|
		TUINT64,
 | 
						|
		TUINTPTR,
 | 
						|
		TPTR32,
 | 
						|
		TPTR64,
 | 
						|
		TUNSAFEPTR,
 | 
						|
		TCHAN:
 | 
						|
		return false
 | 
						|
 | 
						|
	case TFLOAT32, // floats can be +0/-0
 | 
						|
		TFLOAT64,
 | 
						|
		TCOMPLEX64,
 | 
						|
		TCOMPLEX128,
 | 
						|
		TINTER,
 | 
						|
		TSTRING: // strings might have smaller backing stores
 | 
						|
		return true
 | 
						|
 | 
						|
	case TARRAY:
 | 
						|
		return needkeyupdate(t.Elem())
 | 
						|
 | 
						|
	case TSTRUCT:
 | 
						|
		for _, t1 := range t.Fields().Slice() {
 | 
						|
			if needkeyupdate(t1.Type) {
 | 
						|
				return true
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return false
 | 
						|
 | 
						|
	default:
 | 
						|
		Fatalf("bad type for map key: %v", t)
 | 
						|
		return true
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func dtypesym(t *types.Type) *types.Sym {
 | 
						|
	// Replace byte, rune aliases with real type.
 | 
						|
	// They've been separate internally to make error messages
 | 
						|
	// better, but we have to merge them in the reflect tables.
 | 
						|
	if t == types.Bytetype || t == types.Runetype {
 | 
						|
		t = types.Types[t.Etype]
 | 
						|
	}
 | 
						|
 | 
						|
	if t.IsUntyped() {
 | 
						|
		Fatalf("dtypesym %v", t)
 | 
						|
	}
 | 
						|
 | 
						|
	s := typesym(t)
 | 
						|
	if s.Siggen() {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
	s.SetSiggen(true)
 | 
						|
 | 
						|
	// special case (look for runtime below):
 | 
						|
	// when compiling package runtime,
 | 
						|
	// emit the type structures for int, float, etc.
 | 
						|
	tbase := t
 | 
						|
 | 
						|
	if t.IsPtr() && t.Sym == nil && t.Elem().Sym != nil {
 | 
						|
		tbase = t.Elem()
 | 
						|
	}
 | 
						|
	dupok := 0
 | 
						|
	if tbase.Sym == nil {
 | 
						|
		dupok = obj.DUPOK
 | 
						|
	}
 | 
						|
 | 
						|
	if myimportpath == "runtime" && (tbase == types.Types[tbase.Etype] || tbase == types.Bytetype || tbase == types.Runetype || tbase == types.Errortype) { // int, float, etc
 | 
						|
		goto ok
 | 
						|
	}
 | 
						|
 | 
						|
	// named types from other files are defined only by those files
 | 
						|
	if tbase.Sym != nil && !tbase.Local() {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
	if isforw[tbase.Etype] {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
 | 
						|
ok:
 | 
						|
	ot := 0
 | 
						|
	switch t.Etype {
 | 
						|
	default:
 | 
						|
		ot = dcommontype(s, ot, t)
 | 
						|
		ot = dextratype(s, ot, t, 0)
 | 
						|
 | 
						|
	case TARRAY:
 | 
						|
		// ../../../../runtime/type.go:/arrayType
 | 
						|
		s1 := dtypesym(t.Elem())
 | 
						|
		t2 := types.NewSlice(t.Elem())
 | 
						|
		s2 := dtypesym(t2)
 | 
						|
		ot = dcommontype(s, ot, t)
 | 
						|
		ot = dsymptr(s, ot, s1, 0)
 | 
						|
		ot = dsymptr(s, ot, s2, 0)
 | 
						|
		ot = duintptr(s, ot, uint64(t.NumElem()))
 | 
						|
		ot = dextratype(s, ot, t, 0)
 | 
						|
 | 
						|
	case TSLICE:
 | 
						|
		// ../../../../runtime/type.go:/sliceType
 | 
						|
		s1 := dtypesym(t.Elem())
 | 
						|
		ot = dcommontype(s, ot, t)
 | 
						|
		ot = dsymptr(s, ot, s1, 0)
 | 
						|
		ot = dextratype(s, ot, t, 0)
 | 
						|
 | 
						|
	case TCHAN:
 | 
						|
		// ../../../../runtime/type.go:/chanType
 | 
						|
		s1 := dtypesym(t.Elem())
 | 
						|
		ot = dcommontype(s, ot, t)
 | 
						|
		ot = dsymptr(s, ot, s1, 0)
 | 
						|
		ot = duintptr(s, ot, uint64(t.ChanDir()))
 | 
						|
		ot = dextratype(s, ot, t, 0)
 | 
						|
 | 
						|
	case TFUNC:
 | 
						|
		for _, t1 := range t.Recvs().Fields().Slice() {
 | 
						|
			dtypesym(t1.Type)
 | 
						|
		}
 | 
						|
		isddd := false
 | 
						|
		for _, t1 := range t.Params().Fields().Slice() {
 | 
						|
			isddd = t1.Isddd()
 | 
						|
			dtypesym(t1.Type)
 | 
						|
		}
 | 
						|
		for _, t1 := range t.Results().Fields().Slice() {
 | 
						|
			dtypesym(t1.Type)
 | 
						|
		}
 | 
						|
 | 
						|
		ot = dcommontype(s, ot, t)
 | 
						|
		inCount := t.Recvs().NumFields() + t.Params().NumFields()
 | 
						|
		outCount := t.Results().NumFields()
 | 
						|
		if isddd {
 | 
						|
			outCount |= 1 << 15
 | 
						|
		}
 | 
						|
		ot = duint16(s, ot, uint16(inCount))
 | 
						|
		ot = duint16(s, ot, uint16(outCount))
 | 
						|
		if Widthptr == 8 {
 | 
						|
			ot += 4 // align for *rtype
 | 
						|
		}
 | 
						|
 | 
						|
		dataAdd := (inCount + t.Results().NumFields()) * Widthptr
 | 
						|
		ot = dextratype(s, ot, t, dataAdd)
 | 
						|
 | 
						|
		// Array of rtype pointers follows funcType.
 | 
						|
		for _, t1 := range t.Recvs().Fields().Slice() {
 | 
						|
			ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
 | 
						|
		}
 | 
						|
		for _, t1 := range t.Params().Fields().Slice() {
 | 
						|
			ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
 | 
						|
		}
 | 
						|
		for _, t1 := range t.Results().Fields().Slice() {
 | 
						|
			ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
 | 
						|
		}
 | 
						|
 | 
						|
	case TINTER:
 | 
						|
		m := imethods(t)
 | 
						|
		n := len(m)
 | 
						|
		for _, a := range m {
 | 
						|
			dtypesym(a.type_)
 | 
						|
		}
 | 
						|
 | 
						|
		// ../../../../runtime/type.go:/interfaceType
 | 
						|
		ot = dcommontype(s, ot, t)
 | 
						|
 | 
						|
		var tpkg *types.Pkg
 | 
						|
		if t.Sym != nil && t != types.Types[t.Etype] && t != types.Errortype {
 | 
						|
			tpkg = t.Sym.Pkg
 | 
						|
		}
 | 
						|
		ot = dgopkgpath(s, ot, tpkg)
 | 
						|
 | 
						|
		ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint+uncommonSize(t))
 | 
						|
		ot = duintxx(s, ot, uint64(n), Widthint)
 | 
						|
		ot = duintxx(s, ot, uint64(n), Widthint)
 | 
						|
		dataAdd := imethodSize() * n
 | 
						|
		ot = dextratype(s, ot, t, dataAdd)
 | 
						|
 | 
						|
		lsym := Linksym(s)
 | 
						|
		for _, a := range m {
 | 
						|
			// ../../../../runtime/type.go:/imethod
 | 
						|
			exported := exportname(a.name)
 | 
						|
			var pkg *types.Pkg
 | 
						|
			if !exported && a.pkg != tpkg {
 | 
						|
				pkg = a.pkg
 | 
						|
			}
 | 
						|
			nsym := dname(a.name, "", pkg, exported)
 | 
						|
 | 
						|
			ot = dsymptrOffLSym(lsym, ot, nsym, 0)
 | 
						|
			ot = dsymptrOffLSym(lsym, ot, Linksym(dtypesym(a.type_)), 0)
 | 
						|
		}
 | 
						|
 | 
						|
	// ../../../../runtime/type.go:/mapType
 | 
						|
	case TMAP:
 | 
						|
		s1 := dtypesym(t.Key())
 | 
						|
		s2 := dtypesym(t.Val())
 | 
						|
		s3 := dtypesym(mapbucket(t))
 | 
						|
		s4 := dtypesym(hmap(t))
 | 
						|
		ot = dcommontype(s, ot, t)
 | 
						|
		ot = dsymptr(s, ot, s1, 0)
 | 
						|
		ot = dsymptr(s, ot, s2, 0)
 | 
						|
		ot = dsymptr(s, ot, s3, 0)
 | 
						|
		ot = dsymptr(s, ot, s4, 0)
 | 
						|
		if t.Key().Width > MAXKEYSIZE {
 | 
						|
			ot = duint8(s, ot, uint8(Widthptr))
 | 
						|
			ot = duint8(s, ot, 1) // indirect
 | 
						|
		} else {
 | 
						|
			ot = duint8(s, ot, uint8(t.Key().Width))
 | 
						|
			ot = duint8(s, ot, 0) // not indirect
 | 
						|
		}
 | 
						|
 | 
						|
		if t.Val().Width > MAXVALSIZE {
 | 
						|
			ot = duint8(s, ot, uint8(Widthptr))
 | 
						|
			ot = duint8(s, ot, 1) // indirect
 | 
						|
		} else {
 | 
						|
			ot = duint8(s, ot, uint8(t.Val().Width))
 | 
						|
			ot = duint8(s, ot, 0) // not indirect
 | 
						|
		}
 | 
						|
 | 
						|
		ot = duint16(s, ot, uint16(mapbucket(t).Width))
 | 
						|
		ot = duint8(s, ot, uint8(obj.Bool2int(isreflexive(t.Key()))))
 | 
						|
		ot = duint8(s, ot, uint8(obj.Bool2int(needkeyupdate(t.Key()))))
 | 
						|
		ot = dextratype(s, ot, t, 0)
 | 
						|
 | 
						|
	case TPTR32, TPTR64:
 | 
						|
		if t.Elem().Etype == TANY {
 | 
						|
			// ../../../../runtime/type.go:/UnsafePointerType
 | 
						|
			ot = dcommontype(s, ot, t)
 | 
						|
			ot = dextratype(s, ot, t, 0)
 | 
						|
 | 
						|
			break
 | 
						|
		}
 | 
						|
 | 
						|
		// ../../../../runtime/type.go:/ptrType
 | 
						|
		s1 := dtypesym(t.Elem())
 | 
						|
 | 
						|
		ot = dcommontype(s, ot, t)
 | 
						|
		ot = dsymptr(s, ot, s1, 0)
 | 
						|
		ot = dextratype(s, ot, t, 0)
 | 
						|
 | 
						|
	// ../../../../runtime/type.go:/structType
 | 
						|
	// for security, only the exported fields.
 | 
						|
	case TSTRUCT:
 | 
						|
		n := 0
 | 
						|
 | 
						|
		for _, t1 := range t.Fields().Slice() {
 | 
						|
			dtypesym(t1.Type)
 | 
						|
			n++
 | 
						|
		}
 | 
						|
 | 
						|
		ot = dcommontype(s, ot, t)
 | 
						|
		pkg := localpkg
 | 
						|
		if t.Sym != nil {
 | 
						|
			pkg = t.Sym.Pkg
 | 
						|
		} else {
 | 
						|
			// Unnamed type. Grab the package from the first field, if any.
 | 
						|
			for _, f := range t.Fields().Slice() {
 | 
						|
				if f.Embedded != 0 {
 | 
						|
					continue
 | 
						|
				}
 | 
						|
				pkg = f.Sym.Pkg
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
		ot = dgopkgpath(s, ot, pkg)
 | 
						|
		ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint+uncommonSize(t))
 | 
						|
		ot = duintxx(s, ot, uint64(n), Widthint)
 | 
						|
		ot = duintxx(s, ot, uint64(n), Widthint)
 | 
						|
 | 
						|
		dataAdd := n * structfieldSize()
 | 
						|
		ot = dextratype(s, ot, t, dataAdd)
 | 
						|
 | 
						|
		for _, f := range t.Fields().Slice() {
 | 
						|
			// ../../../../runtime/type.go:/structField
 | 
						|
			ot = dnameField(s, ot, pkg, f)
 | 
						|
			ot = dsymptr(s, ot, dtypesym(f.Type), 0)
 | 
						|
			offsetAnon := uint64(f.Offset) << 1
 | 
						|
			if offsetAnon>>1 != uint64(f.Offset) {
 | 
						|
				Fatalf("%v: bad field offset for %s", t, f.Sym.Name)
 | 
						|
			}
 | 
						|
			if f.Embedded != 0 {
 | 
						|
				offsetAnon |= 1
 | 
						|
			}
 | 
						|
			ot = duintptr(s, ot, offsetAnon)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	ot = dextratypeData(s, ot, t)
 | 
						|
	ggloblsym(s, int32(ot), int16(dupok|obj.RODATA))
 | 
						|
 | 
						|
	// The linker will leave a table of all the typelinks for
 | 
						|
	// types in the binary, so the runtime can find them.
 | 
						|
	//
 | 
						|
	// When buildmode=shared, all types are in typelinks so the
 | 
						|
	// runtime can deduplicate type pointers.
 | 
						|
	keep := Ctxt.Flag_dynlink
 | 
						|
	if !keep && t.Sym == nil {
 | 
						|
		// For an unnamed type, we only need the link if the type can
 | 
						|
		// be created at run time by reflect.PtrTo and similar
 | 
						|
		// functions. If the type exists in the program, those
 | 
						|
		// functions must return the existing type structure rather
 | 
						|
		// than creating a new one.
 | 
						|
		switch t.Etype {
 | 
						|
		case TPTR32, TPTR64, TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRUCT:
 | 
						|
			keep = true
 | 
						|
		}
 | 
						|
	}
 | 
						|
	s.Lsym.Set(obj.AttrMakeTypelink, keep)
 | 
						|
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
// for each itabEntry, gather the methods on
 | 
						|
// the concrete type that implement the interface
 | 
						|
func peekitabs() {
 | 
						|
	for i := range itabs {
 | 
						|
		tab := &itabs[i]
 | 
						|
		methods := genfun(tab.t, tab.itype)
 | 
						|
		if len(methods) == 0 {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		tab.lsym = Linksym(tab.sym)
 | 
						|
		tab.entries = methods
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// for the given concrete type and interface
 | 
						|
// type, return the (sorted) set of methods
 | 
						|
// on the concrete type that implement the interface
 | 
						|
func genfun(t, it *types.Type) []*obj.LSym {
 | 
						|
	if t == nil || it == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	sigs := imethods(it)
 | 
						|
	methods := methods(t)
 | 
						|
	out := make([]*obj.LSym, 0, len(sigs))
 | 
						|
	if len(sigs) == 0 {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	// both sigs and methods are sorted by name,
 | 
						|
	// so we can find the intersect in a single pass
 | 
						|
	for _, m := range methods {
 | 
						|
		if m.name == sigs[0].name {
 | 
						|
			out = append(out, Linksym(m.isym))
 | 
						|
			sigs = sigs[1:]
 | 
						|
			if len(sigs) == 0 {
 | 
						|
				break
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return out
 | 
						|
}
 | 
						|
 | 
						|
// itabsym uses the information gathered in
 | 
						|
// peekitabs to de-virtualize interface methods.
 | 
						|
// Since this is called by the SSA backend, it shouldn't
 | 
						|
// generate additional Nodes, Syms, etc.
 | 
						|
func itabsym(it *obj.LSym, offset int64) *obj.LSym {
 | 
						|
	var syms []*obj.LSym
 | 
						|
	if it == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	for i := range itabs {
 | 
						|
		e := &itabs[i]
 | 
						|
		if e.lsym == it {
 | 
						|
			syms = e.entries
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if syms == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	// keep this arithmetic in sync with *itab layout
 | 
						|
	methodnum := int((offset - 3*int64(Widthptr) - 8) / int64(Widthptr))
 | 
						|
	if methodnum >= len(syms) {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return syms[methodnum]
 | 
						|
}
 | 
						|
 | 
						|
func dumptypestructs() {
 | 
						|
	// copy types from externdcl list to signatlist
 | 
						|
	for _, n := range externdcl {
 | 
						|
		if n.Op == OTYPE {
 | 
						|
			signatlist = append(signatlist, n.Type)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Process signatlist.  This can't use range, as entries are
 | 
						|
	// added to the list while it is being processed.
 | 
						|
	for i := 0; i < len(signatlist); i++ {
 | 
						|
		t := signatlist[i]
 | 
						|
		dtypesym(t)
 | 
						|
		if t.Sym != nil {
 | 
						|
			dtypesym(types.NewPtr(t))
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// process itabs
 | 
						|
	for _, i := range itabs {
 | 
						|
		// dump empty itab symbol into i.sym
 | 
						|
		// type itab struct {
 | 
						|
		//   inter  *interfacetype
 | 
						|
		//   _type  *_type
 | 
						|
		//   link   *itab
 | 
						|
		//   hash   uint32
 | 
						|
		//   bad    bool
 | 
						|
		//   inhash bool
 | 
						|
		//   unused [2]byte
 | 
						|
		//   fun    [1]uintptr // variable sized
 | 
						|
		// }
 | 
						|
		o := dsymptr(i.sym, 0, dtypesym(i.itype), 0)
 | 
						|
		o = dsymptr(i.sym, o, dtypesym(i.t), 0)
 | 
						|
		o += Widthptr                          // skip link field
 | 
						|
		o = duint32(i.sym, o, typehash(i.t))   // copy of type hash
 | 
						|
		o += 4                                 // skip bad/inhash/unused fields
 | 
						|
		o += len(imethods(i.itype)) * Widthptr // skip fun method pointers
 | 
						|
		// at runtime the itab will contain pointers to types, other itabs and
 | 
						|
		// method functions. None are allocated on heap, so we can use obj.NOPTR.
 | 
						|
		ggloblsym(i.sym, int32(o), int16(obj.DUPOK|obj.NOPTR))
 | 
						|
 | 
						|
		ilink := itablinkpkg.Lookup(i.t.ShortString() + "," + i.itype.ShortString())
 | 
						|
		dsymptr(ilink, 0, i.sym, 0)
 | 
						|
		ggloblsym(ilink, int32(Widthptr), int16(obj.DUPOK|obj.RODATA))
 | 
						|
	}
 | 
						|
 | 
						|
	// process ptabs
 | 
						|
	if localpkg.Name == "main" && len(ptabs) > 0 {
 | 
						|
		ot := 0
 | 
						|
		s := Ctxt.Lookup("go.plugin.tabs", 0)
 | 
						|
		for _, p := range ptabs {
 | 
						|
			// Dump ptab symbol into go.pluginsym package.
 | 
						|
			//
 | 
						|
			// type ptab struct {
 | 
						|
			//	name nameOff
 | 
						|
			//	typ  typeOff // pointer to symbol
 | 
						|
			// }
 | 
						|
			nsym := dname(p.s.Name, "", nil, true)
 | 
						|
			ot = dsymptrOffLSym(s, ot, nsym, 0)
 | 
						|
			ot = dsymptrOffLSym(s, ot, Linksym(dtypesym(p.t)), 0)
 | 
						|
		}
 | 
						|
		ggloblLSym(s, int32(ot), int16(obj.RODATA))
 | 
						|
 | 
						|
		ot = 0
 | 
						|
		s = Ctxt.Lookup("go.plugin.exports", 0)
 | 
						|
		for _, p := range ptabs {
 | 
						|
			ot = dsymptrLSym(s, ot, Linksym(p.s), 0)
 | 
						|
		}
 | 
						|
		ggloblLSym(s, int32(ot), int16(obj.RODATA))
 | 
						|
	}
 | 
						|
 | 
						|
	// generate import strings for imported packages
 | 
						|
	for _, p := range pkgs {
 | 
						|
		if p.Direct {
 | 
						|
			dimportpath(p)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// do basic types if compiling package runtime.
 | 
						|
	// they have to be in at least one package,
 | 
						|
	// and runtime is always loaded implicitly,
 | 
						|
	// so this is as good as any.
 | 
						|
	// another possible choice would be package main,
 | 
						|
	// but using runtime means fewer copies in .6 files.
 | 
						|
	if myimportpath == "runtime" {
 | 
						|
		for i := types.EType(1); i <= TBOOL; i++ {
 | 
						|
			dtypesym(types.NewPtr(types.Types[i]))
 | 
						|
		}
 | 
						|
		dtypesym(types.NewPtr(types.Types[TSTRING]))
 | 
						|
		dtypesym(types.NewPtr(types.Types[TUNSAFEPTR]))
 | 
						|
 | 
						|
		// emit type structs for error and func(error) string.
 | 
						|
		// The latter is the type of an auto-generated wrapper.
 | 
						|
		dtypesym(types.NewPtr(types.Errortype))
 | 
						|
 | 
						|
		dtypesym(functype(nil, []*Node{anonfield(types.Errortype)}, []*Node{anonfield(types.Types[TSTRING])}))
 | 
						|
 | 
						|
		// add paths for runtime and main, which 6l imports implicitly.
 | 
						|
		dimportpath(Runtimepkg)
 | 
						|
 | 
						|
		if flag_race {
 | 
						|
			dimportpath(racepkg)
 | 
						|
		}
 | 
						|
		if flag_msan {
 | 
						|
			dimportpath(msanpkg)
 | 
						|
		}
 | 
						|
		dimportpath(mkpkg("main"))
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
type pkgByPath []*types.Pkg
 | 
						|
 | 
						|
func (a pkgByPath) Len() int           { return len(a) }
 | 
						|
func (a pkgByPath) Less(i, j int) bool { return a[i].Path < a[j].Path }
 | 
						|
func (a pkgByPath) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
 | 
						|
 | 
						|
func dalgsym(t *types.Type) *types.Sym {
 | 
						|
	var s *types.Sym
 | 
						|
	var hashfunc *types.Sym
 | 
						|
	var eqfunc *types.Sym
 | 
						|
 | 
						|
	// dalgsym is only called for a type that needs an algorithm table,
 | 
						|
	// which implies that the type is comparable (or else it would use ANOEQ).
 | 
						|
 | 
						|
	if algtype(t) == AMEM {
 | 
						|
		// we use one algorithm table for all AMEM types of a given size
 | 
						|
		p := fmt.Sprintf(".alg%d", t.Width)
 | 
						|
 | 
						|
		s = typepkg.Lookup(p)
 | 
						|
 | 
						|
		if s.AlgGen() {
 | 
						|
			return s
 | 
						|
		}
 | 
						|
		s.SetAlgGen(true)
 | 
						|
 | 
						|
		// make hash closure
 | 
						|
		p = fmt.Sprintf(".hashfunc%d", t.Width)
 | 
						|
 | 
						|
		hashfunc = typepkg.Lookup(p)
 | 
						|
 | 
						|
		ot := 0
 | 
						|
		ot = dsymptr(hashfunc, ot, Runtimepkg.Lookup("memhash_varlen"), 0)
 | 
						|
		ot = duintxx(hashfunc, ot, uint64(t.Width), Widthptr) // size encoded in closure
 | 
						|
		ggloblsym(hashfunc, int32(ot), obj.DUPOK|obj.RODATA)
 | 
						|
 | 
						|
		// make equality closure
 | 
						|
		p = fmt.Sprintf(".eqfunc%d", t.Width)
 | 
						|
 | 
						|
		eqfunc = typepkg.Lookup(p)
 | 
						|
 | 
						|
		ot = 0
 | 
						|
		ot = dsymptr(eqfunc, ot, Runtimepkg.Lookup("memequal_varlen"), 0)
 | 
						|
		ot = duintxx(eqfunc, ot, uint64(t.Width), Widthptr)
 | 
						|
		ggloblsym(eqfunc, int32(ot), obj.DUPOK|obj.RODATA)
 | 
						|
	} else {
 | 
						|
		// generate an alg table specific to this type
 | 
						|
		s = typesymprefix(".alg", t)
 | 
						|
 | 
						|
		hash := typesymprefix(".hash", t)
 | 
						|
		eq := typesymprefix(".eq", t)
 | 
						|
		hashfunc = typesymprefix(".hashfunc", t)
 | 
						|
		eqfunc = typesymprefix(".eqfunc", t)
 | 
						|
 | 
						|
		genhash(hash, t)
 | 
						|
		geneq(eq, t)
 | 
						|
 | 
						|
		// make Go funcs (closures) for calling hash and equal from Go
 | 
						|
		dsymptr(hashfunc, 0, hash, 0)
 | 
						|
 | 
						|
		ggloblsym(hashfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
 | 
						|
		dsymptr(eqfunc, 0, eq, 0)
 | 
						|
		ggloblsym(eqfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
 | 
						|
	}
 | 
						|
 | 
						|
	// ../../../../runtime/alg.go:/typeAlg
 | 
						|
	ot := 0
 | 
						|
 | 
						|
	ot = dsymptr(s, ot, hashfunc, 0)
 | 
						|
	ot = dsymptr(s, ot, eqfunc, 0)
 | 
						|
	ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA)
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
// maxPtrmaskBytes is the maximum length of a GC ptrmask bitmap,
 | 
						|
// which holds 1-bit entries describing where pointers are in a given type.
 | 
						|
// Above this length, the GC information is recorded as a GC program,
 | 
						|
// which can express repetition compactly. In either form, the
 | 
						|
// information is used by the runtime to initialize the heap bitmap,
 | 
						|
// and for large types (like 128 or more words), they are roughly the
 | 
						|
// same speed. GC programs are never much larger and often more
 | 
						|
// compact. (If large arrays are involved, they can be arbitrarily
 | 
						|
// more compact.)
 | 
						|
//
 | 
						|
// The cutoff must be large enough that any allocation large enough to
 | 
						|
// use a GC program is large enough that it does not share heap bitmap
 | 
						|
// bytes with any other objects, allowing the GC program execution to
 | 
						|
// assume an aligned start and not use atomic operations. In the current
 | 
						|
// runtime, this means all malloc size classes larger than the cutoff must
 | 
						|
// be multiples of four words. On 32-bit systems that's 16 bytes, and
 | 
						|
// all size classes >= 16 bytes are 16-byte aligned, so no real constraint.
 | 
						|
// On 64-bit systems, that's 32 bytes, and 32-byte alignment is guaranteed
 | 
						|
// for size classes >= 256 bytes. On a 64-bit system, 256 bytes allocated
 | 
						|
// is 32 pointers, the bits for which fit in 4 bytes. So maxPtrmaskBytes
 | 
						|
// must be >= 4.
 | 
						|
//
 | 
						|
// We used to use 16 because the GC programs do have some constant overhead
 | 
						|
// to get started, and processing 128 pointers seems to be enough to
 | 
						|
// amortize that overhead well.
 | 
						|
//
 | 
						|
// To make sure that the runtime's chansend can call typeBitsBulkBarrier,
 | 
						|
// we raised the limit to 2048, so that even 32-bit systems are guaranteed to
 | 
						|
// use bitmaps for objects up to 64 kB in size.
 | 
						|
//
 | 
						|
// Also known to reflect/type.go.
 | 
						|
//
 | 
						|
const maxPtrmaskBytes = 2048
 | 
						|
 | 
						|
// dgcsym emits and returns a data symbol containing GC information for type t,
 | 
						|
// along with a boolean reporting whether the UseGCProg bit should be set in
 | 
						|
// the type kind, and the ptrdata field to record in the reflect type information.
 | 
						|
func dgcsym(t *types.Type) (sym *types.Sym, useGCProg bool, ptrdata int64) {
 | 
						|
	ptrdata = typeptrdata(t)
 | 
						|
	if ptrdata/int64(Widthptr) <= maxPtrmaskBytes*8 {
 | 
						|
		sym = dgcptrmask(t)
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	useGCProg = true
 | 
						|
	sym, ptrdata = dgcprog(t)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// dgcptrmask emits and returns the symbol containing a pointer mask for type t.
 | 
						|
func dgcptrmask(t *types.Type) *types.Sym {
 | 
						|
	ptrmask := make([]byte, (typeptrdata(t)/int64(Widthptr)+7)/8)
 | 
						|
	fillptrmask(t, ptrmask)
 | 
						|
	p := fmt.Sprintf("gcbits.%x", ptrmask)
 | 
						|
 | 
						|
	sym := Runtimepkg.Lookup(p)
 | 
						|
	if !sym.Uniq() {
 | 
						|
		sym.SetUniq(true)
 | 
						|
		for i, x := range ptrmask {
 | 
						|
			duint8(sym, i, x)
 | 
						|
		}
 | 
						|
		ggloblsym(sym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL)
 | 
						|
	}
 | 
						|
	return sym
 | 
						|
}
 | 
						|
 | 
						|
// fillptrmask fills in ptrmask with 1s corresponding to the
 | 
						|
// word offsets in t that hold pointers.
 | 
						|
// ptrmask is assumed to fit at least typeptrdata(t)/Widthptr bits.
 | 
						|
func fillptrmask(t *types.Type, ptrmask []byte) {
 | 
						|
	for i := range ptrmask {
 | 
						|
		ptrmask[i] = 0
 | 
						|
	}
 | 
						|
	if !types.Haspointers(t) {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	vec := bvalloc(8 * int32(len(ptrmask)))
 | 
						|
	xoffset := int64(0)
 | 
						|
	onebitwalktype1(t, &xoffset, vec)
 | 
						|
 | 
						|
	nptr := typeptrdata(t) / int64(Widthptr)
 | 
						|
	for i := int64(0); i < nptr; i++ {
 | 
						|
		if vec.Get(int32(i)) {
 | 
						|
			ptrmask[i/8] |= 1 << (uint(i) % 8)
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// dgcprog emits and returns the symbol containing a GC program for type t
 | 
						|
// along with the size of the data described by the program (in the range [typeptrdata(t), t.Width]).
 | 
						|
// In practice, the size is typeptrdata(t) except for non-trivial arrays.
 | 
						|
// For non-trivial arrays, the program describes the full t.Width size.
 | 
						|
func dgcprog(t *types.Type) (*types.Sym, int64) {
 | 
						|
	dowidth(t)
 | 
						|
	if t.Width == BADWIDTH {
 | 
						|
		Fatalf("dgcprog: %v badwidth", t)
 | 
						|
	}
 | 
						|
	sym := typesymprefix(".gcprog", t)
 | 
						|
	var p GCProg
 | 
						|
	p.init(sym)
 | 
						|
	p.emit(t, 0)
 | 
						|
	offset := p.w.BitIndex() * int64(Widthptr)
 | 
						|
	p.end()
 | 
						|
	if ptrdata := typeptrdata(t); offset < ptrdata || offset > t.Width {
 | 
						|
		Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Width)
 | 
						|
	}
 | 
						|
	return sym, offset
 | 
						|
}
 | 
						|
 | 
						|
type GCProg struct {
 | 
						|
	sym    *types.Sym
 | 
						|
	symoff int
 | 
						|
	w      gcprog.Writer
 | 
						|
}
 | 
						|
 | 
						|
var Debug_gcprog int // set by -d gcprog
 | 
						|
 | 
						|
func (p *GCProg) init(sym *types.Sym) {
 | 
						|
	p.sym = sym
 | 
						|
	p.symoff = 4 // first 4 bytes hold program length
 | 
						|
	p.w.Init(p.writeByte)
 | 
						|
	if Debug_gcprog > 0 {
 | 
						|
		fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", sym)
 | 
						|
		p.w.Debug(os.Stderr)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (p *GCProg) writeByte(x byte) {
 | 
						|
	p.symoff = duint8(p.sym, p.symoff, x)
 | 
						|
}
 | 
						|
 | 
						|
func (p *GCProg) end() {
 | 
						|
	p.w.End()
 | 
						|
	duint32(p.sym, 0, uint32(p.symoff-4))
 | 
						|
	ggloblsym(p.sym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL)
 | 
						|
	if Debug_gcprog > 0 {
 | 
						|
		fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.sym)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (p *GCProg) emit(t *types.Type, offset int64) {
 | 
						|
	dowidth(t)
 | 
						|
	if !types.Haspointers(t) {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if t.Width == int64(Widthptr) {
 | 
						|
		p.w.Ptr(offset / int64(Widthptr))
 | 
						|
		return
 | 
						|
	}
 | 
						|
	switch t.Etype {
 | 
						|
	default:
 | 
						|
		Fatalf("GCProg.emit: unexpected type %v", t)
 | 
						|
 | 
						|
	case TSTRING:
 | 
						|
		p.w.Ptr(offset / int64(Widthptr))
 | 
						|
 | 
						|
	case TINTER:
 | 
						|
		p.w.Ptr(offset / int64(Widthptr))
 | 
						|
		p.w.Ptr(offset/int64(Widthptr) + 1)
 | 
						|
 | 
						|
	case TSLICE:
 | 
						|
		p.w.Ptr(offset / int64(Widthptr))
 | 
						|
 | 
						|
	case TARRAY:
 | 
						|
		if t.NumElem() == 0 {
 | 
						|
			// should have been handled by haspointers check above
 | 
						|
			Fatalf("GCProg.emit: empty array")
 | 
						|
		}
 | 
						|
 | 
						|
		// Flatten array-of-array-of-array to just a big array by multiplying counts.
 | 
						|
		count := t.NumElem()
 | 
						|
		elem := t.Elem()
 | 
						|
		for elem.IsArray() {
 | 
						|
			count *= elem.NumElem()
 | 
						|
			elem = elem.Elem()
 | 
						|
		}
 | 
						|
 | 
						|
		if !p.w.ShouldRepeat(elem.Width/int64(Widthptr), count) {
 | 
						|
			// Cheaper to just emit the bits.
 | 
						|
			for i := int64(0); i < count; i++ {
 | 
						|
				p.emit(elem, offset+i*elem.Width)
 | 
						|
			}
 | 
						|
			return
 | 
						|
		}
 | 
						|
		p.emit(elem, offset)
 | 
						|
		p.w.ZeroUntil((offset + elem.Width) / int64(Widthptr))
 | 
						|
		p.w.Repeat(elem.Width/int64(Widthptr), count-1)
 | 
						|
 | 
						|
	case TSTRUCT:
 | 
						|
		for _, t1 := range t.Fields().Slice() {
 | 
						|
			p.emit(t1.Type, offset+t1.Offset)
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// zeroaddr returns the address of a symbol with at least
 | 
						|
// size bytes of zeros.
 | 
						|
func zeroaddr(size int64) *Node {
 | 
						|
	if size >= 1<<31 {
 | 
						|
		Fatalf("map value too big %d", size)
 | 
						|
	}
 | 
						|
	if zerosize < size {
 | 
						|
		zerosize = size
 | 
						|
	}
 | 
						|
	s := mappkg.Lookup("zero")
 | 
						|
	if s.Def == nil {
 | 
						|
		x := newname(s)
 | 
						|
		x.Type = types.Types[TUINT8]
 | 
						|
		x.Class = PEXTERN
 | 
						|
		x.Typecheck = 1
 | 
						|
		s.Def = asTypesNode(x)
 | 
						|
	}
 | 
						|
	z := nod(OADDR, asNode(s.Def), nil)
 | 
						|
	z.Type = types.NewPtr(types.Types[TUINT8])
 | 
						|
	z.SetAddable(true)
 | 
						|
	z.Typecheck = 1
 | 
						|
	return z
 | 
						|
}
 |