go/src/cmd/compile/internal/gc/closure.go
Russ Cox f9d373720e [dev.regabi] cmd/compile: remove Left, Right etc methods [generated]
Now that the generic graph structure methods - Left, Right, and so on -
have been removed from the Node interface, each implementation's uses
can be replaced with direct field access, using more specific names,
and the methods themselves can be deleted.

Passes buildall w/ toolstash -cmp.

[git-generate]

cd src/cmd/compile/internal/ir
rf '
	mv Func.iota Func.Iota_
	mv Name.fn Name.Func_
'

cd ../gc
rf '
ex . ../ir {
        import "cmd/compile/internal/ir"
        import "cmd/compile/internal/types"

        var ns ir.Nodes
        var b bool
        var i64 int64
        var n ir.Node
        var op ir.Op
        var sym *types.Sym
        var class ir.Class

        var decl *ir.Decl
        decl.Left()         -> decl.X
        decl.SetLeft(n)     -> decl.X = n

        var asl *ir.AssignListStmt
        asl.List()          -> asl.Lhs
        asl.PtrList()       -> &asl.Lhs
        asl.SetList(ns)     -> asl.Lhs = ns
        asl.Rlist()         -> asl.Rhs
        asl.PtrRlist()      -> &asl.Rhs
        asl.SetRlist(ns)    -> asl.Rhs = ns
        asl.Colas()         -> asl.Def
        asl.SetColas(b)     -> asl.Def = b

        var as *ir.AssignStmt
        as.Left()           -> as.X
        as.SetLeft(n)       -> as.X = n
        as.Right()          -> as.Y
        as.SetRight(n)      -> as.Y = n
        as.Colas()          -> as.Def
        as.SetColas(b)      -> as.Def = b

        var ao *ir.AssignOpStmt
        ao.Left()           -> ao.X
        ao.SetLeft(n)       -> ao.X = n
        ao.Right()          -> ao.Y
        ao.SetRight(n)      -> ao.Y = n
        ao.SubOp()          -> ao.AsOp
        ao.SetSubOp(op)     -> ao.AsOp = op
        ao.Implicit()       -> ao.IncDec
        ao.SetImplicit(b)   -> ao.IncDec = b

        var bl *ir.BlockStmt
        bl.List()           -> bl.List_
        bl.PtrList()        -> &bl.List_
        bl.SetList(ns)      -> bl.List_ = ns

        var br *ir.BranchStmt
        br.Sym()            -> br.Label
        br.SetSym(sym)      -> br.Label = sym

        var cas *ir.CaseStmt
        cas.List()          -> cas.List_
        cas.PtrList()       -> &cas.List_
        cas.SetList(ns)     -> cas.List_ = ns
        cas.Body()          -> cas.Body_
        cas.PtrBody()       -> &cas.Body_
        cas.SetBody(ns)     -> cas.Body_ = ns
        cas.Rlist()         -> cas.Vars
        cas.PtrRlist()      -> &cas.Vars
        cas.SetRlist(ns)    -> cas.Vars = ns
        cas.Left()          -> cas.Comm
        cas.SetLeft(n)      -> cas.Comm = n

        var fr *ir.ForStmt
        fr.Sym()            -> fr.Label
        fr.SetSym(sym)      -> fr.Label = sym
        fr.Left()           -> fr.Cond
        fr.SetLeft(n)       -> fr.Cond = n
        fr.Right()          -> fr.Post
        fr.SetRight(n)      -> fr.Post = n
        fr.Body()           -> fr.Body_
        fr.PtrBody()        -> &fr.Body_
        fr.SetBody(ns)      -> fr.Body_ = ns
        fr.List()           -> fr.Late
        fr.PtrList()        -> &fr.Late
        fr.SetList(ns)      -> fr.Late = ns
        fr.HasBreak()       -> fr.HasBreak_
        fr.SetHasBreak(b)   -> fr.HasBreak_ = b

        var gs *ir.GoDeferStmt
        gs.Left()           -> gs.Call
        gs.SetLeft(n)       -> gs.Call = n

        var ifs *ir.IfStmt
        ifs.Left()          -> ifs.Cond
        ifs.SetLeft(n)      -> ifs.Cond = n
        ifs.Body()          -> ifs.Body_
        ifs.PtrBody()       -> &ifs.Body_
        ifs.SetBody(ns)     -> ifs.Body_ = ns
        ifs.Rlist()         -> ifs.Else
        ifs.PtrRlist()      -> &ifs.Else
        ifs.SetRlist(ns)    -> ifs.Else = ns
        ifs.Likely()        -> ifs.Likely_
        ifs.SetLikely(b)    -> ifs.Likely_ = b

        var im *ir.InlineMarkStmt
        im.Offset()         -> im.Index
        im.SetOffset(i64)   -> im.Index = i64

        var lab *ir.LabelStmt
        lab.Sym()           -> lab.Label
        lab.SetSym(sym)     -> lab.Label = sym

        var rng *ir.RangeStmt
        rng.Sym()           -> rng.Label
        rng.SetSym(sym)     -> rng.Label = sym
        rng.Right()         -> rng.X
        rng.SetRight(n)     -> rng.X = n
        rng.Body()          -> rng.Body_
        rng.PtrBody()       -> &rng.Body_
        rng.SetBody(ns)     -> rng.Body_ = ns
        rng.List()          -> rng.Vars
        rng.PtrList()       -> &rng.Vars
        rng.SetList(ns)     -> rng.Vars = ns
        rng.HasBreak()      -> rng.HasBreak_
        rng.SetHasBreak(b)  -> rng.HasBreak_ = b
        rng.Colas()         -> rng.Def
        rng.SetColas(b)     -> rng.Def = b

        var ret *ir.ReturnStmt
        ret.List()          -> ret.Results
        ret.PtrList()       -> &ret.Results
        ret.SetList(ns)     -> ret.Results = ns

        var sel *ir.SelectStmt
        sel.List()          -> sel.Cases
        sel.PtrList()       -> &sel.Cases
        sel.SetList(ns)     -> sel.Cases = ns
        sel.Sym()           -> sel.Label
        sel.SetSym(sym)     -> sel.Label = sym
        sel.HasBreak()      -> sel.HasBreak_
        sel.SetHasBreak(b)  -> sel.HasBreak_ = b
        sel.Body()          -> sel.Compiled
        sel.PtrBody()       -> &sel.Compiled
        sel.SetBody(ns)     -> sel.Compiled = ns

        var send *ir.SendStmt
        send.Left()         -> send.Chan
        send.SetLeft(n)     -> send.Chan = n
        send.Right()        -> send.Value
        send.SetRight(n)    -> send.Value = n

        var sw *ir.SwitchStmt
        sw.Left()           -> sw.Tag
        sw.SetLeft(n)       -> sw.Tag = n
        sw.List()           -> sw.Cases
        sw.PtrList()        -> &sw.Cases
        sw.SetList(ns)      -> sw.Cases = ns
        sw.Body()           -> sw.Compiled
        sw.PtrBody()        -> &sw.Compiled
        sw.SetBody(ns)      -> sw.Compiled = ns
        sw.Sym()            -> sw.Label
        sw.SetSym(sym)      -> sw.Label = sym
        sw.HasBreak()       -> sw.HasBreak_
        sw.SetHasBreak(b)   -> sw.HasBreak_ = b

        var tg *ir.TypeSwitchGuard
        tg.Left()           -> tg.Tag
        tg.SetLeft(nil)     -> tg.Tag = nil
        tg.SetLeft(n)       -> tg.Tag = n.(*ir.Ident)
        tg.Right()          -> tg.X
        tg.SetRight(n)      -> tg.X = n

        var adds *ir.AddStringExpr
        adds.List()         -> adds.List_
        adds.PtrList()      -> &adds.List_
        adds.SetList(ns)    -> adds.List_ = ns

        var addr *ir.AddrExpr
        addr.Left()         -> addr.X
        addr.SetLeft(n)     -> addr.X = n
        addr.Right()        -> addr.Alloc
        addr.SetRight(n)    -> addr.Alloc = n

        var bin *ir.BinaryExpr
        bin.Left()          -> bin.X
        bin.SetLeft(n)      -> bin.X = n
        bin.Right()         -> bin.Y
        bin.SetRight(n)     -> bin.Y = n

        var log *ir.LogicalExpr
        log.Left()          -> log.X
        log.SetLeft(n)      -> log.X = n
        log.Right()         -> log.Y
        log.SetRight(n)     -> log.Y = n

        var call *ir.CallExpr
        call.Left()         -> call.X
        call.SetLeft(n)     -> call.X = n
        call.List()         -> call.Args
        call.PtrList()      -> &call.Args
        call.SetList(ns)    -> call.Args = ns
        call.Rlist()        -> call.Rargs
        call.PtrRlist()     -> &call.Rargs
        call.SetRlist(ns)   -> call.Rargs = ns
        call.IsDDD()        -> call.DDD
        call.SetIsDDD(b)    -> call.DDD = b
        call.NoInline()     -> call.NoInline_
        call.SetNoInline(b) -> call.NoInline_ = b
        call.Body()         -> call.Body_
        call.PtrBody()      -> &call.Body_
        call.SetBody(ns)    -> call.Body_ = ns

        var cp *ir.CallPartExpr
        cp.Func()           -> cp.Func_
        cp.Left()           -> cp.X
        cp.SetLeft(n)       -> cp.X = n
        cp.Sym()            -> cp.Method.Sym

        var clo *ir.ClosureExpr
        clo.Func()          -> clo.Func_

        var cr *ir.ClosureReadExpr
        cr.Offset()         -> cr.Offset_

        var cl *ir.CompLitExpr
        cl.Right()          -> cl.Ntype
        cl.SetRight(nil)    -> cl.Ntype = nil
        cl.SetRight(n)      -> cl.Ntype = ir.Node(n).(ir.Ntype)
        cl.List()           -> cl.List_
        cl.PtrList()        -> &cl.List_
        cl.SetList(ns)      -> cl.List_ = ns

        var conv *ir.ConvExpr
        conv.Left()         -> conv.X
        conv.SetLeft(n)     -> conv.X = n

        var ix *ir.IndexExpr
        ix.Left()           -> ix.X
        ix.SetLeft(n)       -> ix.X = n
        ix.Right()          -> ix.Index
        ix.SetRight(n)      -> ix.Index = n
        ix.IndexMapLValue() -> ix.Assigned
        ix.SetIndexMapLValue(b) -> ix.Assigned = b

        var kv *ir.KeyExpr
        kv.Left()           -> kv.Key
        kv.SetLeft(n)       -> kv.Key = n
        kv.Right()          -> kv.Value
        kv.SetRight(n)      -> kv.Value = n

        var sk *ir.StructKeyExpr
        sk.Sym()            -> sk.Field
        sk.SetSym(sym)      -> sk.Field = sym
        sk.Left()           -> sk.Value
        sk.SetLeft(n)       -> sk.Value = n
        sk.Offset()         -> sk.Offset_
        sk.SetOffset(i64)   -> sk.Offset_ = i64

        var ic *ir.InlinedCallExpr
        ic.Body()           -> ic.Body_
        ic.PtrBody()        -> &ic.Body_
        ic.SetBody(ns)      -> ic.Body_ = ns
        ic.Rlist()          -> ic.ReturnVars
        ic.PtrRlist()       -> &ic.ReturnVars
        ic.SetRlist(ns)     -> ic.ReturnVars = ns

        var mak *ir.MakeExpr
        mak.Left()          -> mak.Len
        mak.SetLeft(n)      -> mak.Len = n
        mak.Right()         -> mak.Cap
        mak.SetRight(n)     -> mak.Cap = n

        var par *ir.ParenExpr
        par.Left()          -> par.X
        par.SetLeft(n)      -> par.X = n

        var res *ir.ResultExpr
        res.Offset()        -> res.Offset_
        res.SetOffset(i64)  -> res.Offset_ = i64

        var dot *ir.SelectorExpr
        dot.Left()          -> dot.X
        dot.SetLeft(n)      -> dot.X = n
        dot.Sym()           -> dot.Sel
        dot.SetSym(sym)     -> dot.Sel = sym
        dot.Offset()        -> dot.Offset_
        dot.SetOffset(i64)  -> dot.Offset_ = i64

        var sl *ir.SliceExpr
        sl.Left()           -> sl.X
        sl.SetLeft(n)       -> sl.X = n
        sl.List()           -> sl.List_
        sl.PtrList()        -> &sl.List_
        sl.SetList(ns)      -> sl.List_ = ns

        var sh *ir.SliceHeaderExpr
        sh.Left()           -> sh.Ptr
        sh.SetLeft(n)       -> sh.Ptr = n
        sh.List()           -> sh.LenCap_
        sh.PtrList()        -> &sh.LenCap_
        sh.SetList(ns)      -> sh.LenCap_ = ns

        var st *ir.StarExpr
        st.Left()           -> st.X
        st.SetLeft(n)       -> st.X = n

        var ta *ir.TypeAssertExpr
        ta.Left()           -> ta.X
        ta.SetLeft(n)       -> ta.X = n
        ta.Right()          -> ta.Ntype
        ta.SetRight(n)    -> ta.Ntype = n
        ta.List()           -> ta.Itab
        ta.PtrList()        -> &ta.Itab
        ta.SetList(ns)      -> ta.Itab = ns

        var u *ir.UnaryExpr
        u.Left()            -> u.X
        u.SetLeft(n)        -> u.X = n

        var fn *ir.Func
        fn.Body()           -> fn.Body_
        fn.PtrBody()        -> &fn.Body_
        fn.SetBody(ns)      -> fn.Body_ = ns
        fn.Iota()           -> fn.Iota_
        fn.SetIota(i64)     -> fn.Iota_ = i64
        fn.Func()           -> fn

        var nam *ir.Name
        nam.SubOp()         -> nam.BuiltinOp
        nam.SetSubOp(op)    -> nam.BuiltinOp = op
        nam.Class()         -> nam.Class_
        nam.SetClass(class) -> nam.Class_ = class
        nam.Func()          -> nam.Func_
        nam.Offset()        -> nam.Offset_
        nam.SetOffset(i64)  -> nam.Offset_ = i64
}

ex . ../ir {
        import "cmd/compile/internal/ir"

        var n ir.Nodes

        (&n).Append         -> n.Append
        (&n).AppendNodes    -> n.AppendNodes
        (&n).MoveNodes      -> n.MoveNodes
        (&n).Prepend        -> n.Prepend
        (&n).Set            -> n.Set
        (&n).Set1           -> n.Set1
        (&n).Set2           -> n.Set2
        (&n).Set3           -> n.Set3

        var ntype ir.Ntype
        ir.Node(ntype).(ir.Ntype) -> ntype
}
'

cd ../ir
rf '
rm \
        Decl.Left Decl.SetLeft \
        AssignListStmt.List AssignListStmt.PtrList AssignListStmt.SetList \
        AssignListStmt.Rlist AssignListStmt.PtrRlist AssignListStmt.SetRlist \
        AssignListStmt.Colas AssignListStmt.SetColas \
        AssignStmt.Left AssignStmt.SetLeft \
        AssignStmt.Right AssignStmt.SetRight \
        AssignStmt.Colas AssignStmt.SetColas \
        AssignOpStmt.Left AssignOpStmt.SetLeft \
        AssignOpStmt.Right AssignOpStmt.SetRight \
        AssignOpStmt.SubOp AssignOpStmt.SetSubOp \
        AssignOpStmt.Implicit AssignOpStmt.SetImplicit \
        BlockStmt.List BlockStmt.PtrList BlockStmt.SetList \
        BranchStmt.SetSym \
        CaseStmt.List CaseStmt.PtrList CaseStmt.SetList \
        CaseStmt.Body CaseStmt.PtrBody CaseStmt.SetBody \
        CaseStmt.Rlist CaseStmt.PtrRlist CaseStmt.SetRlist \
        CaseStmt.Left CaseStmt.SetLeft \
        ForStmt.Left ForStmt.SetLeft \
        ForStmt.Right ForStmt.SetRight \
        ForStmt.Body ForStmt.PtrBody ForStmt.SetBody \
        ForStmt.List ForStmt.PtrList ForStmt.SetList \
        ForStmt.HasBreak ForStmt.SetHasBreak \
        ForStmt.Sym ForStmt.SetSym \
        GoDeferStmt.Left GoDeferStmt.SetLeft \
        IfStmt.Left IfStmt.SetLeft \
        IfStmt.Body IfStmt.PtrBody IfStmt.SetBody \
        IfStmt.Rlist IfStmt.PtrRlist IfStmt.SetRlist \
        IfStmt.Likely IfStmt.SetLikely \
        LabelStmt.SetSym \
        RangeStmt.Right RangeStmt.SetRight \
        RangeStmt.Body RangeStmt.PtrBody RangeStmt.SetBody \
        RangeStmt.List RangeStmt.PtrList RangeStmt.SetList \
        RangeStmt.HasBreak RangeStmt.SetHasBreak \
        RangeStmt.Colas RangeStmt.SetColas \
        RangeStmt.Sym RangeStmt.SetSym \
        ReturnStmt.List ReturnStmt.PtrList ReturnStmt.SetList \
        SelectStmt.List SelectStmt.PtrList SelectStmt.SetList \
        SelectStmt.HasBreak SelectStmt.SetHasBreak \
        SelectStmt.Body SelectStmt.PtrBody SelectStmt.SetBody \
        SelectStmt.Sym SelectStmt.SetSym \
        SendStmt.Left SendStmt.SetLeft \
        SendStmt.Right SendStmt.SetRight \
        SwitchStmt.Left SwitchStmt.SetLeft \
        SwitchStmt.List SwitchStmt.PtrList SwitchStmt.SetList \
        SwitchStmt.Body SwitchStmt.PtrBody SwitchStmt.SetBody \
        SwitchStmt.HasBreak SwitchStmt.SetHasBreak \
        SwitchStmt.Sym SwitchStmt.SetSym \
        TypeSwitchGuard.Left TypeSwitchGuard.SetLeft \
        TypeSwitchGuard.Right TypeSwitchGuard.SetRight \
        AddStringExpr.List AddStringExpr.PtrList AddStringExpr.SetList \
        AddrExpr.Left AddrExpr.SetLeft \
        AddrExpr.Right AddrExpr.SetRight \
        BinaryExpr.Left BinaryExpr.SetLeft \
        BinaryExpr.Right BinaryExpr.SetRight \
        LogicalExpr.Left LogicalExpr.SetLeft \
        LogicalExpr.Right LogicalExpr.SetRight \
        CallExpr.Left CallExpr.SetLeft \
        CallExpr.List CallExpr.PtrList CallExpr.SetList \
        CallExpr.Rlist CallExpr.PtrRlist CallExpr.SetRlist \
        CallExpr.NoInline CallExpr.SetNoInline \
        CallExpr.Body CallExpr.PtrBody CallExpr.SetBody \
        CallExpr.IsDDD CallExpr.SetIsDDD \
        CallPartExpr.Left CallPartExpr.SetLeft \
        ClosureReadExpr.Offset \
        ClosureReadExpr.Type \ # provided by miniExpr already
        CompLitExpr.Right CompLitExpr.SetRight \
        CompLitExpr.List CompLitExpr.PtrList CompLitExpr.SetList \
        ConvExpr.Left ConvExpr.SetLeft \
        IndexExpr.Left IndexExpr.SetLeft \
        IndexExpr.Right IndexExpr.SetRight \
        IndexExpr.IndexMapLValue IndexExpr.SetIndexMapLValue \
        KeyExpr.Left KeyExpr.SetLeft \
        KeyExpr.Right KeyExpr.SetRight \
        StructKeyExpr.Left StructKeyExpr.SetLeft \
        StructKeyExpr.Offset StructKeyExpr.SetOffset \
        StructKeyExpr.SetSym \
        InlinedCallExpr.Body InlinedCallExpr.PtrBody InlinedCallExpr.SetBody \
        InlinedCallExpr.Rlist InlinedCallExpr.PtrRlist InlinedCallExpr.SetRlist \
        MakeExpr.Left MakeExpr.SetLeft \
        MakeExpr.Right MakeExpr.SetRight \
        MethodExpr.Left MethodExpr.SetLeft \
        MethodExpr.Right MethodExpr.SetRight \
        MethodExpr.Offset MethodExpr.SetOffset \
        MethodExpr.Class MethodExpr.SetClass \
        ParenExpr.Left ParenExpr.SetLeft \
        ResultExpr.Offset ResultExpr.SetOffset \
        ReturnStmt.IsDDD \
        SelectorExpr.Left SelectorExpr.SetLeft \
        SelectorExpr.Offset SelectorExpr.SetOffset \
        SelectorExpr.SetSym \
        SliceExpr.Left SliceExpr.SetLeft \
        SliceExpr.List SliceExpr.PtrList SliceExpr.SetList \
        SliceHeaderExpr.Left SliceHeaderExpr.SetLeft \
        SliceHeaderExpr.List SliceHeaderExpr.PtrList SliceHeaderExpr.SetList \
        StarExpr.Left StarExpr.SetLeft \
        TypeAssertExpr.Left TypeAssertExpr.SetLeft \
        TypeAssertExpr.Right TypeAssertExpr.SetRight \
        TypeAssertExpr.List TypeAssertExpr.PtrList TypeAssertExpr.SetList \
        UnaryExpr.Left UnaryExpr.SetLeft \
        Func.Body Func.PtrBody Func.SetBody \
        Func.Iota Func.SetIota \
        CallPartExpr.Func ClosureExpr.Func Func.Func Name.Func \

mv BlockStmt.List_ BlockStmt.List
mv CaseStmt.List_ CaseStmt.List
mv CaseStmt.Body_ CaseStmt.Body
mv ForStmt.Body_ ForStmt.Body
mv ForStmt.HasBreak_ ForStmt.HasBreak
mv Func.Iota_ Func.Iota
mv IfStmt.Body_ IfStmt.Body
mv IfStmt.Likely_ IfStmt.Likely
mv RangeStmt.Body_ RangeStmt.Body
mv RangeStmt.HasBreak_ RangeStmt.HasBreak
mv SelectStmt.HasBreak_ SelectStmt.HasBreak
mv SwitchStmt.HasBreak_ SwitchStmt.HasBreak
mv AddStringExpr.List_ AddStringExpr.List
mv CallExpr.NoInline_ CallExpr.NoInline
mv CallExpr.Body_ CallExpr.Body # TODO what is this?
mv CallExpr.DDD CallExpr.IsDDD
mv ClosureReadExpr.Offset_ ClosureReadExpr.Offset
mv CompLitExpr.List_ CompLitExpr.List
mv StructKeyExpr.Offset_ StructKeyExpr.Offset
mv InlinedCallExpr.Body_ InlinedCallExpr.Body
mv ResultExpr.Offset_ ResultExpr.Offset
mv SelectorExpr.Offset_ SelectorExpr.Offset
mv SliceExpr.List_ SliceExpr.List
mv SliceHeaderExpr.LenCap_ SliceHeaderExpr.LenCap
mv Func.Body_ Func.Body
mv CallPartExpr.Func_ CallPartExpr.Func
mv ClosureExpr.Func_ ClosureExpr.Func
mv Name.Func_ Name.Func
'

Change-Id: Ia2ee59649674f83eb123e63fda7a7781cf91cc56
Reviewed-on: https://go-review.googlesource.com/c/go/+/277935
Trust: Russ Cox <rsc@golang.org>
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-23 06:37:41 +00:00

570 lines
16 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
)
func (p *noder) funcLit(expr *syntax.FuncLit) ir.Node {
xtype := p.typeExpr(expr.Type)
ntype := p.typeExpr(expr.Type)
fn := ir.NewFunc(p.pos(expr))
fn.SetIsHiddenClosure(Curfn != nil)
fn.Nname = newFuncNameAt(p.pos(expr), ir.BlankNode.Sym(), fn) // filled in by typecheckclosure
fn.Nname.Ntype = xtype
fn.Nname.Defn = fn
clo := ir.NewClosureExpr(p.pos(expr), fn)
fn.ClosureType = ntype
fn.OClosure = clo
p.funcBody(fn, expr.Body)
// closure-specific variables are hanging off the
// ordinary ones in the symbol table; see oldname.
// unhook them.
// make the list of pointers for the closure call.
for _, v := range fn.ClosureVars {
// Unlink from v1; see comment in syntax.go type Param for these fields.
v1 := v.Defn
v1.Name().Innermost = v.Outer
// If the closure usage of v is not dense,
// we need to make it dense; now that we're out
// of the function in which v appeared,
// look up v.Sym in the enclosing function
// and keep it around for use in the compiled code.
//
// That is, suppose we just finished parsing the innermost
// closure f4 in this code:
//
// func f() {
// v := 1
// func() { // f2
// use(v)
// func() { // f3
// func() { // f4
// use(v)
// }()
// }()
// }()
// }
//
// At this point v.Outer is f2's v; there is no f3's v.
// To construct the closure f4 from within f3,
// we need to use f3's v and in this case we need to create f3's v.
// We are now in the context of f3, so calling oldname(v.Sym)
// obtains f3's v, creating it if necessary (as it is in the example).
//
// capturevars will decide whether to use v directly or &v.
v.Outer = oldname(v.Sym()).(*ir.Name)
}
return clo
}
// typecheckclosure typechecks an OCLOSURE node. It also creates the named
// function associated with the closure.
// TODO: This creation of the named function should probably really be done in a
// separate pass from type-checking.
func typecheckclosure(clo *ir.ClosureExpr, top int) {
fn := clo.Func
// Set current associated iota value, so iota can be used inside
// function in ConstSpec, see issue #22344
if x := getIotaValue(); x >= 0 {
fn.Iota = x
}
fn.ClosureType = typecheck(fn.ClosureType, ctxType)
clo.SetType(fn.ClosureType.Type())
fn.SetClosureCalled(top&ctxCallee != 0)
// Do not typecheck fn twice, otherwise, we will end up pushing
// fn to Target.Decls multiple times, causing initLSym called twice.
// See #30709
if fn.Typecheck() == 1 {
return
}
for _, ln := range fn.ClosureVars {
n := ln.Defn
if !n.Name().Captured() {
n.Name().SetCaptured(true)
if n.Name().Decldepth == 0 {
base.Fatalf("typecheckclosure: var %v does not have decldepth assigned", n)
}
// Ignore assignments to the variable in straightline code
// preceding the first capturing by a closure.
if n.Name().Decldepth == decldepth {
n.Name().SetAssigned(false)
}
}
}
fn.Nname.SetSym(closurename(Curfn))
setNodeNameFunc(fn.Nname)
typecheckFunc(fn)
// Type check the body now, but only if we're inside a function.
// At top level (in a variable initialization: curfn==nil) we're not
// ready to type check code yet; we'll check it later, because the
// underlying closure function we create is added to Target.Decls.
if Curfn != nil && clo.Type() != nil {
oldfn := Curfn
Curfn = fn
olddd := decldepth
decldepth = 1
typecheckslice(fn.Body.Slice(), ctxStmt)
decldepth = olddd
Curfn = oldfn
}
Target.Decls = append(Target.Decls, fn)
}
// globClosgen is like Func.Closgen, but for the global scope.
var globClosgen int32
// closurename generates a new unique name for a closure within
// outerfunc.
func closurename(outerfunc *ir.Func) *types.Sym {
outer := "glob."
prefix := "func"
gen := &globClosgen
if outerfunc != nil {
if outerfunc.OClosure != nil {
prefix = ""
}
outer = ir.FuncName(outerfunc)
// There may be multiple functions named "_". In those
// cases, we can't use their individual Closgens as it
// would lead to name clashes.
if !ir.IsBlank(outerfunc.Nname) {
gen = &outerfunc.Closgen
}
}
*gen++
return lookup(fmt.Sprintf("%s.%s%d", outer, prefix, *gen))
}
// capturevarscomplete is set to true when the capturevars phase is done.
var capturevarscomplete bool
// capturevars is called in a separate phase after all typechecking is done.
// It decides whether each variable captured by a closure should be captured
// by value or by reference.
// We use value capturing for values <= 128 bytes that are never reassigned
// after capturing (effectively constant).
func capturevars(fn *ir.Func) {
lno := base.Pos
base.Pos = fn.Pos()
cvars := fn.ClosureVars
out := cvars[:0]
for _, v := range cvars {
if v.Type() == nil {
// If v.Type is nil, it means v looked like it
// was going to be used in the closure, but
// isn't. This happens in struct literals like
// s{f: x} where we can't distinguish whether
// f is a field identifier or expression until
// resolving s.
continue
}
out = append(out, v)
// type check the & of closed variables outside the closure,
// so that the outer frame also grabs them and knows they escape.
dowidth(v.Type())
var outer ir.Node
outer = v.Outer
outermost := v.Defn.(*ir.Name)
// out parameters will be assigned to implicitly upon return.
if outermost.Class_ != ir.PPARAMOUT && !outermost.Name().Addrtaken() && !outermost.Name().Assigned() && v.Type().Width <= 128 {
v.SetByval(true)
} else {
outermost.Name().SetAddrtaken(true)
outer = nodAddr(outer)
}
if base.Flag.LowerM > 1 {
var name *types.Sym
if v.Curfn != nil && v.Curfn.Nname != nil {
name = v.Curfn.Sym()
}
how := "ref"
if v.Byval() {
how = "value"
}
base.WarnfAt(v.Pos(), "%v capturing by %s: %v (addr=%v assign=%v width=%d)", name, how, v.Sym(), outermost.Name().Addrtaken(), outermost.Name().Assigned(), int32(v.Type().Width))
}
outer = typecheck(outer, ctxExpr)
fn.ClosureEnter.Append(outer)
}
fn.ClosureVars = out
base.Pos = lno
}
// transformclosure is called in a separate phase after escape analysis.
// It transform closure bodies to properly reference captured variables.
func transformclosure(fn *ir.Func) {
lno := base.Pos
base.Pos = fn.Pos()
if fn.ClosureCalled() {
// If the closure is directly called, we transform it to a plain function call
// with variables passed as args. This avoids allocation of a closure object.
// Here we do only a part of the transformation. Walk of OCALLFUNC(OCLOSURE)
// will complete the transformation later.
// For illustration, the following closure:
// func(a int) {
// println(byval)
// byref++
// }(42)
// becomes:
// func(byval int, &byref *int, a int) {
// println(byval)
// (*&byref)++
// }(byval, &byref, 42)
// f is ONAME of the actual function.
f := fn.Nname
// We are going to insert captured variables before input args.
var params []*types.Field
var decls []*ir.Name
for _, v := range fn.ClosureVars {
if !v.Byval() {
// If v of type T is captured by reference,
// we introduce function param &v *T
// and v remains PAUTOHEAP with &v heapaddr
// (accesses will implicitly deref &v).
addr := NewName(lookup("&" + v.Sym().Name))
addr.SetType(types.NewPtr(v.Type()))
v.Heapaddr = addr
v = addr
}
v.Class_ = ir.PPARAM
decls = append(decls, v)
fld := types.NewField(src.NoXPos, v.Sym(), v.Type())
fld.Nname = v
params = append(params, fld)
}
if len(params) > 0 {
// Prepend params and decls.
f.Type().Params().SetFields(append(params, f.Type().Params().FieldSlice()...))
fn.Dcl = append(decls, fn.Dcl...)
}
dowidth(f.Type())
fn.SetType(f.Type()) // update type of ODCLFUNC
} else {
// The closure is not called, so it is going to stay as closure.
var body []ir.Node
offset := int64(Widthptr)
for _, v := range fn.ClosureVars {
// cv refers to the field inside of closure OSTRUCTLIT.
typ := v.Type()
if !v.Byval() {
typ = types.NewPtr(typ)
}
offset = Rnd(offset, int64(typ.Align))
cr := ir.NewClosureRead(typ, offset)
offset += typ.Width
if v.Byval() && v.Type().Width <= int64(2*Widthptr) {
// If it is a small variable captured by value, downgrade it to PAUTO.
v.Class_ = ir.PAUTO
fn.Dcl = append(fn.Dcl, v)
body = append(body, ir.NewAssignStmt(base.Pos, v, cr))
} else {
// Declare variable holding addresses taken from closure
// and initialize in entry prologue.
addr := NewName(lookup("&" + v.Sym().Name))
addr.SetType(types.NewPtr(v.Type()))
addr.Class_ = ir.PAUTO
addr.SetUsed(true)
addr.Curfn = fn
fn.Dcl = append(fn.Dcl, addr)
v.Heapaddr = addr
var src ir.Node = cr
if v.Byval() {
src = nodAddr(cr)
}
body = append(body, ir.NewAssignStmt(base.Pos, addr, src))
}
}
if len(body) > 0 {
typecheckslice(body, ctxStmt)
fn.Enter.Set(body)
fn.SetNeedctxt(true)
}
}
base.Pos = lno
}
// hasemptycvars reports whether closure clo has an
// empty list of captured vars.
func hasemptycvars(clo *ir.ClosureExpr) bool {
return len(clo.Func.ClosureVars) == 0
}
// closuredebugruntimecheck applies boilerplate checks for debug flags
// and compiling runtime
func closuredebugruntimecheck(clo *ir.ClosureExpr) {
if base.Debug.Closure > 0 {
if clo.Esc() == EscHeap {
base.WarnfAt(clo.Pos(), "heap closure, captured vars = %v", clo.Func.ClosureVars)
} else {
base.WarnfAt(clo.Pos(), "stack closure, captured vars = %v", clo.Func.ClosureVars)
}
}
if base.Flag.CompilingRuntime && clo.Esc() == EscHeap {
base.ErrorfAt(clo.Pos(), "heap-allocated closure, not allowed in runtime")
}
}
// closureType returns the struct type used to hold all the information
// needed in the closure for clo (clo must be a OCLOSURE node).
// The address of a variable of the returned type can be cast to a func.
func closureType(clo *ir.ClosureExpr) *types.Type {
// Create closure in the form of a composite literal.
// supposing the closure captures an int i and a string s
// and has one float64 argument and no results,
// the generated code looks like:
//
// clos = &struct{.F uintptr; i *int; s *string}{func.1, &i, &s}
//
// The use of the struct provides type information to the garbage
// collector so that it can walk the closure. We could use (in this case)
// [3]unsafe.Pointer instead, but that would leave the gc in the dark.
// The information appears in the binary in the form of type descriptors;
// the struct is unnamed so that closures in multiple packages with the
// same struct type can share the descriptor.
fields := []*ir.Field{
namedfield(".F", types.Types[types.TUINTPTR]),
}
for _, v := range clo.Func.ClosureVars {
typ := v.Type()
if !v.Byval() {
typ = types.NewPtr(typ)
}
fields = append(fields, symfield(v.Sym(), typ))
}
typ := tostruct(fields)
typ.SetNoalg(true)
return typ
}
func walkclosure(clo *ir.ClosureExpr, init *ir.Nodes) ir.Node {
fn := clo.Func
// If no closure vars, don't bother wrapping.
if hasemptycvars(clo) {
if base.Debug.Closure > 0 {
base.WarnfAt(clo.Pos(), "closure converted to global")
}
return fn.Nname
}
closuredebugruntimecheck(clo)
typ := closureType(clo)
clos := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, ir.TypeNode(typ).(ir.Ntype), nil)
clos.SetEsc(clo.Esc())
clos.List.Set(append([]ir.Node{ir.NewUnaryExpr(base.Pos, ir.OCFUNC, fn.Nname)}, fn.ClosureEnter.Slice()...))
addr := nodAddr(clos)
addr.SetEsc(clo.Esc())
// Force type conversion from *struct to the func type.
cfn := convnop(addr, clo.Type())
// non-escaping temp to use, if any.
if x := clo.Prealloc; x != nil {
if !types.Identical(typ, x.Type()) {
panic("closure type does not match order's assigned type")
}
addr.Alloc = x
clo.Prealloc = nil
}
return walkexpr(cfn, init)
}
func typecheckpartialcall(n ir.Node, sym *types.Sym) *ir.CallPartExpr {
switch n.Op() {
case ir.ODOTINTER, ir.ODOTMETH:
break
default:
base.Fatalf("invalid typecheckpartialcall")
}
dot := n.(*ir.SelectorExpr)
// Create top-level function.
fn := makepartialcall(dot, dot.Type(), sym)
fn.SetWrapper(true)
return ir.NewCallPartExpr(dot.Pos(), dot.X, dot.Selection, fn)
}
// makepartialcall returns a DCLFUNC node representing the wrapper function (*-fm) needed
// for partial calls.
func makepartialcall(dot *ir.SelectorExpr, t0 *types.Type, meth *types.Sym) *ir.Func {
rcvrtype := dot.X.Type()
sym := methodSymSuffix(rcvrtype, meth, "-fm")
if sym.Uniq() {
return sym.Def.(*ir.Func)
}
sym.SetUniq(true)
savecurfn := Curfn
saveLineNo := base.Pos
Curfn = nil
// Set line number equal to the line number where the method is declared.
var m *types.Field
if lookdot0(meth, rcvrtype, &m, false) == 1 && m.Pos.IsKnown() {
base.Pos = m.Pos
}
// Note: !m.Pos.IsKnown() happens for method expressions where
// the method is implicitly declared. The Error method of the
// built-in error type is one such method. We leave the line
// number at the use of the method expression in this
// case. See issue 29389.
tfn := ir.NewFuncType(base.Pos, nil,
structargs(t0.Params(), true),
structargs(t0.Results(), false))
fn := dclfunc(sym, tfn)
fn.SetDupok(true)
fn.SetNeedctxt(true)
// Declare and initialize variable holding receiver.
cr := ir.NewClosureRead(rcvrtype, Rnd(int64(Widthptr), int64(rcvrtype.Align)))
ptr := NewName(lookup(".this"))
declare(ptr, ir.PAUTO)
ptr.SetUsed(true)
var body []ir.Node
if rcvrtype.IsPtr() || rcvrtype.IsInterface() {
ptr.SetType(rcvrtype)
body = append(body, ir.NewAssignStmt(base.Pos, ptr, cr))
} else {
ptr.SetType(types.NewPtr(rcvrtype))
body = append(body, ir.NewAssignStmt(base.Pos, ptr, nodAddr(cr)))
}
call := ir.NewCallExpr(base.Pos, ir.OCALL, ir.NewSelectorExpr(base.Pos, ir.OXDOT, ptr, meth), nil)
call.Args.Set(paramNnames(tfn.Type()))
call.IsDDD = tfn.Type().IsVariadic()
if t0.NumResults() != 0 {
ret := ir.NewReturnStmt(base.Pos, nil)
ret.Results.Set1(call)
body = append(body, ret)
} else {
body = append(body, call)
}
fn.Body.Set(body)
funcbody()
typecheckFunc(fn)
// Need to typecheck the body of the just-generated wrapper.
// typecheckslice() requires that Curfn is set when processing an ORETURN.
Curfn = fn
typecheckslice(fn.Body.Slice(), ctxStmt)
sym.Def = fn
Target.Decls = append(Target.Decls, fn)
Curfn = savecurfn
base.Pos = saveLineNo
return fn
}
// partialCallType returns the struct type used to hold all the information
// needed in the closure for n (n must be a OCALLPART node).
// The address of a variable of the returned type can be cast to a func.
func partialCallType(n *ir.CallPartExpr) *types.Type {
t := tostruct([]*ir.Field{
namedfield("F", types.Types[types.TUINTPTR]),
namedfield("R", n.X.Type()),
})
t.SetNoalg(true)
return t
}
func walkpartialcall(n *ir.CallPartExpr, init *ir.Nodes) ir.Node {
// Create closure in the form of a composite literal.
// For x.M with receiver (x) type T, the generated code looks like:
//
// clos = &struct{F uintptr; R T}{T.M·f, x}
//
// Like walkclosure above.
if n.X.Type().IsInterface() {
// Trigger panic for method on nil interface now.
// Otherwise it happens in the wrapper and is confusing.
n.X = cheapexpr(n.X, init)
n.X = walkexpr(n.X, nil)
tab := typecheck(ir.NewUnaryExpr(base.Pos, ir.OITAB, n.X), ctxExpr)
c := ir.NewUnaryExpr(base.Pos, ir.OCHECKNIL, tab)
c.SetTypecheck(1)
init.Append(c)
}
typ := partialCallType(n)
clos := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, ir.TypeNode(typ).(ir.Ntype), nil)
clos.SetEsc(n.Esc())
clos.List.Set2(ir.NewUnaryExpr(base.Pos, ir.OCFUNC, n.Func.Nname), n.X)
addr := nodAddr(clos)
addr.SetEsc(n.Esc())
// Force type conversion from *struct to the func type.
cfn := convnop(addr, n.Type())
// non-escaping temp to use, if any.
if x := n.Prealloc; x != nil {
if !types.Identical(typ, x.Type()) {
panic("partial call type does not match order's assigned type")
}
addr.Alloc = x
n.Prealloc = nil
}
return walkexpr(cfn, init)
}
// callpartMethod returns the *types.Field representing the method
// referenced by method value n.
func callpartMethod(n ir.Node) *types.Field {
return n.(*ir.CallPartExpr).Method
}