mirror of
				https://github.com/golang/go.git
				synced 2025-10-31 16:50:58 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			166 lines
		
	
	
	
		
			2.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
	
		
			2.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // $G $D/$F.go && $L $F.$A && ./$A.out
 | |
| 
 | |
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // A little test program for rational arithmetics.
 | |
| // Computes a Hilbert matrix, its inverse, multiplies them
 | |
| // and verifies that the product is the identity matrix.
 | |
| 
 | |
| package main
 | |
| 
 | |
| import Big "bignum"
 | |
| import Fmt "fmt"
 | |
| 
 | |
| 
 | |
| func assert(p bool) {
 | |
| 	if !p {
 | |
| 		panic("assert failed");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| var (
 | |
| 	Zero = Big.Rat(0, 1);
 | |
| 	One = Big.Rat(1, 1);
 | |
| )
 | |
| 
 | |
| 
 | |
| type Matrix struct {
 | |
| 	n, m int;
 | |
| 	a []*Big.Rational;
 | |
| }
 | |
| 
 | |
| 
 | |
| func (a *Matrix) at(i, j int) *Big.Rational {
 | |
| 	assert(0 <= i && i < a.n && 0 <= j && j < a.m);
 | |
| 	return a.a[i*a.m + j];
 | |
| }
 | |
| 
 | |
| 
 | |
| func (a *Matrix) set(i, j int, x *Big.Rational) {
 | |
| 	assert(0 <= i && i < a.n && 0 <= j && j < a.m);
 | |
| 	a.a[i*a.m + j] = x;
 | |
| }
 | |
| 
 | |
| 
 | |
| func NewMatrix(n, m int) *Matrix {
 | |
| 	assert(0 <= n && 0 <= m);
 | |
| 	a := new(Matrix);
 | |
| 	a.n = n;
 | |
| 	a.m = m;
 | |
| 	a.a = make([]*Big.Rational, n*m);
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| 
 | |
| func NewUnit(n int) *Matrix {
 | |
| 	a := NewMatrix(n, n);
 | |
| 	for i := 0; i < n; i++ {
 | |
| 		for j := 0; j < n; j++ {
 | |
| 			x := Zero;
 | |
| 			if i == j {
 | |
| 				x = One;
 | |
| 			}
 | |
| 			a.set(i, j, x);
 | |
| 		}
 | |
| 	}
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| 
 | |
| func NewHilbert(n int) *Matrix {
 | |
| 	a := NewMatrix(n, n);
 | |
| 	for i := 0; i < n; i++ {
 | |
| 		for j := 0; j < n; j++ {
 | |
| 			x := Big.Rat(1, int64(i + j + 1));
 | |
| 			a.set(i, j, x);
 | |
| 		}
 | |
| 	}
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| 
 | |
| func MakeRat(x Big.Natural) *Big.Rational {
 | |
| 	return Big.MakeRat(Big.MakeInt(false, x), Big.Nat(1));
 | |
| }
 | |
| 
 | |
| 
 | |
| func NewInverseHilbert(n int) *Matrix {
 | |
| 	a := NewMatrix(n, n);
 | |
| 	for i := 0; i < n; i++ {
 | |
| 		for j := 0; j < n; j++ {
 | |
| 			x0 := One;
 | |
| 			if (i+j)&1 != 0 {
 | |
| 				x0 = x0.Neg();
 | |
| 			}
 | |
| 			x1 := Big.Rat(int64(i + j + 1), 1);
 | |
| 			x2 := MakeRat(Big.Binomial(uint(n+i), uint(n-j-1)));
 | |
| 			x3 := MakeRat(Big.Binomial(uint(n+j), uint(n-i-1)));
 | |
| 			x4 := MakeRat(Big.Binomial(uint(i+j), uint(i)));
 | |
| 			x4 = x4.Mul(x4);
 | |
| 			a.set(i, j, x0.Mul(x1).Mul(x2).Mul(x3).Mul(x4));
 | |
| 		}
 | |
| 	}
 | |
| 	return a;
 | |
| }
 | |
| 
 | |
| 
 | |
| func (a *Matrix) Mul(b *Matrix) *Matrix {
 | |
| 	assert(a.m == b.n);
 | |
| 	c := NewMatrix(a.n, b.m);
 | |
| 	for i := 0; i < c.n; i++ {
 | |
| 		for j := 0; j < c.m; j++ {
 | |
| 			x := Zero;
 | |
| 			for k := 0; k < a.m; k++ {
 | |
| 				x = x.Add(a.at(i, k).Mul(b.at(k, j)));
 | |
| 			}
 | |
| 			c.set(i, j, x);
 | |
| 		}
 | |
| 	}
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| 
 | |
| func (a *Matrix) Eql(b *Matrix) bool {
 | |
| 	if a.n != b.n || a.m != b.m {
 | |
| 		return false;
 | |
| 	}
 | |
| 	for i := 0; i < a.n; i++ {
 | |
| 		for j := 0; j < a.m; j++ {
 | |
| 			if a.at(i, j).Cmp(b.at(i,j)) != 0 {
 | |
| 				return false;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| func (a *Matrix) String() string {
 | |
| 	s := "";
 | |
| 	for i := 0; i < a.n; i++ {
 | |
| 		for j := 0; j < a.m; j++ {
 | |
| 			s += Fmt.Sprintf("\t%s", a.at(i, j));
 | |
| 		}
 | |
| 		s += "\n";
 | |
| 	}
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| 
 | |
| func main() {
 | |
| 	n := 10;
 | |
| 	a := NewHilbert(n);
 | |
| 	b := NewInverseHilbert(n);
 | |
| 	I := NewUnit(n);
 | |
| 	ab := a.Mul(b);
 | |
| 	if !ab.Eql(I) {
 | |
| 		Fmt.Println("a =", a);
 | |
| 		Fmt.Println("b =", b);
 | |
| 		Fmt.Println("a*b =", ab);
 | |
| 		Fmt.Println("I =", I);
 | |
| 		panic("FAILED");
 | |
| 	}
 | |
| }
 | 
