| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
 | 
					
						
							|  |  |  | #include "meshoptimizer.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <assert.h>
 | 
					
						
							|  |  |  | #include <float.h>
 | 
					
						
							|  |  |  | #include <string.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // This work is based on:
 | 
					
						
							|  |  |  | // Fabian Giesen. Decoding Morton codes. 2009
 | 
					
						
							|  |  |  | namespace meshopt | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // "Insert" two 0 bits after each of the 10 low bits of x
 | 
					
						
							|  |  |  | inline unsigned int part1By2(unsigned int x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	x &= 0x000003ff;                  // x = ---- ---- ---- ---- ---- --98 7654 3210
 | 
					
						
							|  |  |  | 	x = (x ^ (x << 16)) & 0xff0000ff; // x = ---- --98 ---- ---- ---- ---- 7654 3210
 | 
					
						
							|  |  |  | 	x = (x ^ (x << 8)) & 0x0300f00f;  // x = ---- --98 ---- ---- 7654 ---- ---- 3210
 | 
					
						
							|  |  |  | 	x = (x ^ (x << 4)) & 0x030c30c3;  // x = ---- --98 ---- 76-- --54 ---- 32-- --10
 | 
					
						
							|  |  |  | 	x = (x ^ (x << 2)) & 0x09249249;  // x = ---- 9--8 --7- -6-- 5--4 --3- -2-- 1--0
 | 
					
						
							|  |  |  | 	return x; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static void computeOrder(unsigned int* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	size_t vertex_stride_float = vertex_positions_stride / sizeof(float); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; | 
					
						
							|  |  |  | 	float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < vertex_count; ++i) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		const float* v = vertex_positions_data + i * vertex_stride_float; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (int j = 0; j < 3; ++j) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			float vj = v[j]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			minv[j] = minv[j] > vj ? vj : minv[j]; | 
					
						
							|  |  |  | 			maxv[j] = maxv[j] < vj ? vj : maxv[j]; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	float extent = 0.f; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]); | 
					
						
							|  |  |  | 	extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]); | 
					
						
							|  |  |  | 	extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	float scale = extent == 0 ? 0.f : 1.f / extent; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// generate Morton order based on the position inside a unit cube
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < vertex_count; ++i) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		const float* v = vertex_positions_data + i * vertex_stride_float; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		int x = int((v[0] - minv[0]) * scale * 1023.f + 0.5f); | 
					
						
							|  |  |  | 		int y = int((v[1] - minv[1]) * scale * 1023.f + 0.5f); | 
					
						
							|  |  |  | 		int z = int((v[2] - minv[2]) * scale * 1023.f + 0.5f); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		result[i] = part1By2(x) | (part1By2(y) << 1) | (part1By2(z) << 2); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static void computeHistogram(unsigned int (&hist)[1024][3], const unsigned int* data, size_t count) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	memset(hist, 0, sizeof(hist)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// compute 3 10-bit histograms in parallel
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < count; ++i) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		unsigned int id = data[i]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		hist[(id >> 0) & 1023][0]++; | 
					
						
							|  |  |  | 		hist[(id >> 10) & 1023][1]++; | 
					
						
							|  |  |  | 		hist[(id >> 20) & 1023][2]++; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	unsigned int sumx = 0, sumy = 0, sumz = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// replace histogram data with prefix histogram sums in-place
 | 
					
						
							|  |  |  | 	for (int i = 0; i < 1024; ++i) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		unsigned int hx = hist[i][0], hy = hist[i][1], hz = hist[i][2]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		hist[i][0] = sumx; | 
					
						
							|  |  |  | 		hist[i][1] = sumy; | 
					
						
							|  |  |  | 		hist[i][2] = sumz; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		sumx += hx; | 
					
						
							|  |  |  | 		sumy += hy; | 
					
						
							|  |  |  | 		sumz += hz; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	assert(sumx == count && sumy == count && sumz == count); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static void radixPass(unsigned int* destination, const unsigned int* source, const unsigned int* keys, size_t count, unsigned int (&hist)[1024][3], int pass) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	int bitoff = pass * 10; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < count; ++i) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		unsigned int id = (keys[source[i]] >> bitoff) & 1023; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		destination[hist[id][pass]++] = source[i]; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } // namespace meshopt
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	using namespace meshopt; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-12-22 16:22:33 +01:00
										 |  |  | 	assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | 	assert(vertex_positions_stride % sizeof(float) == 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_Allocator allocator; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	unsigned int* keys = allocator.allocate<unsigned int>(vertex_count); | 
					
						
							|  |  |  | 	computeOrder(keys, vertex_positions, vertex_count, vertex_positions_stride); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	unsigned int hist[1024][3]; | 
					
						
							|  |  |  | 	computeHistogram(hist, keys, vertex_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	unsigned int* scratch = allocator.allocate<unsigned int>(vertex_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < vertex_count; ++i) | 
					
						
							|  |  |  | 		destination[i] = unsigned(i); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// 3-pass radix sort computes the resulting order into scratch
 | 
					
						
							|  |  |  | 	radixPass(scratch, destination, keys, vertex_count, hist, 0); | 
					
						
							|  |  |  | 	radixPass(destination, scratch, keys, vertex_count, hist, 1); | 
					
						
							|  |  |  | 	radixPass(scratch, destination, keys, vertex_count, hist, 2); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// since our remap table is mapping old=>new, we need to reverse it
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < vertex_count; ++i) | 
					
						
							|  |  |  | 		destination[scratch[i]] = unsigned(i); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	using namespace meshopt; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	assert(index_count % 3 == 0); | 
					
						
							| 
									
										
										
										
											2022-12-22 16:22:33 +01:00
										 |  |  | 	assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | 	assert(vertex_positions_stride % sizeof(float) == 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	(void)vertex_count; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	size_t face_count = index_count / 3; | 
					
						
							|  |  |  | 	size_t vertex_stride_float = vertex_positions_stride / sizeof(float); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_Allocator allocator; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	float* centroids = allocator.allocate<float>(face_count * 3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < face_count; ++i) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; | 
					
						
							|  |  |  | 		assert(a < vertex_count && b < vertex_count && c < vertex_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const float* va = vertex_positions + a * vertex_stride_float; | 
					
						
							|  |  |  | 		const float* vb = vertex_positions + b * vertex_stride_float; | 
					
						
							|  |  |  | 		const float* vc = vertex_positions + c * vertex_stride_float; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		centroids[i * 3 + 0] = (va[0] + vb[0] + vc[0]) / 3.f; | 
					
						
							|  |  |  | 		centroids[i * 3 + 1] = (va[1] + vb[1] + vc[1]) / 3.f; | 
					
						
							|  |  |  | 		centroids[i * 3 + 2] = (va[2] + vb[2] + vc[2]) / 3.f; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	unsigned int* remap = allocator.allocate<unsigned int>(face_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_spatialSortRemap(remap, centroids, face_count, sizeof(float) * 3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// support in-order remap
 | 
					
						
							|  |  |  | 	if (destination == indices) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		unsigned int* indices_copy = allocator.allocate<unsigned int>(index_count); | 
					
						
							|  |  |  | 		memcpy(indices_copy, indices, index_count * sizeof(unsigned int)); | 
					
						
							|  |  |  | 		indices = indices_copy; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (size_t i = 0; i < face_count; ++i) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; | 
					
						
							|  |  |  | 		unsigned int r = remap[i]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		destination[r * 3 + 0] = a; | 
					
						
							|  |  |  | 		destination[r * 3 + 1] = b; | 
					
						
							|  |  |  | 		destination[r * 3 + 2] = c; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } |