| 
									
										
										
										
											2023-01-05 13:25:55 +01:00
										 |  |  | /**************************************************************************/ | 
					
						
							|  |  |  | /*  voxelizer.cpp                                                         */ | 
					
						
							|  |  |  | /**************************************************************************/ | 
					
						
							|  |  |  | /*                         This file is part of:                          */ | 
					
						
							|  |  |  | /*                             GODOT ENGINE                               */ | 
					
						
							|  |  |  | /*                        https://godotengine.org                         */ | 
					
						
							|  |  |  | /**************************************************************************/ | 
					
						
							|  |  |  | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ | 
					
						
							|  |  |  | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */ | 
					
						
							|  |  |  | /*                                                                        */ | 
					
						
							|  |  |  | /* Permission is hereby granted, free of charge, to any person obtaining  */ | 
					
						
							|  |  |  | /* a copy of this software and associated documentation files (the        */ | 
					
						
							|  |  |  | /* "Software"), to deal in the Software without restriction, including    */ | 
					
						
							|  |  |  | /* without limitation the rights to use, copy, modify, merge, publish,    */ | 
					
						
							|  |  |  | /* distribute, sublicense, and/or sell copies of the Software, and to     */ | 
					
						
							|  |  |  | /* permit persons to whom the Software is furnished to do so, subject to  */ | 
					
						
							|  |  |  | /* the following conditions:                                              */ | 
					
						
							|  |  |  | /*                                                                        */ | 
					
						
							|  |  |  | /* The above copyright notice and this permission notice shall be         */ | 
					
						
							|  |  |  | /* included in all copies or substantial portions of the Software.        */ | 
					
						
							|  |  |  | /*                                                                        */ | 
					
						
							|  |  |  | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */ | 
					
						
							|  |  |  | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */ | 
					
						
							|  |  |  | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ | 
					
						
							|  |  |  | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */ | 
					
						
							|  |  |  | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */ | 
					
						
							|  |  |  | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */ | 
					
						
							|  |  |  | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */ | 
					
						
							|  |  |  | /**************************************************************************/ | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | #include "voxelizer.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-07-31 16:20:24 -07:00
										 |  |  | #include "core/config/project_settings.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) { | 
					
						
							| 
									
										
										
										
											2021-07-16 13:19:55 -04:00
										 |  |  | 	if (p_pos.is_equal_approx(p_vtx[0])) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		r_uv = p_uv[0]; | 
					
						
							|  |  |  | 		r_normal = p_normal[0]; | 
					
						
							|  |  |  | 		return; | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2021-07-16 13:19:55 -04:00
										 |  |  | 	if (p_pos.is_equal_approx(p_vtx[1])) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		r_uv = p_uv[1]; | 
					
						
							|  |  |  | 		r_normal = p_normal[1]; | 
					
						
							|  |  |  | 		return; | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2021-07-16 13:19:55 -04:00
										 |  |  | 	if (p_pos.is_equal_approx(p_vtx[2])) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		r_uv = p_uv[2]; | 
					
						
							|  |  |  | 		r_normal = p_normal[2]; | 
					
						
							|  |  |  | 		return; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Vector3 v0 = p_vtx[1] - p_vtx[0]; | 
					
						
							|  |  |  | 	Vector3 v1 = p_vtx[2] - p_vtx[0]; | 
					
						
							|  |  |  | 	Vector3 v2 = p_pos - p_vtx[0]; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 	real_t d00 = v0.dot(v0); | 
					
						
							|  |  |  | 	real_t d01 = v0.dot(v1); | 
					
						
							|  |  |  | 	real_t d11 = v1.dot(v1); | 
					
						
							|  |  |  | 	real_t d20 = v2.dot(v0); | 
					
						
							|  |  |  | 	real_t d21 = v2.dot(v1); | 
					
						
							|  |  |  | 	real_t denom = (d00 * d11 - d01 * d01); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	if (denom == 0) { | 
					
						
							|  |  |  | 		r_uv = p_uv[0]; | 
					
						
							|  |  |  | 		r_normal = p_normal[0]; | 
					
						
							|  |  |  | 		return; | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 	real_t v = (d11 * d20 - d01 * d21) / denom; | 
					
						
							|  |  |  | 	real_t w = (d00 * d21 - d01 * d20) / denom; | 
					
						
							|  |  |  | 	real_t u = 1.0f - v - w; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; | 
					
						
							|  |  |  | 	r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) { | 
					
						
							|  |  |  | 	if (p_level == cell_subdiv) { | 
					
						
							|  |  |  | 		//plot the face by guessing its albedo and emission value
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		//find best axis to map to, for scanning values
 | 
					
						
							|  |  |  | 		int closest_axis = 0; | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 		real_t closest_dot = 0; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); | 
					
						
							|  |  |  | 		Vector3 normal = plane.normal; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (int i = 0; i < 3; i++) { | 
					
						
							|  |  |  | 			Vector3 axis; | 
					
						
							|  |  |  | 			axis[i] = 1.0; | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 			real_t dot = ABS(normal.dot(axis)); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 			if (i == 0 || dot > closest_dot) { | 
					
						
							|  |  |  | 				closest_axis = i; | 
					
						
							|  |  |  | 				closest_dot = dot; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		Vector3 axis; | 
					
						
							|  |  |  | 		axis[closest_axis] = 1.0; | 
					
						
							|  |  |  | 		Vector3 t1; | 
					
						
							|  |  |  | 		t1[(closest_axis + 1) % 3] = 1.0; | 
					
						
							|  |  |  | 		Vector3 t2; | 
					
						
							|  |  |  | 		t2[(closest_axis + 2) % 3] = 1.0; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 		t1 *= p_aabb.size[(closest_axis + 1) % 3] / real_t(color_scan_cell_width); | 
					
						
							|  |  |  | 		t2 *= p_aabb.size[(closest_axis + 2) % 3] / real_t(color_scan_cell_width); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		Color albedo_accum; | 
					
						
							|  |  |  | 		Color emission_accum; | 
					
						
							|  |  |  | 		Vector3 normal_accum; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		float alpha = 0.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		//map to a grid average in the best axis for this face
 | 
					
						
							|  |  |  | 		for (int i = 0; i < color_scan_cell_width; i++) { | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 			Vector3 ofs_i = real_t(i) * t1; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			for (int j = 0; j < color_scan_cell_width; j++) { | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 				Vector3 ofs_j = real_t(j) * t2; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 				Vector3 from = p_aabb.position + ofs_i + ofs_j; | 
					
						
							|  |  |  | 				Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; | 
					
						
							|  |  |  | 				Vector3 half = (to - from) * 0.5; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				//is in this cell?
 | 
					
						
							| 
									
										
										
										
											2020-05-25 20:20:45 +03:00
										 |  |  | 				if (!Geometry3D::triangle_box_overlap(from + half, half, p_vtx)) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 					continue; //face does not span this cell
 | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				//go from -size to +size*2 to avoid skipping collisions
 | 
					
						
							|  |  |  | 				Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; | 
					
						
							|  |  |  | 				Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				if (normal.dot(ray_from - ray_to) < 0) { | 
					
						
							|  |  |  | 					SWAP(ray_from, ray_to); | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				Vector3 intersection; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { | 
					
						
							|  |  |  | 					if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { | 
					
						
							|  |  |  | 						intersection = plane.project(ray_from); | 
					
						
							|  |  |  | 					} else { | 
					
						
							|  |  |  | 						intersection = plane.project(ray_to); | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				Vector2 uv; | 
					
						
							|  |  |  | 				Vector3 lnormal; | 
					
						
							|  |  |  | 				get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal); | 
					
						
							| 
									
										
										
										
											2021-03-12 19:05:16 +05:30
										 |  |  | 				if (lnormal == Vector3()) { //just in case normal is not provided
 | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 					lnormal = normal; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 				} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 				int uv_x = CLAMP(int(Math::fposmod(uv.x, (real_t)1.0) * bake_texture_size), 0, bake_texture_size - 1); | 
					
						
							|  |  |  | 				int uv_y = CLAMP(int(Math::fposmod(uv.y, (real_t)1.0) * bake_texture_size), 0, bake_texture_size - 1); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 				int ofs = uv_y * bake_texture_size + uv_x; | 
					
						
							|  |  |  | 				albedo_accum.r += p_material.albedo[ofs].r; | 
					
						
							|  |  |  | 				albedo_accum.g += p_material.albedo[ofs].g; | 
					
						
							|  |  |  | 				albedo_accum.b += p_material.albedo[ofs].b; | 
					
						
							|  |  |  | 				albedo_accum.a += p_material.albedo[ofs].a; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				emission_accum.r += p_material.emission[ofs].r; | 
					
						
							|  |  |  | 				emission_accum.g += p_material.emission[ofs].g; | 
					
						
							|  |  |  | 				emission_accum.b += p_material.emission[ofs].b; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				normal_accum += lnormal; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				alpha += 1.0; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (alpha == 0) { | 
					
						
							|  |  |  | 			//could not in any way get texture information.. so use closest point to center
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); | 
					
						
							| 
									
										
										
										
											2021-09-21 00:33:52 +05:45
										 |  |  | 			Vector3 inters = f.get_closest_point_to(p_aabb.get_center()); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			Vector3 lnormal; | 
					
						
							|  |  |  | 			Vector2 uv; | 
					
						
							|  |  |  | 			get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal); | 
					
						
							| 
									
										
										
										
											2021-03-12 19:05:16 +05:30
										 |  |  | 			if (lnormal == Vector3()) { //just in case normal is not provided
 | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				lnormal = normal; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 			int uv_x = CLAMP(Math::fposmod(uv.x, (real_t)1.0) * bake_texture_size, 0, bake_texture_size - 1); | 
					
						
							|  |  |  | 			int uv_y = CLAMP(Math::fposmod(uv.y, (real_t)1.0) * bake_texture_size, 0, bake_texture_size - 1); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			int ofs = uv_y * bake_texture_size + uv_x; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			albedo_accum.r = p_material.albedo[ofs].r * alpha; | 
					
						
							|  |  |  | 			albedo_accum.g = p_material.albedo[ofs].g * alpha; | 
					
						
							|  |  |  | 			albedo_accum.b = p_material.albedo[ofs].b * alpha; | 
					
						
							|  |  |  | 			albedo_accum.a = p_material.albedo[ofs].a * alpha; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			emission_accum.r = p_material.emission[ofs].r * alpha; | 
					
						
							|  |  |  | 			emission_accum.g = p_material.emission[ofs].g * alpha; | 
					
						
							|  |  |  | 			emission_accum.b = p_material.emission[ofs].b * alpha; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			normal_accum = lnormal * alpha; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		} else { | 
					
						
							|  |  |  | 			float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); | 
					
						
							|  |  |  | 			alpha *= accdiv; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			albedo_accum.r *= accdiv; | 
					
						
							|  |  |  | 			albedo_accum.g *= accdiv; | 
					
						
							|  |  |  | 			albedo_accum.b *= accdiv; | 
					
						
							|  |  |  | 			albedo_accum.a *= accdiv; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			emission_accum.r *= accdiv; | 
					
						
							|  |  |  | 			emission_accum.g *= accdiv; | 
					
						
							|  |  |  | 			emission_accum.b *= accdiv; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			normal_accum *= accdiv; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		//put this temporarily here, corrected in a later step
 | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].albedo[0] += albedo_accum.r; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].albedo[1] += albedo_accum.g; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].albedo[2] += albedo_accum.b; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].emission[0] += emission_accum.r; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].emission[1] += emission_accum.g; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].emission[2] += emission_accum.b; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].normal[0] += normal_accum.x; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].normal[1] += normal_accum.y; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].normal[2] += normal_accum.z; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].alpha += alpha; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		//go down
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		int half = (1 << cell_subdiv) >> (p_level + 1); | 
					
						
							|  |  |  | 		for (int i = 0; i < 8; i++) { | 
					
						
							|  |  |  | 			AABB aabb = p_aabb; | 
					
						
							|  |  |  | 			aabb.size *= 0.5; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			int nx = p_x; | 
					
						
							|  |  |  | 			int ny = p_y; | 
					
						
							|  |  |  | 			int nz = p_z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if (i & 1) { | 
					
						
							|  |  |  | 				aabb.position.x += aabb.size.x; | 
					
						
							|  |  |  | 				nx += half; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			if (i & 2) { | 
					
						
							|  |  |  | 				aabb.position.y += aabb.size.y; | 
					
						
							|  |  |  | 				ny += half; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			if (i & 4) { | 
					
						
							|  |  |  | 				aabb.position.z += aabb.size.z; | 
					
						
							|  |  |  | 				nz += half; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			//make sure to not plot beyond limits
 | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				continue; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				AABB test_aabb = aabb; | 
					
						
							|  |  |  | 				//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
 | 
					
						
							|  |  |  | 				Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-25 20:20:45 +03:00
										 |  |  | 				if (!Geometry3D::triangle_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 					//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
 | 
					
						
							|  |  |  | 					//does not fit in child, go on
 | 
					
						
							|  |  |  | 					continue; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if (bake_cells[p_idx].children[i] == CHILD_EMPTY) { | 
					
						
							|  |  |  | 				//sub cell must be created
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				uint32_t child_idx = bake_cells.size(); | 
					
						
							|  |  |  | 				bake_cells.write[p_idx].children[i] = child_idx; | 
					
						
							|  |  |  | 				bake_cells.resize(bake_cells.size() + 1); | 
					
						
							|  |  |  | 				bake_cells.write[child_idx].level = p_level + 1; | 
					
						
							|  |  |  | 				bake_cells.write[child_idx].x = nx / half; | 
					
						
							|  |  |  | 				bake_cells.write[child_idx].y = ny / half; | 
					
						
							|  |  |  | 				bake_cells.write[child_idx].z = nz / half; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			_plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Vector<Color> Voxelizer::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) { | 
					
						
							|  |  |  | 	Vector<Color> ret; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-15 12:04:21 +00:00
										 |  |  | 	if (p_image.is_null() || p_image->is_empty()) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		ret.resize(bake_texture_size * bake_texture_size); | 
					
						
							|  |  |  | 		for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { | 
					
						
							|  |  |  | 			ret.write[i] = p_color_add; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return ret; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	p_image = p_image->duplicate(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (p_image->is_compressed()) { | 
					
						
							|  |  |  | 		p_image->decompress(); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	p_image->convert(Image::FORMAT_RGBA8); | 
					
						
							|  |  |  | 	p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 	const uint8_t *r = p_image->get_data().ptr(); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	ret.resize(bake_texture_size * bake_texture_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { | 
					
						
							|  |  |  | 		Color c; | 
					
						
							|  |  |  | 		c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r; | 
					
						
							|  |  |  | 		c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g; | 
					
						
							|  |  |  | 		c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		c.a = r[i * 4 + 3] / 255.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		ret.write[i] = c; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return ret; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material) { | 
					
						
							| 
									
										
										
										
											2022-08-10 15:21:45 +02:00
										 |  |  | 	// This way of obtaining materials is inaccurate and also does not support some compressed formats very well.
 | 
					
						
							|  |  |  | 	Ref<BaseMaterial3D> mat = p_material; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	Ref<Material> material = mat; //hack for now
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (material_cache.has(material)) { | 
					
						
							|  |  |  | 		return material_cache[material]; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	MaterialCache mc; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (mat.is_valid()) { | 
					
						
							| 
									
										
										
										
											2022-08-10 15:21:45 +02:00
										 |  |  | 		Ref<Texture2D> albedo_tex = mat->get_texture(BaseMaterial3D::TEXTURE_ALBEDO); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		Ref<Image> img_albedo; | 
					
						
							|  |  |  | 		if (albedo_tex.is_valid()) { | 
					
						
							| 
									
										
										
										
											2021-03-28 12:32:17 +01:00
										 |  |  | 			img_albedo = albedo_tex->get_image(); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 			mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative
 | 
					
						
							|  |  |  | 		} else { | 
					
						
							|  |  |  | 			mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive
 | 
					
						
							|  |  |  | 		} | 
					
						
							| 
									
										
										
										
											2023-02-16 14:29:17 -08:00
										 |  |  | 		if (mat->get_feature(BaseMaterial3D::FEATURE_EMISSION)) { | 
					
						
							|  |  |  | 			Ref<Texture2D> emission_tex = mat->get_texture(BaseMaterial3D::TEXTURE_EMISSION); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-16 14:29:17 -08:00
										 |  |  | 			Color emission_col = mat->get_emission(); | 
					
						
							|  |  |  | 			float emission_energy = mat->get_emission_energy_multiplier() * exposure_normalization; | 
					
						
							|  |  |  | 			if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units")) { | 
					
						
							|  |  |  | 				emission_energy *= mat->get_emission_intensity(); | 
					
						
							|  |  |  | 			} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-16 14:29:17 -08:00
										 |  |  | 			Ref<Image> img_emission; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-16 14:29:17 -08:00
										 |  |  | 			if (emission_tex.is_valid()) { | 
					
						
							|  |  |  | 				img_emission = emission_tex->get_image(); | 
					
						
							|  |  |  | 			} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-02-16 14:29:17 -08:00
										 |  |  | 			if (mat->get_emission_operator() == BaseMaterial3D::EMISSION_OP_ADD) { | 
					
						
							|  |  |  | 				mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy); | 
					
						
							|  |  |  | 			} else { | 
					
						
							|  |  |  | 				mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0)); | 
					
						
							|  |  |  | 			} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		} else { | 
					
						
							| 
									
										
										
										
											2023-02-16 14:29:17 -08:00
										 |  |  | 			Ref<Image> empty; | 
					
						
							|  |  |  | 			mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0)); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		Ref<Image> empty; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1)); | 
					
						
							|  |  |  | 		mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0)); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	material_cache[p_material] = mc; | 
					
						
							|  |  |  | 	return mc; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-17 01:08:21 -04:00
										 |  |  | void Voxelizer::plot_mesh(const Transform3D &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material>> &p_materials, const Ref<Material> &p_override_material) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	for (int i = 0; i < p_mesh->get_surface_count(); i++) { | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 		if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 			continue; //only triangles
 | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 		} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		Ref<Material> src_material; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (p_override_material.is_valid()) { | 
					
						
							|  |  |  | 			src_material = p_override_material; | 
					
						
							|  |  |  | 		} else if (i < p_materials.size() && p_materials[i].is_valid()) { | 
					
						
							|  |  |  | 			src_material = p_materials[i]; | 
					
						
							|  |  |  | 		} else { | 
					
						
							|  |  |  | 			src_material = p_mesh->surface_get_material(i); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		MaterialCache material = _get_material_cache(src_material); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		Array a = p_mesh->surface_get_arrays(i); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 		Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX]; | 
					
						
							|  |  |  | 		const Vector3 *vr = vertices.ptr(); | 
					
						
							|  |  |  | 		Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV]; | 
					
						
							| 
									
										
										
										
											2020-04-20 22:34:20 +02:00
										 |  |  | 		const Vector2 *uvr = nullptr; | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 		Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL]; | 
					
						
							| 
									
										
										
										
											2020-04-20 22:34:20 +02:00
										 |  |  | 		const Vector3 *nr = nullptr; | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 		Vector<int> index = a[Mesh::ARRAY_INDEX]; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		if (uv.size()) { | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 			uvr = uv.ptr(); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (normals.size()) { | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 			nr = normals.ptr(); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (index.size()) { | 
					
						
							|  |  |  | 			int facecount = index.size() / 3; | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 			const int *ir = index.ptr(); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			for (int j = 0; j < facecount; j++) { | 
					
						
							|  |  |  | 				Vector3 vtxs[3]; | 
					
						
							|  |  |  | 				Vector2 uvs[3]; | 
					
						
							|  |  |  | 				Vector3 normal[3]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				for (int k = 0; k < 3; k++) { | 
					
						
							|  |  |  | 					vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-04-20 22:34:20 +02:00
										 |  |  | 				if (uvr) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 					for (int k = 0; k < 3; k++) { | 
					
						
							|  |  |  | 						uvs[k] = uvr[ir[j * 3 + k]]; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-04-20 22:34:20 +02:00
										 |  |  | 				if (nr) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 					for (int k = 0; k < 3; k++) { | 
					
						
							|  |  |  | 						normal[k] = nr[ir[j * 3 + k]]; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				//test against original bounds
 | 
					
						
							| 
									
										
										
										
											2021-09-21 00:33:52 +05:45
										 |  |  | 				if (!Geometry3D::triangle_box_overlap(original_bounds.get_center(), original_bounds.size * 0.5, vtxs)) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 					continue; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 				} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				//plot
 | 
					
						
							|  |  |  | 				_plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		} else { | 
					
						
							|  |  |  | 			int facecount = vertices.size() / 3; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (int j = 0; j < facecount; j++) { | 
					
						
							|  |  |  | 				Vector3 vtxs[3]; | 
					
						
							|  |  |  | 				Vector2 uvs[3]; | 
					
						
							|  |  |  | 				Vector3 normal[3]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				for (int k = 0; k < 3; k++) { | 
					
						
							|  |  |  | 					vtxs[k] = p_xform.xform(vr[j * 3 + k]); | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-04-20 22:34:20 +02:00
										 |  |  | 				if (uvr) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 					for (int k = 0; k < 3; k++) { | 
					
						
							|  |  |  | 						uvs[k] = uvr[j * 3 + k]; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-04-20 22:34:20 +02:00
										 |  |  | 				if (nr) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 					for (int k = 0; k < 3; k++) { | 
					
						
							|  |  |  | 						normal[k] = nr[j * 3 + k]; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				//test against original bounds
 | 
					
						
							| 
									
										
										
										
											2021-09-21 00:33:52 +05:45
										 |  |  | 				if (!Geometry3D::triangle_box_overlap(original_bounds.get_center(), original_bounds.size * 0.5, vtxs)) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 					continue; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 				} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				//plot face
 | 
					
						
							|  |  |  | 				_plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	max_original_cells = bake_cells.size(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Voxelizer::_sort() { | 
					
						
							|  |  |  | 	// cells need to be sorted by level and coordinates
 | 
					
						
							|  |  |  | 	// it is important that level has more priority (for compute), and that Z has the least,
 | 
					
						
							|  |  |  | 	// given it may aid older implementations plot using GPU
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Vector<CellSort> sorted_cells; | 
					
						
							|  |  |  | 	uint32_t cell_count = bake_cells.size(); | 
					
						
							|  |  |  | 	sorted_cells.resize(cell_count); | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		CellSort *sort_cellsp = sorted_cells.ptrw(); | 
					
						
							|  |  |  | 		const Cell *bake_cellsp = bake_cells.ptr(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < cell_count; i++) { | 
					
						
							|  |  |  | 			sort_cellsp[i].x = bake_cellsp[i].x; | 
					
						
							|  |  |  | 			sort_cellsp[i].y = bake_cellsp[i].y; | 
					
						
							|  |  |  | 			sort_cellsp[i].z = bake_cellsp[i].z; | 
					
						
							|  |  |  | 			sort_cellsp[i].level = bake_cellsp[i].level; | 
					
						
							|  |  |  | 			sort_cellsp[i].index = i; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	sorted_cells.sort(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	//verify just in case, index 0 must be level 0
 | 
					
						
							|  |  |  | 	ERR_FAIL_COND(sorted_cells[0].level != 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Vector<Cell> new_bake_cells; | 
					
						
							|  |  |  | 	new_bake_cells.resize(cell_count); | 
					
						
							|  |  |  | 	Vector<uint32_t> reverse_map; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		reverse_map.resize(cell_count); | 
					
						
							|  |  |  | 		const CellSort *sort_cellsp = sorted_cells.ptr(); | 
					
						
							|  |  |  | 		uint32_t *reverse_mapp = reverse_map.ptrw(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < cell_count; i++) { | 
					
						
							|  |  |  | 			reverse_mapp[sort_cellsp[i].index] = i; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		const CellSort *sort_cellsp = sorted_cells.ptr(); | 
					
						
							|  |  |  | 		const Cell *bake_cellsp = bake_cells.ptr(); | 
					
						
							|  |  |  | 		const uint32_t *reverse_mapp = reverse_map.ptr(); | 
					
						
							|  |  |  | 		Cell *new_bake_cellsp = new_bake_cells.ptrw(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < cell_count; i++) { | 
					
						
							|  |  |  | 			//copy to new cell
 | 
					
						
							|  |  |  | 			new_bake_cellsp[i] = bake_cellsp[sort_cellsp[i].index]; | 
					
						
							|  |  |  | 			//remap children
 | 
					
						
							|  |  |  | 			for (uint32_t j = 0; j < 8; j++) { | 
					
						
							|  |  |  | 				if (new_bake_cellsp[i].children[j] != CHILD_EMPTY) { | 
					
						
							|  |  |  | 					new_bake_cellsp[i].children[j] = reverse_mapp[new_bake_cellsp[i].children[j]]; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	bake_cells = new_bake_cells; | 
					
						
							|  |  |  | 	sorted = true; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Voxelizer::_fixup_plot(int p_idx, int p_level) { | 
					
						
							|  |  |  | 	if (p_level == cell_subdiv) { | 
					
						
							|  |  |  | 		leaf_voxel_count++; | 
					
						
							|  |  |  | 		float alpha = bake_cells[p_idx].alpha; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].albedo[0] /= alpha; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].albedo[1] /= alpha; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].albedo[2] /= alpha; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		//transfer emission to light
 | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].emission[0] /= alpha; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].emission[1] /= alpha; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].emission[2] /= alpha; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].normal[0] /= alpha; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].normal[1] /= alpha; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].normal[2] /= alpha; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]); | 
					
						
							|  |  |  | 		if (n.length() < 0.01) { | 
					
						
							|  |  |  | 			//too much fight over normal, zero it
 | 
					
						
							|  |  |  | 			bake_cells.write[p_idx].normal[0] = 0; | 
					
						
							|  |  |  | 			bake_cells.write[p_idx].normal[1] = 0; | 
					
						
							|  |  |  | 			bake_cells.write[p_idx].normal[2] = 0; | 
					
						
							|  |  |  | 		} else { | 
					
						
							|  |  |  | 			n.normalize(); | 
					
						
							|  |  |  | 			bake_cells.write[p_idx].normal[0] = n.x; | 
					
						
							|  |  |  | 			bake_cells.write[p_idx].normal[1] = n.y; | 
					
						
							|  |  |  | 			bake_cells.write[p_idx].normal[2] = n.z; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].alpha = 1.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/*if (bake_light.size()) {
 | 
					
						
							|  |  |  | 			for(int i=0;i<6;i++) { | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		}*/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		//go down
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].emission[0] = 0; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].emission[1] = 0; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].emission[2] = 0; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].normal[0] = 0; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].normal[1] = 0; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].normal[2] = 0; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].albedo[0] = 0; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].albedo[1] = 0; | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].albedo[2] = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		float alpha_average = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (int i = 0; i < 8; i++) { | 
					
						
							|  |  |  | 			uint32_t child = bake_cells[p_idx].children[i]; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			if (child == CHILD_EMPTY) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				continue; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			_fixup_plot(child, p_level + 1); | 
					
						
							|  |  |  | 			alpha_average += bake_cells[child].alpha; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		bake_cells.write[p_idx].alpha = alpha_average / 8.0; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-07-31 16:20:24 -07:00
										 |  |  | void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds, float p_exposure_normalization) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	sorted = false; | 
					
						
							|  |  |  | 	original_bounds = p_bounds; | 
					
						
							|  |  |  | 	cell_subdiv = p_subdiv; | 
					
						
							| 
									
										
										
										
											2022-07-31 16:20:24 -07:00
										 |  |  | 	exposure_normalization = p_exposure_normalization; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	bake_cells.resize(1); | 
					
						
							|  |  |  | 	material_cache.clear(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	//find out the actual real bounds, power of 2, which gets the highest subdivision
 | 
					
						
							|  |  |  | 	po2_bounds = p_bounds; | 
					
						
							|  |  |  | 	int longest_axis = po2_bounds.get_longest_axis_index(); | 
					
						
							|  |  |  | 	axis_cell_size[longest_axis] = 1 << cell_subdiv; | 
					
						
							|  |  |  | 	leaf_voxel_count = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (int i = 0; i < 3; i++) { | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 		if (i == longest_axis) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 			continue; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 		} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		axis_cell_size[i] = axis_cell_size[longest_axis]; | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 		real_t axis_size = po2_bounds.size[longest_axis]; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		//shrink until fit subdiv
 | 
					
						
							|  |  |  | 		while (axis_size / 2.0 >= po2_bounds.size[i]) { | 
					
						
							|  |  |  | 			axis_size /= 2.0; | 
					
						
							|  |  |  | 			axis_cell_size[i] >>= 1; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		po2_bounds.size[i] = po2_bounds.size[longest_axis]; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-17 01:08:21 -04:00
										 |  |  | 	Transform3D to_bounds; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis])); | 
					
						
							|  |  |  | 	to_bounds.origin = po2_bounds.position; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-17 01:08:21 -04:00
										 |  |  | 	Transform3D to_grid; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis])); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	to_cell_space = to_grid * to_bounds.affine_inverse(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis]; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Voxelizer::end_bake() { | 
					
						
							|  |  |  | 	if (!sorted) { | 
					
						
							|  |  |  | 		_sort(); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	_fixup_plot(0, 0); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-10-07 15:46:55 +02:00
										 |  |  | //create the data for rendering server
 | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-06-04 19:47:26 -03:00
										 |  |  | int Voxelizer::get_voxel_gi_octree_depth() const { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	return cell_subdiv; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2020-05-14 14:29:06 +02:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-06-04 19:47:26 -03:00
										 |  |  | Vector3i Voxelizer::get_voxel_gi_octree_size() const { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	return Vector3i(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]); | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2020-05-14 14:29:06 +02:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-06-04 19:47:26 -03:00
										 |  |  | int Voxelizer::get_voxel_gi_cell_count() const { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	return bake_cells.size(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-06-04 19:47:26 -03:00
										 |  |  | Vector<uint8_t> Voxelizer::get_voxel_gi_octree_cells() const { | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 	Vector<uint8_t> data; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	data.resize((8 * 4) * bake_cells.size()); //8 uint32t values
 | 
					
						
							|  |  |  | 	{ | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 		uint8_t *w = data.ptrw(); | 
					
						
							|  |  |  | 		uint32_t *children_cells = (uint32_t *)w; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		const Cell *cells = bake_cells.ptr(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t cell_count = bake_cells.size(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < cell_count; i++) { | 
					
						
							|  |  |  | 			for (uint32_t j = 0; j < 8; j++) { | 
					
						
							|  |  |  | 				children_cells[i * 8 + j] = cells[i].children[j]; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return data; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2020-05-14 14:29:06 +02:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-06-04 19:47:26 -03:00
										 |  |  | Vector<uint8_t> Voxelizer::get_voxel_gi_data_cells() const { | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 	Vector<uint8_t> data; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	data.resize((4 * 4) * bake_cells.size()); //8 uint32t values
 | 
					
						
							|  |  |  | 	{ | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 		uint8_t *w = data.ptrw(); | 
					
						
							|  |  |  | 		uint32_t *dataptr = (uint32_t *)w; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		const Cell *cells = bake_cells.ptr(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t cell_count = bake_cells.size(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < cell_count; i++) { | 
					
						
							|  |  |  | 			{ //position
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				uint32_t x = cells[i].x; | 
					
						
							|  |  |  | 				uint32_t y = cells[i].y; | 
					
						
							|  |  |  | 				uint32_t z = cells[i].z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				uint32_t position = x; | 
					
						
							|  |  |  | 				position |= y << 11; | 
					
						
							|  |  |  | 				position |= z << 21; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				dataptr[i * 4 + 0] = position; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			{ //albedo + alpha
 | 
					
						
							|  |  |  | 				uint32_t rgba = uint32_t(CLAMP(cells[i].alpha * 255.0, 0, 255)) << 24; //a
 | 
					
						
							|  |  |  | 				rgba |= uint32_t(CLAMP(cells[i].albedo[2] * 255.0, 0, 255)) << 16; //b
 | 
					
						
							|  |  |  | 				rgba |= uint32_t(CLAMP(cells[i].albedo[1] * 255.0, 0, 255)) << 8; //g
 | 
					
						
							|  |  |  | 				rgba |= uint32_t(CLAMP(cells[i].albedo[0] * 255.0, 0, 255)); //r
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				dataptr[i * 4 + 1] = rgba; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			{ //emission, as rgbe9995
 | 
					
						
							|  |  |  | 				Color emission = Color(cells[i].emission[0], cells[i].emission[1], cells[i].emission[2]); | 
					
						
							|  |  |  | 				dataptr[i * 4 + 2] = emission.to_rgbe9995(); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			{ //normal
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]); | 
					
						
							|  |  |  | 				n.normalize(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				uint32_t normal = uint32_t(uint8_t(int8_t(CLAMP(n.x * 127.0, -128, 127)))); | 
					
						
							|  |  |  | 				normal |= uint32_t(uint8_t(int8_t(CLAMP(n.y * 127.0, -128, 127)))) << 8; | 
					
						
							|  |  |  | 				normal |= uint32_t(uint8_t(int8_t(CLAMP(n.z * 127.0, -128, 127)))) << 16; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				dataptr[i * 4 + 3] = normal; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return data; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-06-04 19:47:26 -03:00
										 |  |  | Vector<int> Voxelizer::get_voxel_gi_level_cell_count() const { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	uint32_t cell_count = bake_cells.size(); | 
					
						
							|  |  |  | 	const Cell *cells = bake_cells.ptr(); | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 	Vector<int> level_count; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	level_count.resize(cell_subdiv + 1); //remember, always x+1 levels for x subdivisions
 | 
					
						
							|  |  |  | 	{ | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 		int *w = level_count.ptrw(); | 
					
						
							| 
									
										
										
										
											2019-10-26 07:23:16 -03:00
										 |  |  | 		for (int i = 0; i < cell_subdiv + 1; i++) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 			w[i] = 0; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < cell_count; i++) { | 
					
						
							|  |  |  | 			w[cells[i].level]++; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return level_count; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-10-12 21:24:03 -03:00
										 |  |  | // euclidean distance computation based on:
 | 
					
						
							|  |  |  | // https://prideout.net/blog/distance_fields/
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define square(m_s) ((m_s) * (m_s))
 | 
					
						
							|  |  |  | #define INF 1e20
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* dt of 1d function using squared distance */ | 
					
						
							|  |  |  | static void edt(float *f, int stride, int n) { | 
					
						
							|  |  |  | 	float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1)); | 
					
						
							| 
									
										
										
										
											2022-04-07 13:23:40 +03:00
										 |  |  | 	int *v = reinterpret_cast<int *>(&(d[n])); | 
					
						
							|  |  |  | 	float *z = reinterpret_cast<float *>(&v[n]); | 
					
						
							| 
									
										
										
										
											2019-10-12 21:24:03 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	int k = 0; | 
					
						
							|  |  |  | 	v[0] = 0; | 
					
						
							|  |  |  | 	z[0] = -INF; | 
					
						
							|  |  |  | 	z[1] = +INF; | 
					
						
							|  |  |  | 	for (int q = 1; q <= n - 1; q++) { | 
					
						
							|  |  |  | 		float s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]); | 
					
						
							|  |  |  | 		while (s <= z[k]) { | 
					
						
							|  |  |  | 			k--; | 
					
						
							|  |  |  | 			s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		k++; | 
					
						
							|  |  |  | 		v[k] = q; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		z[k] = s; | 
					
						
							|  |  |  | 		z[k + 1] = +INF; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	k = 0; | 
					
						
							|  |  |  | 	for (int q = 0; q <= n - 1; q++) { | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 		while (z[k + 1] < q) { | 
					
						
							| 
									
										
										
										
											2019-10-12 21:24:03 -03:00
										 |  |  | 			k++; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 		} | 
					
						
							| 
									
										
										
										
											2019-10-12 21:24:03 -03:00
										 |  |  | 		d[q] = square(q - v[k]) + f[v[k] * stride]; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (int i = 0; i < n; i++) { | 
					
						
							|  |  |  | 		f[i * stride] = d[i]; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #undef square
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | Vector<uint8_t> Voxelizer::get_sdf_3d_image() const { | 
					
						
							| 
									
										
										
										
											2021-06-04 19:47:26 -03:00
										 |  |  | 	Vector3i octree_size = get_voxel_gi_octree_size(); | 
					
						
							| 
									
										
										
										
											2019-10-12 21:24:03 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	uint32_t float_count = octree_size.x * octree_size.y * octree_size.z; | 
					
						
							|  |  |  | 	float *work_memory = memnew_arr(float, float_count); | 
					
						
							|  |  |  | 	for (uint32_t i = 0; i < float_count; i++) { | 
					
						
							|  |  |  | 		work_memory[i] = INF; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	uint32_t y_mult = octree_size.x; | 
					
						
							|  |  |  | 	uint32_t z_mult = y_mult * octree_size.y; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	//plot solid cells
 | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		const Cell *cells = bake_cells.ptr(); | 
					
						
							|  |  |  | 		uint32_t cell_count = bake_cells.size(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < cell_count; i++) { | 
					
						
							|  |  |  | 			if (cells[i].level < (cell_subdiv - 1)) { | 
					
						
							|  |  |  | 				continue; //do not care about this level
 | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			work_memory[cells[i].x + cells[i].y * y_mult + cells[i].z * z_mult] = 0; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	//process in each direction
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	//xy->z
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (int i = 0; i < octree_size.x; i++) { | 
					
						
							|  |  |  | 		for (int j = 0; j < octree_size.y; j++) { | 
					
						
							|  |  |  | 			edt(&work_memory[i + j * y_mult], z_mult, octree_size.z); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	//xz->y
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	for (int i = 0; i < octree_size.x; i++) { | 
					
						
							|  |  |  | 		for (int j = 0; j < octree_size.z; j++) { | 
					
						
							|  |  |  | 			edt(&work_memory[i + j * z_mult], y_mult, octree_size.y); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	//yz->x
 | 
					
						
							|  |  |  | 	for (int i = 0; i < octree_size.y; i++) { | 
					
						
							|  |  |  | 		for (int j = 0; j < octree_size.z; j++) { | 
					
						
							|  |  |  | 			edt(&work_memory[i * y_mult + j * z_mult], 1, octree_size.x); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 	Vector<uint8_t> image3d; | 
					
						
							| 
									
										
										
										
											2019-10-12 21:24:03 -03:00
										 |  |  | 	image3d.resize(float_count); | 
					
						
							|  |  |  | 	{ | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 		uint8_t *w = image3d.ptrw(); | 
					
						
							| 
									
										
										
										
											2019-10-12 21:24:03 -03:00
										 |  |  | 		for (uint32_t i = 0; i < float_count; i++) { | 
					
						
							|  |  |  | 			uint32_t d = uint32_t(Math::sqrt(work_memory[i])); | 
					
						
							|  |  |  | 			if (d == 0) { | 
					
						
							|  |  |  | 				w[i] = 0; | 
					
						
							|  |  |  | 			} else { | 
					
						
							| 
									
										
										
										
											2022-03-08 15:10:48 +01:00
										 |  |  | 				w[i] = MIN(d, 254u) + 1; | 
					
						
							| 
									
										
										
										
											2019-10-12 21:24:03 -03:00
										 |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2023-10-09 12:27:03 +03:00
										 |  |  | 	memdelete_arr(work_memory); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-10-12 21:24:03 -03:00
										 |  |  | 	return image3d; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #undef INF
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx) { | 
					
						
							|  |  |  | 	if (p_level == cell_subdiv - 1) { | 
					
						
							| 
									
										
										
										
											2021-09-21 00:33:52 +05:45
										 |  |  | 		Vector3 center = p_aabb.get_center(); | 
					
						
							| 
									
										
										
										
											2020-10-17 01:08:21 -04:00
										 |  |  | 		Transform3D xform; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		xform.origin = center; | 
					
						
							|  |  |  | 		xform.basis.scale(p_aabb.size * 0.5); | 
					
						
							|  |  |  | 		p_multimesh->set_instance_transform(idx, xform); | 
					
						
							|  |  |  | 		Color col; | 
					
						
							|  |  |  | 		col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]); | 
					
						
							|  |  |  | 		//Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]);
 | 
					
						
							|  |  |  | 		p_multimesh->set_instance_color(idx, col); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		idx++; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		for (int i = 0; i < 8; i++) { | 
					
						
							|  |  |  | 			uint32_t child = bake_cells[p_idx].children[i]; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				continue; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			AABB aabb = p_aabb; | 
					
						
							|  |  |  | 			aabb.size *= 0.5; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			if (i & 1) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				aabb.position.x += aabb.size.x; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			} | 
					
						
							|  |  |  | 			if (i & 2) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				aabb.position.y += aabb.size.y; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			} | 
					
						
							|  |  |  | 			if (i & 4) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				aabb.position.z += aabb.size.z; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			_debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Ref<MultiMesh> Voxelizer::create_debug_multimesh() { | 
					
						
							|  |  |  | 	Ref<MultiMesh> mm; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-06-17 16:03:09 -06:00
										 |  |  | 	mm.instantiate(); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	mm->set_transform_format(MultiMesh::TRANSFORM_3D); | 
					
						
							|  |  |  | 	mm->set_use_colors(true); | 
					
						
							|  |  |  | 	mm->set_instance_count(leaf_voxel_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Ref<ArrayMesh> mesh; | 
					
						
							| 
									
										
										
										
											2021-06-17 16:03:09 -06:00
										 |  |  | 	mesh.instantiate(); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		Array arr; | 
					
						
							|  |  |  | 		arr.resize(Mesh::ARRAY_MAX); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-02-17 18:06:54 -03:00
										 |  |  | 		Vector<Vector3> vertices; | 
					
						
							|  |  |  | 		Vector<Color> colors; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | #define ADD_VTX(m_idx)                      \
 | 
					
						
							|  |  |  | 	vertices.push_back(face_points[m_idx]); \ | 
					
						
							|  |  |  | 	colors.push_back(Color(1, 1, 1, 1)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (int i = 0; i < 6; i++) { | 
					
						
							|  |  |  | 			Vector3 face_points[4]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (int j = 0; j < 4; j++) { | 
					
						
							| 
									
										
										
										
											2021-01-29 19:55:54 -05:00
										 |  |  | 				real_t v[3]; | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				v[0] = 1.0; | 
					
						
							|  |  |  | 				v[1] = 1 - 2 * ((j >> 1) & 1); | 
					
						
							|  |  |  | 				v[2] = v[1] * (1 - 2 * (j & 1)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				for (int k = 0; k < 3; k++) { | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 					if (i < 3) { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 						face_points[j][(i + k) % 3] = v[k]; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 					} else { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 						face_points[3 - j][(i + k) % 3] = -v[k]; | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 					} | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			//tri 1
 | 
					
						
							|  |  |  | 			ADD_VTX(0); | 
					
						
							|  |  |  | 			ADD_VTX(1); | 
					
						
							|  |  |  | 			ADD_VTX(2); | 
					
						
							|  |  |  | 			//tri 2
 | 
					
						
							|  |  |  | 			ADD_VTX(2); | 
					
						
							|  |  |  | 			ADD_VTX(3); | 
					
						
							|  |  |  | 			ADD_VTX(0); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		arr[Mesh::ARRAY_VERTEX] = vertices; | 
					
						
							|  |  |  | 		arr[Mesh::ARRAY_COLOR] = colors; | 
					
						
							|  |  |  | 		mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		Ref<StandardMaterial3D> fsm; | 
					
						
							| 
									
										
										
										
											2021-06-17 16:03:09 -06:00
										 |  |  | 		fsm.instantiate(); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		fsm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true); | 
					
						
							|  |  |  | 		fsm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); | 
					
						
							|  |  |  | 		fsm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED); | 
					
						
							| 
									
										
										
										
											2023-09-27 00:45:57 +02:00
										 |  |  | 		fsm->set_flag(StandardMaterial3D::FLAG_DISABLE_FOG, true); | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 		fsm->set_albedo(Color(1, 1, 1, 1)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		mesh->surface_set_material(0, fsm); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	mm->set_mesh(mesh); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	int idx = 0; | 
					
						
							|  |  |  | 	_debug_mesh(0, 0, po2_bounds, mm, idx); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return mm; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-10-17 01:08:21 -04:00
										 |  |  | Transform3D Voxelizer::get_to_cell_space_xform() const { | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | 	return to_cell_space; | 
					
						
							|  |  |  | } | 
					
						
							| 
									
										
										
										
											2020-05-14 14:29:06 +02:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-10-03 17:39:08 -03:00
										 |  |  | Voxelizer::Voxelizer() { | 
					
						
							|  |  |  | } |