mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	
		
			
	
	
		
			575 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			575 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|   | /*************************************************************************/ | ||
|  | /*  joints_2d_sw.cpp                                                     */ | ||
|  | /*************************************************************************/ | ||
|  | /*                       This file is part of:                           */ | ||
|  | /*                           GODOT ENGINE                                */ | ||
|  | /*                    http://www.godotengine.org                         */ | ||
|  | /*************************************************************************/ | ||
|  | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                 */ | ||
|  | /*                                                                       */ | ||
|  | /* Permission is hereby granted, free of charge, to any person obtaining */ | ||
|  | /* a copy of this software and associated documentation files (the       */ | ||
|  | /* "Software"), to deal in the Software without restriction, including   */ | ||
|  | /* without limitation the rights to use, copy, modify, merge, publish,   */ | ||
|  | /* distribute, sublicense, and/or sell copies of the Software, and to    */ | ||
|  | /* permit persons to whom the Software is furnished to do so, subject to */ | ||
|  | /* the following conditions:                                             */ | ||
|  | /*                                                                       */ | ||
|  | /* The above copyright notice and this permission notice shall be        */ | ||
|  | /* included in all copies or substantial portions of the Software.       */ | ||
|  | /*                                                                       */ | ||
|  | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */ | ||
|  | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */ | ||
|  | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ | ||
|  | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */ | ||
|  | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */ | ||
|  | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */ | ||
|  | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */ | ||
|  | /*************************************************************************/ | ||
|  | #include "joints_2d_sw.h"
 | ||
|  | #include "space_2d_sw.h"
 | ||
|  | 
 | ||
|  | //based on chipmunk joint constraints
 | ||
|  | 
 | ||
|  | /* Copyright (c) 2007 Scott Lembcke
 | ||
|  |  * | ||
|  |  * Permission is hereby granted, free of charge, to any person obtaining a copy | ||
|  |  * of this software and associated documentation files (the "Software"), to deal | ||
|  |  * in the Software without restriction, including without limitation the rights | ||
|  |  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
|  |  * copies of the Software, and to permit persons to whom the Software is | ||
|  |  * furnished to do so, subject to the following conditions: | ||
|  |  * | ||
|  |  * The above copyright notice and this permission notice shall be included in | ||
|  |  * all copies or substantial portions of the Software. | ||
|  |  * | ||
|  |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
|  |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
|  |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
|  |  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
|  |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
|  |  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
|  |  * SOFTWARE. | ||
|  |  */ | ||
|  | 
 | ||
|  | static inline real_t k_scalar(Body2DSW *a,Body2DSW *b,const Vector2& rA, const Vector2& rB, const Vector2& n) { | ||
|  | 
 | ||
|  | 
 | ||
|  | 	real_t value=0; | ||
|  | 
 | ||
|  | 
 | ||
|  | 	{ | ||
|  | 		value+=a->get_inv_mass(); | ||
|  | 		real_t rcn = rA.cross(n); | ||
|  | 		value+=a->get_inv_inertia() * rcn * rcn; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (b) { | ||
|  | 
 | ||
|  | 		value+=b->get_inv_mass(); | ||
|  | 		real_t rcn = rB.cross(n); | ||
|  | 		value+=b->get_inv_inertia() * rcn * rcn; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return value; | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | static inline Vector2 | ||
|  | relative_velocity(Body2DSW *a, Body2DSW *b, Vector2 rA, Vector2 rB){ | ||
|  | 	Vector2 sum = a->get_linear_velocity() -rA.tangent() * a->get_angular_velocity(); | ||
|  | 	if (b) | ||
|  | 		return (b->get_linear_velocity() -rB.tangent() * b->get_angular_velocity()) - sum; | ||
|  | 	else | ||
|  | 		return -sum; | ||
|  | } | ||
|  | 
 | ||
|  | static inline real_t | ||
|  | normal_relative_velocity(Body2DSW *a, Body2DSW *b, Vector2 rA, Vector2 rB, Vector2 n){ | ||
|  | 	return relative_velocity(a, b, rA, rB).dot(n); | ||
|  | } | ||
|  | 
 | ||
|  | #if 0
 | ||
|  | 
 | ||
|  | bool PinJoint2DSW::setup(float p_step) { | ||
|  | 
 | ||
|  | 	Space2DSW *space = A->get_space(); | ||
|  | 	ERR_FAIL_COND_V(!space,false;) | ||
|  | 	rA = A->get_transform().basis_xform(anchor_A); | ||
|  | 	rB = B?B->get_transform().basis_xform(anchor_B):anchor_B; | ||
|  | 
 | ||
|  | 	Vector2 gA = A->get_transform().get_origin(); | ||
|  | 	Vector2 gB = B?B->get_transform().get_origin():Vector2(); | ||
|  | 
 | ||
|  | 	Vector2 delta = gB - gA; | ||
|  | 	delta = (delta+rB) -rA; | ||
|  | 
 | ||
|  | 	real_t jdist = delta.length(); | ||
|  | 	correct=false; | ||
|  | 	if (jdist==0) | ||
|  | 		return false; // do not correct
 | ||
|  | 
 | ||
|  | 	correct=true; | ||
|  | 
 | ||
|  | 	n = delta / jdist; | ||
|  | 
 | ||
|  | 	// calculate mass normal
 | ||
|  | 	mass_normal = 1.0f/k_scalar(A, B, rA, rB, n); | ||
|  | 
 | ||
|  | 	// calculate bias velocity
 | ||
|  | 	//real_t maxBias = joint->constraint.maxBias;
 | ||
|  | 	bias = -(get_bias()==0?space->get_constraint_bias():get_bias())*(1.0/p_step)*(jdist-dist); | ||
|  | 	bias = CLAMP(bias, -get_max_bias(), +get_max_bias()); | ||
|  | 
 | ||
|  | 	// compute max impulse
 | ||
|  | 	jn_max = get_max_force() * p_step; | ||
|  | 
 | ||
|  | 	// apply accumulated impulse
 | ||
|  | 	Vector2 j = n * jn_acc; | ||
|  | 	A->apply_impulse(rA,-j); | ||
|  | 	if (B) | ||
|  | 		B->apply_impulse(rB,j); | ||
|  | 
 | ||
|  | 	print_line("setup"); | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | void PinJoint2DSW::solve(float p_step){ | ||
|  | 
 | ||
|  | 	if (!correct) | ||
|  | 		return; | ||
|  | 
 | ||
|  | 	Vector2 ln = n; | ||
|  | 
 | ||
|  | 	// compute relative velocity
 | ||
|  | 	real_t vrn = normal_relative_velocity(A,B, rA, rB, ln); | ||
|  | 
 | ||
|  | 	// compute normal impulse
 | ||
|  | 	real_t jn = (bias - vrn)*mass_normal; | ||
|  | 	real_t jnOld = jn_acc; | ||
|  | 	jn_acc = CLAMP(jnOld + jn,-jn_max,jn_max); //cpfclamp(jnOld + jn, -joint->jnMax, joint->jnMax);
 | ||
|  | 	jn = jn_acc - jnOld; | ||
|  | 	print_line("jn_acc: "+rtos(jn_acc)); | ||
|  | 	Vector2 j = jn*ln; | ||
|  | 
 | ||
|  | 	A->apply_impulse(rA,-j); | ||
|  | 	if (B) | ||
|  | 		B->apply_impulse(rB,j); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | PinJoint2DSW::PinJoint2DSW(const Vector2& p_pos,Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,p_body_b?2:1) { | ||
|  | 
 | ||
|  | 	A=p_body_a; | ||
|  | 	B=p_body_b; | ||
|  | 	anchor_A = p_body_a->get_inv_transform().xform(p_pos); | ||
|  | 	anchor_B = p_body_b?p_body_b->get_inv_transform().xform(p_pos):p_pos; | ||
|  | 
 | ||
|  | 	jn_acc=0; | ||
|  | 	dist=0; | ||
|  | 
 | ||
|  | 	p_body_a->add_constraint(this,0); | ||
|  | 	if (p_body_b) | ||
|  | 		p_body_b->add_constraint(this,1); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | PinJoint2DSW::~PinJoint2DSW() { | ||
|  | 
 | ||
|  | 	if (A) | ||
|  | 		A->remove_constraint(this); | ||
|  | 	if (B) | ||
|  | 		B->remove_constraint(this); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | 
 | ||
|  | bool PinJoint2DSW::setup(float p_step) { | ||
|  | 
 | ||
|  | 	Space2DSW *space = A->get_space(); | ||
|  | 	ERR_FAIL_COND_V(!space,false;) | ||
|  | 	rA = A->get_transform().basis_xform(anchor_A); | ||
|  | 	rB = B?B->get_transform().basis_xform(anchor_B):anchor_B; | ||
|  | #if 0
 | ||
|  | 	Vector2 gA = rA+A->get_transform().get_origin(); | ||
|  | 	Vector2 gB = B?rB+B->get_transform().get_origin():rB; | ||
|  | 
 | ||
|  | 	VectorB delta = gB - gA; | ||
|  | 
 | ||
|  | 	real_t jdist = delta.length(); | ||
|  | 	correct=false; | ||
|  | 	if (jdist==0) | ||
|  | 		return false; // do not correct
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 	// deltaV = deltaV0 + K * impulse
 | ||
|  | 	// invM = [(1/m1 + 1/m2) * eye(2) - skew(rA) * invI1 * skew(rA) - skew(rB) * invI2 * skew(rB)]
 | ||
|  | 	//      = [1/m1+1/m2     0    ] + invI1 * [rA.y*rA.y -rA.x*rA.y] + invI2 * [rA.y*rA.y -rA.x*rA.y]
 | ||
|  | 	//        [    0     1/m1+1/m2]           [-rA.x*rA.y rA.x*rA.x]           [-rA.x*rA.y rA.x*rA.x]
 | ||
|  | 
 | ||
|  | 	real_t B_inv_mass = B?B->get_inv_mass():0.0; | ||
|  | 
 | ||
|  | 
 | ||
|  | 	Matrix32 K1; | ||
|  | 	K1[0].x = A->get_inv_mass() + B_inv_mass;	K1[1].x = 0.0f; | ||
|  | 	K1[0].y = 0.0f;					K1[1].y = A->get_inv_mass() + B_inv_mass; | ||
|  | 
 | ||
|  | 	Matrix32 K2; | ||
|  | 	K2[0].x =  A->get_inv_inertia() * rA.y * rA.y;		K2[1].x = -A->get_inv_inertia() * rA.x * rA.y; | ||
|  | 	K2[0].y = -A->get_inv_inertia() * rA.x * rA.y;		K2[1].y =  A->get_inv_inertia() * rA.x * rA.x; | ||
|  | 
 | ||
|  | 	Matrix32 K; | ||
|  | 	K[0]= K1[0] + K2[0]; | ||
|  | 	K[1]= K1[1] + K2[1]; | ||
|  | 
 | ||
|  | 	if (B) { | ||
|  | 
 | ||
|  | 		Matrix32 K3; | ||
|  | 		K3[0].x =  B->get_inv_inertia() * rB.y * rB.y;		K3[1].x = -B->get_inv_inertia() * rB.x * rB.y; | ||
|  | 		K3[0].y = -B->get_inv_inertia() * rB.x * rB.y;		K3[1].y =  B->get_inv_inertia() * rB.x * rB.x; | ||
|  | 
 | ||
|  | 		K[0]+=K3[0]; | ||
|  | 		K[1]+=K3[1]; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	K[0].x += softness; | ||
|  | 	K[1].y += softness; | ||
|  | 
 | ||
|  | 	M = K.affine_inverse(); | ||
|  | 
 | ||
|  | 	Vector2 gA = rA+A->get_transform().get_origin(); | ||
|  | 	Vector2 gB = B?rB+B->get_transform().get_origin():rB; | ||
|  | 
 | ||
|  | 	Vector2 delta = gB - gA; | ||
|  | 
 | ||
|  | 	bias = delta*-(get_bias()==0?space->get_constraint_bias():get_bias())*(1.0/p_step); | ||
|  | 
 | ||
|  | 	// apply accumulated impulse
 | ||
|  | 	A->apply_impulse(rA,-P); | ||
|  | 	if (B) | ||
|  | 		B->apply_impulse(rB,P); | ||
|  | 
 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | void PinJoint2DSW::solve(float p_step){ | ||
|  | 
 | ||
|  | 
 | ||
|  | 	// compute relative velocity
 | ||
|  | 	Vector2 vA = A->get_linear_velocity() - rA.cross(A->get_angular_velocity()); | ||
|  | 
 | ||
|  | 	Vector2 rel_vel; | ||
|  | 	if (B) | ||
|  | 		rel_vel = B->get_linear_velocity() - rB.cross(B->get_angular_velocity()) - vA; | ||
|  | 	else | ||
|  | 		rel_vel = -vA; | ||
|  | 
 | ||
|  | 	Vector2 impulse = M.basis_xform(bias - rel_vel - Vector2(softness,softness) * P); | ||
|  | 
 | ||
|  | 	A->apply_impulse(rA,-impulse); | ||
|  | 	if (B) | ||
|  | 		B->apply_impulse(rB,impulse); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	P += impulse; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | PinJoint2DSW::PinJoint2DSW(const Vector2& p_pos,Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,p_body_b?2:1) { | ||
|  | 
 | ||
|  | 	A=p_body_a; | ||
|  | 	B=p_body_b; | ||
|  | 	anchor_A = p_body_a->get_inv_transform().xform(p_pos); | ||
|  | 	anchor_B = p_body_b?p_body_b->get_inv_transform().xform(p_pos):p_pos; | ||
|  | 
 | ||
|  | 	softness=0; | ||
|  | 
 | ||
|  | 	p_body_a->add_constraint(this,0); | ||
|  | 	if (p_body_b) | ||
|  | 		p_body_b->add_constraint(this,1); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | PinJoint2DSW::~PinJoint2DSW() { | ||
|  | 
 | ||
|  | 	if (A) | ||
|  | 		A->remove_constraint(this); | ||
|  | 	if (B) | ||
|  | 		B->remove_constraint(this); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | //////////////////////////////////////////////
 | ||
|  | //////////////////////////////////////////////
 | ||
|  | //////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | 
 | ||
|  | static inline void | ||
|  | k_tensor(Body2DSW *a, Body2DSW *b, Vector2 r1, Vector2 r2, Vector2 *k1, Vector2 *k2) | ||
|  | { | ||
|  | 	// calculate mass matrix
 | ||
|  | 	// If I wasn't lazy and wrote a proper matrix class, this wouldn't be so gross...
 | ||
|  | 	real_t k11, k12, k21, k22; | ||
|  | 	real_t m_sum = a->get_inv_mass() + b->get_inv_mass(); | ||
|  | 
 | ||
|  | 	// start with I*m_sum
 | ||
|  | 	k11 = m_sum; k12 = 0.0f; | ||
|  | 	k21 = 0.0f;  k22 = m_sum; | ||
|  | 
 | ||
|  | 	// add the influence from r1
 | ||
|  | 	real_t a_i_inv = a->get_inv_inertia(); | ||
|  | 	real_t r1xsq =  r1.x * r1.x * a_i_inv; | ||
|  | 	real_t r1ysq =  r1.y * r1.y * a_i_inv; | ||
|  | 	real_t r1nxy = -r1.x * r1.y * a_i_inv; | ||
|  | 	k11 += r1ysq; k12 += r1nxy; | ||
|  | 	k21 += r1nxy; k22 += r1xsq; | ||
|  | 
 | ||
|  | 	// add the influnce from r2
 | ||
|  | 	real_t b_i_inv = b->get_inv_inertia(); | ||
|  | 	real_t r2xsq =  r2.x * r2.x * b_i_inv; | ||
|  | 	real_t r2ysq =  r2.y * r2.y * b_i_inv; | ||
|  | 	real_t r2nxy = -r2.x * r2.y * b_i_inv; | ||
|  | 	k11 += r2ysq; k12 += r2nxy; | ||
|  | 	k21 += r2nxy; k22 += r2xsq; | ||
|  | 
 | ||
|  | 	// invert
 | ||
|  | 	real_t determinant = k11*k22 - k12*k21; | ||
|  | 	ERR_FAIL_COND(determinant== 0.0); | ||
|  | 
 | ||
|  | 	real_t det_inv = 1.0f/determinant; | ||
|  | 	*k1 = Vector2( k22*det_inv, -k12*det_inv); | ||
|  | 	*k2 = Vector2(-k21*det_inv,  k11*det_inv); | ||
|  | } | ||
|  | 
 | ||
|  | static _FORCE_INLINE_ Vector2 | ||
|  | mult_k(const Vector2& vr, const Vector2 &k1, const Vector2 &k2) | ||
|  | { | ||
|  | 	return Vector2(vr.dot(k1), vr.dot(k2)); | ||
|  | } | ||
|  | 
 | ||
|  | bool GrooveJoint2DSW::setup(float p_step) { | ||
|  | 
 | ||
|  | 
 | ||
|  | 	// calculate endpoints in worldspace
 | ||
|  | 	Vector2 ta = A->get_transform().xform(A_groove_1); | ||
|  | 	Vector2 tb = A->get_transform().xform(A_groove_2); | ||
|  | 	Space2DSW *space=A->get_space(); | ||
|  | 
 | ||
|  | 	// calculate axis
 | ||
|  | 	Vector2 n = -(tb - ta).tangent().normalized(); | ||
|  | 	real_t d = ta.dot(n); | ||
|  | 
 | ||
|  | 	xf_normal = n; | ||
|  | 	rB = B->get_transform().basis_xform(B_anchor); | ||
|  | 
 | ||
|  | 	// calculate tangential distance along the axis of rB
 | ||
|  | 	real_t td = (B->get_transform().get_origin() + rB).cross(n); | ||
|  | 	// calculate clamping factor and rB
 | ||
|  | 	if(td <= ta.cross(n)){ | ||
|  | 		clamp = 1.0f; | ||
|  | 		rA = ta - A->get_transform().get_origin(); | ||
|  | 	} else if(td >= tb.cross(n)){ | ||
|  | 		clamp = -1.0f; | ||
|  | 		rA = tb - A->get_transform().get_origin(); | ||
|  | 	} else { | ||
|  | 		clamp = 0.0f; | ||
|  | 		//joint->r1 = cpvsub(cpvadd(cpvmult(cpvperp(n), -td), cpvmult(n, d)), a->p);
 | ||
|  | 		rA =  ((-n.tangent() * -td) + n*d) - A->get_transform().get_origin(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Calculate mass tensor
 | ||
|  | 	k_tensor(A, B, rA, rB, &k1, &k2); | ||
|  | 
 | ||
|  | 	// compute max impulse
 | ||
|  | 	jn_max = get_max_force() * p_step; | ||
|  | 
 | ||
|  | 	// calculate bias velocity
 | ||
|  | //	cpVect delta = cpvsub(cpvadd(b->p, joint->r2), cpvadd(a->p, joint->r1));
 | ||
|  | //	joint->bias = cpvclamp(cpvmult(delta, -joint->constraint.biasCoef*dt_inv), joint->constraint.maxBias);
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 	Vector2 delta = (B->get_transform().get_origin() +rB) - (A->get_transform().get_origin() + rA); | ||
|  | 	float _b = get_bias(); | ||
|  | 	_b=0.001; | ||
|  | 	gbias=(delta*-(_b==0?space->get_constraint_bias():_b)*(1.0/p_step)).clamped(get_max_bias()); | ||
|  | 
 | ||
|  | 	// apply accumulated impulse
 | ||
|  | 	A->apply_impulse(rA,-jn_acc); | ||
|  | 	B->apply_impulse(rB,jn_acc); | ||
|  | 
 | ||
|  | 	correct=true; | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | void GrooveJoint2DSW::solve(float p_step){ | ||
|  | 
 | ||
|  | 
 | ||
|  | 	// compute impulse
 | ||
|  | 	Vector2 vr = relative_velocity(A, B, rA,rB); | ||
|  | 
 | ||
|  | 	Vector2 j = mult_k(gbias-vr, k1, k2); | ||
|  | 	Vector2 jOld = jn_acc; | ||
|  | 	j+=jOld; | ||
|  | 
 | ||
|  | 	jn_acc = (((clamp * j.cross(xf_normal)) > 0) ? j : xf_normal.project(j)).clamped(jn_max); | ||
|  | 
 | ||
|  | 	j = jn_acc - jOld; | ||
|  | 
 | ||
|  | 	A->apply_impulse(rA,-j); | ||
|  | 	B->apply_impulse(rB,j); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | GrooveJoint2DSW::GrooveJoint2DSW(const Vector2& p_a_groove1,const Vector2& p_a_groove2, const Vector2& p_b_anchor, Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,2) { | ||
|  | 
 | ||
|  | 	A=p_body_a; | ||
|  | 	B=p_body_b; | ||
|  | 
 | ||
|  | 	A_groove_1 = A->get_inv_transform().xform(p_a_groove1); | ||
|  | 	A_groove_2 = A->get_inv_transform().xform(p_a_groove2); | ||
|  | 	B_anchor=B->get_inv_transform().xform(p_b_anchor); | ||
|  | 	A_groove_normal = -(A_groove_2 - A_groove_1).normalized().tangent(); | ||
|  | 
 | ||
|  | 	A->add_constraint(this,0); | ||
|  | 	B->add_constraint(this,1); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | GrooveJoint2DSW::~GrooveJoint2DSW() { | ||
|  | 
 | ||
|  | 	A->remove_constraint(this); | ||
|  | 	B->remove_constraint(this); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | //////////////////////////////////////////////
 | ||
|  | //////////////////////////////////////////////
 | ||
|  | //////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | 
 | ||
|  | bool DampedSpringJoint2DSW::setup(float p_step) { | ||
|  | 
 | ||
|  | 	rA = A->get_transform().basis_xform(anchor_A); | ||
|  | 	rB = B->get_transform().basis_xform(anchor_B); | ||
|  | 
 | ||
|  | 	Vector2 delta = (B->get_transform().get_origin() + rB) - (A->get_transform().get_origin() + rA) ; | ||
|  | 	real_t dist = delta.length(); | ||
|  | 
 | ||
|  | 	if (dist) | ||
|  | 		n=delta/dist; | ||
|  | 	else | ||
|  | 		n=Vector2(); | ||
|  | 
 | ||
|  | 	real_t k = k_scalar(A, B, rA, rB, n); | ||
|  | 	n_mass = 1.0f/k; | ||
|  | 
 | ||
|  | 	target_vrn = 0.0f; | ||
|  | 	v_coef = 1.0f - Math::exp(-damping*(p_step)*k); | ||
|  | 
 | ||
|  | 	// apply spring force
 | ||
|  | 	real_t f_spring = (rest_length - dist) * stiffness; | ||
|  | 	Vector2 j = n * f_spring*(p_step); | ||
|  | 
 | ||
|  | 	A->apply_impulse(rA,-j); | ||
|  | 	B->apply_impulse(rB,j); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | void DampedSpringJoint2DSW::solve(float p_step) { | ||
|  | 
 | ||
|  | 	// compute relative velocity
 | ||
|  | 	real_t vrn = normal_relative_velocity(A, B, rA, rB, n) - target_vrn; | ||
|  | 
 | ||
|  | 	// compute velocity loss from drag
 | ||
|  | 	// not 100% certain this is derived correctly, though it makes sense
 | ||
|  | 	real_t v_damp = -vrn*v_coef; | ||
|  | 	target_vrn = vrn + v_damp; | ||
|  | 	Vector2 j=n*v_damp*n_mass; | ||
|  | 
 | ||
|  | 	A->apply_impulse(rA,-j); | ||
|  | 	B->apply_impulse(rB,j); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | void DampedSpringJoint2DSW::set_param(Physics2DServer::DampedStringParam p_param, real_t p_value) { | ||
|  | 
 | ||
|  | 	switch(p_param) { | ||
|  | 
 | ||
|  | 		case Physics2DServer::DAMPED_STRING_REST_LENGTH: { | ||
|  | 
 | ||
|  | 			rest_length=p_value; | ||
|  | 		} break; | ||
|  | 		case Physics2DServer::DAMPED_STRING_DAMPING: { | ||
|  | 
 | ||
|  | 			damping=p_value; | ||
|  | 		} break; | ||
|  | 		case Physics2DServer::DAMPED_STRING_STIFFNESS: { | ||
|  | 
 | ||
|  | 			stiffness=p_value; | ||
|  | 		} break; | ||
|  | 	} | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | real_t DampedSpringJoint2DSW::get_param(Physics2DServer::DampedStringParam p_param) const{ | ||
|  | 
 | ||
|  | 	switch(p_param) { | ||
|  | 
 | ||
|  | 		case Physics2DServer::DAMPED_STRING_REST_LENGTH: { | ||
|  | 
 | ||
|  | 			return rest_length; | ||
|  | 		} break; | ||
|  | 		case Physics2DServer::DAMPED_STRING_DAMPING: { | ||
|  | 
 | ||
|  | 			return damping; | ||
|  | 		} break; | ||
|  | 		case Physics2DServer::DAMPED_STRING_STIFFNESS: { | ||
|  | 
 | ||
|  | 			return stiffness; | ||
|  | 		} break; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	ERR_FAIL_V(0); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | DampedSpringJoint2DSW::DampedSpringJoint2DSW(const Vector2& p_anchor_a,const Vector2& p_anchor_b, Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,2) { | ||
|  | 
 | ||
|  | 
 | ||
|  | 	A=p_body_a; | ||
|  | 	B=p_body_b; | ||
|  | 	anchor_A = A->get_inv_transform().xform(p_anchor_a); | ||
|  | 	anchor_B = B->get_inv_transform().xform(p_anchor_b); | ||
|  | 
 | ||
|  | 	rest_length=p_anchor_a.distance_to(p_anchor_b); | ||
|  | 	stiffness=20; | ||
|  | 	damping=1.5; | ||
|  | 
 | ||
|  | 
 | ||
|  | 	A->add_constraint(this,0); | ||
|  | 	B->add_constraint(this,1); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | DampedSpringJoint2DSW::~DampedSpringJoint2DSW() { | ||
|  | 
 | ||
|  | 	A->remove_constraint(this); | ||
|  | 	B->remove_constraint(this); | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 |