| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | /**
 | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  |  * meshoptimizer - version 0.16 | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  * | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  |  * Copyright (C) 2016-2021, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com) | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  * Report bugs and download new versions at https://github.com/zeux/meshoptimizer
 | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * This library is distributed under the MIT License. See notice at the end of this file. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <assert.h>
 | 
					
						
							|  |  |  | #include <stddef.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Version macro; major * 1000 + minor * 10 + patch */ | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  | #define MESHOPTIMIZER_VERSION 160 /* 0.16 */
 | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | /* If no API is defined, assume default */ | 
					
						
							|  |  |  | #ifndef MESHOPTIMIZER_API
 | 
					
						
							|  |  |  | #define MESHOPTIMIZER_API
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Experimental APIs have unstable interface and might have implementation that's not fully tested or optimized */ | 
					
						
							|  |  |  | #define MESHOPTIMIZER_EXPERIMENTAL MESHOPTIMIZER_API
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* C interface */ | 
					
						
							|  |  |  | #ifdef __cplusplus
 | 
					
						
							|  |  |  | extern "C" { | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex attribute stream, similar to glVertexPointer | 
					
						
							|  |  |  |  * Each element takes size bytes, with stride controlling the spacing between successive elements. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | struct meshopt_Stream | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	const void* data; | 
					
						
							|  |  |  | 	size_t size; | 
					
						
							|  |  |  | 	size_t stride; | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Generates a vertex remap table from the vertex buffer and an optional index buffer and returns number of unique vertices | 
					
						
							|  |  |  |  * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence. | 
					
						
							|  |  |  |  * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer. | 
					
						
							|  |  |  |  * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting remap table (vertex_count elements) | 
					
						
							|  |  |  |  * indices can be NULL if the input is unindexed | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Generates a vertex remap table from multiple vertex streams and an optional index buffer and returns number of unique vertices | 
					
						
							|  |  |  |  * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence. | 
					
						
							|  |  |  |  * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer. | 
					
						
							|  |  |  |  * To remap vertex buffers, you will need to call meshopt_remapVertexBuffer for each vertex stream. | 
					
						
							|  |  |  |  * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting remap table (vertex_count elements) | 
					
						
							|  |  |  |  * indices can be NULL if the input is unindexed | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Generates vertex buffer from the source vertex buffer and remap table generated by meshopt_generateVertexRemap | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting vertex buffer (unique_vertex_count elements, returned by meshopt_generateVertexRemap) | 
					
						
							|  |  |  |  * vertex_count should be the initial vertex count and not the value returned by meshopt_generateVertexRemap | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Generate index buffer from the source index buffer and remap table generated by meshopt_generateVertexRemap | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count elements) | 
					
						
							|  |  |  |  * indices can be NULL if the input is unindexed | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API void meshopt_remapIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const unsigned int* remap); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary | 
					
						
							|  |  |  |  * All vertices that are binary equivalent (wrt first vertex_size bytes) map to the first vertex in the original vertex buffer. | 
					
						
							|  |  |  |  * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering. | 
					
						
							|  |  |  |  * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count elements) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary | 
					
						
							|  |  |  |  * All vertices that are binary equivalent (wrt specified streams) map to the first vertex in the original vertex buffer. | 
					
						
							|  |  |  |  * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering. | 
					
						
							|  |  |  |  * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count elements) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * Generate index buffer that can be used as a geometry shader input with triangle adjacency topology | 
					
						
							|  |  |  |  * Each triangle is converted into a 6-vertex patch with the following layout: | 
					
						
							|  |  |  |  * - 0, 2, 4: original triangle vertices | 
					
						
							|  |  |  |  * - 1, 3, 5: vertices adjacent to edges 02, 24 and 40 | 
					
						
							|  |  |  |  * The resulting patch can be rendered with geometry shaders using e.g. VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY. | 
					
						
							|  |  |  |  * This can be used to implement algorithms like silhouette detection/expansion and other forms of GS-driven rendering. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count*2 elements) | 
					
						
							|  |  |  |  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Generate index buffer that can be used for PN-AEN tessellation with crack-free displacement | 
					
						
							|  |  |  |  * Each triangle is converted into a 12-vertex patch with the following layout: | 
					
						
							|  |  |  |  * - 0, 1, 2: original triangle vertices | 
					
						
							|  |  |  |  * - 3, 4: opposing edge for edge 0, 1 | 
					
						
							|  |  |  |  * - 5, 6: opposing edge for edge 1, 2 | 
					
						
							|  |  |  |  * - 7, 8: opposing edge for edge 2, 0 | 
					
						
							|  |  |  |  * - 9, 10, 11: dominant vertices for corners 0, 1, 2 | 
					
						
							|  |  |  |  * The resulting patch can be rendered with hardware tessellation using PN-AEN and displacement mapping. | 
					
						
							|  |  |  |  * See "Tessellation on Any Budget" (John McDonald, GDC 2011) for implementation details. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count*4 elements) | 
					
						
							|  |  |  |  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex transform cache optimizer | 
					
						
							|  |  |  |  * Reorders indices to reduce the number of GPU vertex shader invocations | 
					
						
							|  |  |  |  * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count elements) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API void meshopt_optimizeVertexCache(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex transform cache optimizer for strip-like caches | 
					
						
							|  |  |  |  * Produces inferior results to meshopt_optimizeVertexCache from the GPU vertex cache perspective | 
					
						
							|  |  |  |  * However, the resulting index order is more optimal if the goal is to reduce the triangle strip length or improve compression efficiency | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count elements) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API void meshopt_optimizeVertexCacheStrip(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex transform cache optimizer for FIFO caches | 
					
						
							|  |  |  |  * Reorders indices to reduce the number of GPU vertex shader invocations | 
					
						
							|  |  |  |  * Generally takes ~3x less time to optimize meshes but produces inferior results compared to meshopt_optimizeVertexCache | 
					
						
							|  |  |  |  * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count elements) | 
					
						
							|  |  |  |  * cache_size should be less than the actual GPU cache size to avoid cache thrashing | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Overdraw optimizer | 
					
						
							|  |  |  |  * Reorders indices to reduce the number of GPU vertex shader invocations and the pixel overdraw | 
					
						
							|  |  |  |  * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count elements) | 
					
						
							|  |  |  |  * indices must contain index data that is the result of meshopt_optimizeVertexCache (*not* the original mesh indices!) | 
					
						
							|  |  |  |  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer | 
					
						
							|  |  |  |  * threshold indicates how much the overdraw optimizer can degrade vertex cache efficiency (1.05 = up to 5%) to reduce overdraw more efficiently | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API void meshopt_optimizeOverdraw(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex fetch cache optimizer | 
					
						
							|  |  |  |  * Reorders vertices and changes indices to reduce the amount of GPU memory fetches during vertex processing | 
					
						
							|  |  |  |  * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused | 
					
						
							|  |  |  |  * This functions works for a single vertex stream; for multiple vertex streams, use meshopt_optimizeVertexFetchRemap + meshopt_remapVertexBuffer for each stream. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting vertex buffer (vertex_count elements) | 
					
						
							|  |  |  |  * indices is used both as an input and as an output index buffer | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetch(void* destination, unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex fetch cache optimizer | 
					
						
							|  |  |  |  * Generates vertex remap to reduce the amount of GPU memory fetches during vertex processing | 
					
						
							|  |  |  |  * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused | 
					
						
							|  |  |  |  * The resulting remap table should be used to reorder vertex/index buffers using meshopt_remapVertexBuffer/meshopt_remapIndexBuffer | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting remap table (vertex_count elements) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Index buffer encoder | 
					
						
							|  |  |  |  * Encodes index data into an array of bytes that is generally much smaller (<1.5 bytes/triangle) and compresses better (<1 bytes/triangle) compared to original. | 
					
						
							|  |  |  |  * Input index buffer must represent a triangle list. | 
					
						
							|  |  |  |  * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space | 
					
						
							|  |  |  |  * For maximum efficiency the index buffer being encoded has to be optimized for vertex cache and vertex fetch first. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * buffer must contain enough space for the encoded index buffer (use meshopt_encodeIndexBufferBound to compute worst case size) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count); | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Set index encoder format version | 
					
						
							|  |  |  |  * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) and 1 (decodable by 0.14+) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeIndexVersion(int version); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Index buffer decoder | 
					
						
							|  |  |  |  * Decodes index data from an array of bytes generated by meshopt_encodeIndexBuffer | 
					
						
							|  |  |  |  * Returns 0 if decoding was successful, and an error code otherwise | 
					
						
							|  |  |  |  * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices). | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count elements) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Index sequence encoder | 
					
						
							|  |  |  |  * Encodes index sequence into an array of bytes that is generally smaller and compresses better compared to original. | 
					
						
							|  |  |  |  * Input index sequence can represent arbitrary topology; for triangle lists meshopt_encodeIndexBuffer is likely to be better. | 
					
						
							|  |  |  |  * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * buffer must contain enough space for the encoded index sequence (use meshopt_encodeIndexSequenceBound to compute worst case size) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count); | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Index sequence decoder | 
					
						
							|  |  |  |  * Decodes index data from an array of bytes generated by meshopt_encodeIndexSequence | 
					
						
							|  |  |  |  * Returns 0 if decoding was successful, and an error code otherwise | 
					
						
							|  |  |  |  * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices). | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index sequence (index_count elements) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex buffer encoder | 
					
						
							|  |  |  |  * Encodes vertex data into an array of bytes that is generally smaller and compresses better compared to original. | 
					
						
							|  |  |  |  * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space | 
					
						
							|  |  |  |  * This function works for a single vertex stream; for multiple vertex streams, call meshopt_encodeVertexBuffer for each stream. | 
					
						
							|  |  |  |  * Note that all vertex_size bytes of each vertex are encoded verbatim, including padding which should be zero-initialized. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * buffer must contain enough space for the encoded vertex buffer (use meshopt_encodeVertexBufferBound to compute worst case size) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Set vertex encoder format version | 
					
						
							|  |  |  |  * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeVertexVersion(int version); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex buffer decoder | 
					
						
							|  |  |  |  * Decodes vertex data from an array of bytes generated by meshopt_encodeVertexBuffer | 
					
						
							|  |  |  |  * Returns 0 if decoding was successful, and an error code otherwise | 
					
						
							|  |  |  |  * The decoder is safe to use for untrusted input, but it may produce garbage data. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting vertex buffer (vertex_count * vertex_size bytes) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex buffer filters | 
					
						
							|  |  |  |  * These functions can be used to filter output of meshopt_decodeVertexBuffer in-place. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * meshopt_decodeFilterOct decodes octahedral encoding of a unit vector with K-bit (K <= 16) signed X/Y as an input; Z must store 1.0f. | 
					
						
							|  |  |  |  * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * meshopt_decodeFilterQuat decodes 3-component quaternion encoding with K-bit (4 <= K <= 16) component encoding and a 2-bit component index indicating which component to reconstruct. | 
					
						
							|  |  |  |  * Each component is stored as an 16-bit integer; stride must be equal to 8. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * meshopt_decodeFilterExp decodes exponential encoding of floating-point data with 8-bit exponent and 24-bit integer mantissa as 2^E*M. | 
					
						
							|  |  |  |  * Each 32-bit component is decoded in isolation; stride must be divisible by 4. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterOct(void* buffer, size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterQuat(void* buffer, size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Mesh simplifier | 
					
						
							|  |  |  |  * Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible | 
					
						
							|  |  |  |  * The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error. | 
					
						
							|  |  |  |  * If not all attributes from the input mesh are required, it's recommended to reindex the mesh using meshopt_generateShadowIndexBuffer prior to simplification. | 
					
						
							|  |  |  |  * Returns the number of indices after simplification, with destination containing new index data | 
					
						
							|  |  |  |  * The resulting index buffer references vertices from the original vertex buffer. | 
					
						
							|  |  |  |  * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. | 
					
						
							|  |  |  |  * | 
					
						
							| 
									
										
										
										
											2021-01-09 10:04:09 -08:00
										 |  |  |  * destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)! | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer | 
					
						
							| 
									
										
										
										
											2020-12-27 16:54:21 -08:00
										 |  |  |  * target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation | 
					
						
							|  |  |  |  * result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  */ | 
					
						
							| 
									
										
										
										
											2020-12-27 16:54:21 -08:00
										 |  |  | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-04-09 22:44:36 -07:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Mesh simplifier with attribute metric; attributes follow xyz position data atm (vertex data must contain 3 + attribute_count floats per vertex) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_data, size_t vertex_count, size_t vertex_stride, size_t target_index_count, float target_error, float* result_error, const float* attributes, const float* attribute_weights, size_t attribute_count); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Mesh simplifier (sloppy) | 
					
						
							|  |  |  |  * Reduces the number of triangles in the mesh, sacrificing mesh apperance for simplification performance | 
					
						
							| 
									
										
										
										
											2021-01-09 10:04:09 -08:00
										 |  |  |  * The algorithm doesn't preserve mesh topology but can stop short of the target goal based on target error. | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  * Returns the number of indices after simplification, with destination containing new index data | 
					
						
							|  |  |  |  * The resulting index buffer references vertices from the original vertex buffer. | 
					
						
							|  |  |  |  * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. | 
					
						
							|  |  |  |  * | 
					
						
							| 
									
										
										
										
											2021-01-09 10:04:09 -08:00
										 |  |  |  * destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)! | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer | 
					
						
							| 
									
										
										
										
											2021-01-09 10:04:09 -08:00
										 |  |  |  * target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation | 
					
						
							|  |  |  |  * result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  */ | 
					
						
							| 
									
										
										
										
											2021-01-09 10:04:09 -08:00
										 |  |  | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Point cloud simplifier | 
					
						
							|  |  |  |  * Reduces the number of points in the cloud to reach the given target | 
					
						
							|  |  |  |  * Returns the number of points after simplification, with destination containing new index data | 
					
						
							|  |  |  |  * The resulting index buffer references vertices from the original vertex buffer. | 
					
						
							|  |  |  |  * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. | 
					
						
							|  |  |  |  * | 
					
						
							| 
									
										
										
										
											2021-01-09 10:04:09 -08:00
										 |  |  |  * destination must contain enough space for the target index buffer (target_vertex_count elements) | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-27 16:54:21 -08:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Returns the error scaling factor used by the simplifier to convert between absolute and relative extents | 
					
						
							|  |  |  |  *  | 
					
						
							|  |  |  |  * Absolute error must be *divided* by the scaling factor before passing it to meshopt_simplify as target_error | 
					
						
							|  |  |  |  * Relative error returned by meshopt_simplify via result_error must be *multiplied* by the scaling factor to get absolute error. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * Mesh stripifier | 
					
						
							|  |  |  |  * Converts a previously vertex cache optimized triangle list to triangle strip, stitching strips using restart index or degenerate triangles | 
					
						
							|  |  |  |  * Returns the number of indices in the resulting strip, with destination containing new index data | 
					
						
							|  |  |  |  * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first. | 
					
						
							|  |  |  |  * Using restart indices can result in ~10% smaller index buffers, but on some GPUs restart indices may result in decreased performance. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_stripifyBound | 
					
						
							|  |  |  |  * restart_index should be 0xffff or 0xffffffff depending on index size, or 0 to use degenerate triangles | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int restart_index); | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_stripifyBound(size_t index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Mesh unstripifier | 
					
						
							|  |  |  |  * Converts a triangle strip to a triangle list | 
					
						
							|  |  |  |  * Returns the number of indices in the resulting list, with destination containing new index data | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_unstripifyBound | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_unstripify(unsigned int* destination, const unsigned int* indices, size_t index_count, unsigned int restart_index); | 
					
						
							|  |  |  | MESHOPTIMIZER_API size_t meshopt_unstripifyBound(size_t index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | struct meshopt_VertexCacheStatistics | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	unsigned int vertices_transformed; | 
					
						
							|  |  |  | 	unsigned int warps_executed; | 
					
						
							|  |  |  | 	float acmr; /* transformed vertices / triangle count; best case 0.5, worst case 3.0, optimum depends on topology */ | 
					
						
							|  |  |  | 	float atvr; /* transformed vertices / vertex count; best case 1.0, worst case 6.0, optimum is 1.0 (each vertex is transformed once) */ | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex transform cache analyzer | 
					
						
							|  |  |  |  * Returns cache hit statistics using a simplified FIFO model | 
					
						
							|  |  |  |  * Results may not match actual GPU performance | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API struct meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | struct meshopt_OverdrawStatistics | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	unsigned int pixels_covered; | 
					
						
							|  |  |  | 	unsigned int pixels_shaded; | 
					
						
							|  |  |  | 	float overdraw; /* shaded pixels / covered pixels; best case 1.0 */ | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Overdraw analyzer | 
					
						
							|  |  |  |  * Returns overdraw statistics using a software rasterizer | 
					
						
							|  |  |  |  * Results may not match actual GPU performance | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API struct meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | struct meshopt_VertexFetchStatistics | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	unsigned int bytes_fetched; | 
					
						
							|  |  |  | 	float overfetch; /* fetched bytes / vertex buffer size; best case 1.0 (each byte is fetched once) */ | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Vertex fetch cache analyzer | 
					
						
							|  |  |  |  * Returns cache hit statistics using a simplified direct mapped model | 
					
						
							|  |  |  |  * Results may not match actual GPU performance | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | struct meshopt_Meshlet | 
					
						
							|  |  |  | { | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  | 	/* offsets within meshlet_vertices and meshlet_triangles arrays with meshlet data */ | 
					
						
							|  |  |  | 	unsigned int vertex_offset; | 
					
						
							|  |  |  | 	unsigned int triangle_offset; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* number of vertices and triangles used in the meshlet; data is stored in consecutive range defined by offset and count */ | 
					
						
							|  |  |  | 	unsigned int vertex_count; | 
					
						
							|  |  |  | 	unsigned int triangle_count; | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Meshlet builder | 
					
						
							|  |  |  |  * Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer | 
					
						
							|  |  |  |  * The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers. | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  |  * When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters. | 
					
						
							|  |  |  |  * When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first. | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  * | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  |  * meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound | 
					
						
							|  |  |  |  * meshlet_vertices must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_vertices | 
					
						
							|  |  |  |  * meshlet_triangles must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_triangles * 3 | 
					
						
							|  |  |  |  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer | 
					
						
							|  |  |  |  * max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 255 - not 256!, max_triangles <= 512) | 
					
						
							|  |  |  |  * cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  */ | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshlets(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight); | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | struct meshopt_Bounds | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	/* bounding sphere, useful for frustum and occlusion culling */ | 
					
						
							|  |  |  | 	float center[3]; | 
					
						
							|  |  |  | 	float radius; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* normal cone, useful for backface culling */ | 
					
						
							|  |  |  | 	float cone_apex[3]; | 
					
						
							|  |  |  | 	float cone_axis[3]; | 
					
						
							|  |  |  | 	float cone_cutoff; /* = cos(angle/2) */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* normal cone axis and cutoff, stored in 8-bit SNORM format; decode using x/127.0 */ | 
					
						
							|  |  |  | 	signed char cone_axis_s8[3]; | 
					
						
							|  |  |  | 	signed char cone_cutoff_s8; | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Cluster bounds generator | 
					
						
							|  |  |  |  * Creates bounding volumes that can be used for frustum, backface and occlusion culling. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * For backface culling with orthographic projection, use the following formula to reject backfacing clusters: | 
					
						
							|  |  |  |  *   dot(view, cone_axis) >= cone_cutoff | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * For perspective projection, you can the formula that needs cone apex in addition to axis & cutoff: | 
					
						
							|  |  |  |  *   dot(normalize(cone_apex - camera_position), cone_axis) >= cone_cutoff | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Alternatively, you can use the formula that doesn't need cone apex and uses bounding sphere instead: | 
					
						
							|  |  |  |  *   dot(normalize(center - camera_position), cone_axis) >= cone_cutoff + radius / length(center - camera_position) | 
					
						
							|  |  |  |  * or an equivalent formula that doesn't have a singularity at center = camera_position: | 
					
						
							|  |  |  |  *   dot(center - camera_position, cone_axis) >= cone_cutoff * length(center - camera_position) + radius | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * The formula that uses the apex is slightly more accurate but needs the apex; if you are already using bounding sphere | 
					
						
							|  |  |  |  * to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  |  * index_count/3 should be less than or equal to 512 (the function assumes clusters of limited size) | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  | MESHOPTIMIZER_EXPERIMENTAL struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Spatial sorter | 
					
						
							|  |  |  |  * Generates a remap table that can be used to reorder points for spatial locality. | 
					
						
							|  |  |  |  * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting remap table (vertex_count elements) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Experimental: Spatial sorter | 
					
						
							|  |  |  |  * Reorders triangles for spatial locality, and generates a new index buffer. The resulting index buffer can be used with other functions like optimizeVertexCache. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * destination must contain enough space for the resulting index buffer (index_count elements) | 
					
						
							|  |  |  |  * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Set allocation callbacks | 
					
						
							|  |  |  |  * These callbacks will be used instead of the default operator new/operator delete for all temporary allocations in the library. | 
					
						
							|  |  |  |  * Note that all algorithms only allocate memory for temporary use. | 
					
						
							|  |  |  |  * allocate/deallocate are always called in a stack-like order - last pointer to be allocated is deallocated first. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | MESHOPTIMIZER_API void meshopt_setAllocator(void* (*allocate)(size_t), void (*deallocate)(void*)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef __cplusplus
 | 
					
						
							|  |  |  | } /* extern "C" */ | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Quantization into commonly supported data formats */ | 
					
						
							|  |  |  | #ifdef __cplusplus
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Quantize a float in [0..1] range into an N-bit fixed point unorm value | 
					
						
							|  |  |  |  * Assumes reconstruction function (q / (2^N-1)), which is the case for fixed-function normalized fixed point conversion | 
					
						
							|  |  |  |  * Maximum reconstruction error: 1/2^(N+1) | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | inline int meshopt_quantizeUnorm(float v, int N); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Quantize a float in [-1..1] range into an N-bit fixed point snorm value | 
					
						
							|  |  |  |  * Assumes reconstruction function (q / (2^(N-1)-1)), which is the case for fixed-function normalized fixed point conversion (except early OpenGL versions) | 
					
						
							|  |  |  |  * Maximum reconstruction error: 1/2^N | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | inline int meshopt_quantizeSnorm(float v, int N); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Quantize a float into half-precision floating point value | 
					
						
							|  |  |  |  * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest | 
					
						
							|  |  |  |  * Representable magnitude range: [6e-5; 65504] | 
					
						
							|  |  |  |  * Maximum relative reconstruction error: 5e-4 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | inline unsigned short meshopt_quantizeHalf(float v); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * Quantize a float into a floating point value with a limited number of significant mantissa bits | 
					
						
							|  |  |  |  * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest | 
					
						
							|  |  |  |  * Assumes N is in a valid mantissa precision range, which is 1..23 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | inline float meshopt_quantizeFloat(float v, int N); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * C++ template interface | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * These functions mirror the C interface the library provides, providing template-based overloads so that | 
					
						
							|  |  |  |  * the caller can use an arbitrary type for the index data, both for input and output. | 
					
						
							|  |  |  |  * When the supplied type is the same size as that of unsigned int, the wrappers are zero-cost; when it's not, | 
					
						
							|  |  |  |  * the wrappers end up allocating memory and copying index data to convert from one type to another. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | #if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS)
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  | inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							| 
									
										
										
										
											2020-12-27 16:54:21 -08:00
										 |  |  | inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = 0); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | template <typename T> | 
					
						
							| 
									
										
										
										
											2021-01-09 10:04:09 -08:00
										 |  |  | inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = 0); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  | inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | template <typename T> | 
					
						
							|  |  |  | inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Inline implementation */ | 
					
						
							|  |  |  | #ifdef __cplusplus
 | 
					
						
							|  |  |  | inline int meshopt_quantizeUnorm(float v, int N) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	const float scale = float((1 << N) - 1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	v = (v >= 0) ? v : 0; | 
					
						
							|  |  |  | 	v = (v <= 1) ? v : 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return int(v * scale + 0.5f); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | inline int meshopt_quantizeSnorm(float v, int N) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	const float scale = float((1 << (N - 1)) - 1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	float round = (v >= 0 ? 0.5f : -0.5f); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	v = (v >= -1) ? v : -1; | 
					
						
							|  |  |  | 	v = (v <= +1) ? v : +1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return int(v * scale + round); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | inline unsigned short meshopt_quantizeHalf(float v) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	union { float f; unsigned int ui; } u = {v}; | 
					
						
							|  |  |  | 	unsigned int ui = u.ui; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	int s = (ui >> 16) & 0x8000; | 
					
						
							|  |  |  | 	int em = ui & 0x7fffffff; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* bias exponent and round to nearest; 112 is relative exponent bias (127-15) */ | 
					
						
							|  |  |  | 	int h = (em - (112 << 23) + (1 << 12)) >> 13; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* underflow: flush to zero; 113 encodes exponent -14 */ | 
					
						
							|  |  |  | 	h = (em < (113 << 23)) ? 0 : h; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* overflow: infinity; 143 encodes exponent 16 */ | 
					
						
							|  |  |  | 	h = (em >= (143 << 23)) ? 0x7c00 : h; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* NaN; note that we convert all types of NaN to qNaN */ | 
					
						
							|  |  |  | 	h = (em > (255 << 23)) ? 0x7e00 : h; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return (unsigned short)(s | h); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | inline float meshopt_quantizeFloat(float v, int N) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	union { float f; unsigned int ui; } u = {v}; | 
					
						
							|  |  |  | 	unsigned int ui = u.ui; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	const int mask = (1 << (23 - N)) - 1; | 
					
						
							|  |  |  | 	const int round = (1 << (23 - N)) >> 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	int e = ui & 0x7f800000; | 
					
						
							|  |  |  | 	unsigned int rui = (ui + round) & ~mask; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* round all numbers except inf/nan; this is important to make sure nan doesn't overflow into -0 */ | 
					
						
							|  |  |  | 	ui = e == 0x7f800000 ? ui : rui; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	/* flush denormals to zero */ | 
					
						
							|  |  |  | 	ui = e == 0 ? 0 : ui; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	u.ui = ui; | 
					
						
							|  |  |  | 	return u.f; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Internal implementation helpers */ | 
					
						
							|  |  |  | #ifdef __cplusplus
 | 
					
						
							|  |  |  | class meshopt_Allocator | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  | 	template <typename T> | 
					
						
							|  |  |  | 	struct StorageT | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		static void* (*allocate)(size_t); | 
					
						
							|  |  |  | 		static void (*deallocate)(void*); | 
					
						
							|  |  |  | 	}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	typedef StorageT<void> Storage; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_Allocator() | 
					
						
							|  |  |  | 		: blocks() | 
					
						
							|  |  |  | 		, count(0) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	~meshopt_Allocator() | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		for (size_t i = count; i > 0; --i) | 
					
						
							|  |  |  | 			Storage::deallocate(blocks[i - 1]); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	template <typename T> T* allocate(size_t size) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		assert(count < sizeof(blocks) / sizeof(blocks[0])); | 
					
						
							|  |  |  | 		T* result = static_cast<T*>(Storage::allocate(size > size_t(-1) / sizeof(T) ? size_t(-1) : size * sizeof(T))); | 
					
						
							|  |  |  | 		blocks[count++] = result; | 
					
						
							|  |  |  | 		return result; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | private: | 
					
						
							|  |  |  | 	void* blocks[24]; | 
					
						
							|  |  |  | 	size_t count; | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // This makes sure that allocate/deallocate are lazily generated in translation units that need them and are deduplicated by the linker
 | 
					
						
							|  |  |  | template <typename T> void* (*meshopt_Allocator::StorageT<T>::allocate)(size_t) = operator new; | 
					
						
							|  |  |  | template <typename T> void (*meshopt_Allocator::StorageT<T>::deallocate)(void*) = operator delete; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Inline implementation for C++ templated wrappers */ | 
					
						
							|  |  |  | #if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS)
 | 
					
						
							|  |  |  | template <typename T, bool ZeroCopy = sizeof(T) == sizeof(unsigned int)> | 
					
						
							|  |  |  | struct meshopt_IndexAdapter; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | struct meshopt_IndexAdapter<T, false> | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	T* result; | 
					
						
							|  |  |  | 	unsigned int* data; | 
					
						
							|  |  |  | 	size_t count; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_IndexAdapter(T* result_, const T* input, size_t count_) | 
					
						
							|  |  |  | 	    : result(result_) | 
					
						
							|  |  |  | 	    , data(0) | 
					
						
							|  |  |  | 	    , count(count_) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		size_t size = count > size_t(-1) / sizeof(unsigned int) ? size_t(-1) : count * sizeof(unsigned int); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		data = static_cast<unsigned int*>(meshopt_Allocator::Storage::allocate(size)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (input) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			for (size_t i = 0; i < count; ++i) | 
					
						
							|  |  |  | 				data[i] = input[i]; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	~meshopt_IndexAdapter() | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		if (result) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			for (size_t i = 0; i < count; ++i) | 
					
						
							|  |  |  | 				result[i] = T(data[i]); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		meshopt_Allocator::Storage::deallocate(data); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | struct meshopt_IndexAdapter<T, true> | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	unsigned int* data; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_IndexAdapter(T* result, const T* input, size_t) | 
					
						
							|  |  |  | 	    : data(reinterpret_cast<unsigned int*>(result ? result : const_cast<T*>(input))) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_generateVertexRemap(destination, indices ? in.data : 0, index_count, vertices, vertex_count, vertex_size); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_generateVertexRemapMulti(destination, indices ? in.data : 0, index_count, vertex_count, streams, stream_count); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_remapIndexBuffer(out.data, indices ? in.data : 0, index_count, remap); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_generateShadowIndexBuffer(out.data, in.data, index_count, vertices, vertex_count, vertex_size, vertex_stride); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count * 2); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_generateAdjacencyIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count * 4); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_generateTessellationIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_optimizeVertexCache(out.data, in.data, index_count, vertex_count); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_optimizeVertexCacheStrip(out.data, in.data, index_count, vertex_count); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_optimizeVertexCacheFifo(out.data, in.data, index_count, vertex_count, cache_size); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_optimizeOverdraw(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, threshold); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_optimizeVertexFetchRemap(destination, in.data, index_count, vertex_count); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> inout(indices, indices, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_optimizeVertexFetch(destination, inout.data, index_count, vertices, vertex_count, vertex_size); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_encodeIndexBuffer(buffer, buffer_size, in.data, index_count); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1]; | 
					
						
							|  |  |  | 	(void)index_size_valid; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_decodeIndexBuffer(destination, index_count, sizeof(T), buffer, buffer_size); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_encodeIndexSequence(buffer, buffer_size, in.data, index_count); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1]; | 
					
						
							|  |  |  | 	(void)index_size_valid; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_decodeIndexSequence(destination, index_count, sizeof(T), buffer, buffer_size); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							| 
									
										
										
										
											2020-12-27 16:54:21 -08:00
										 |  |  | inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error) | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-12-27 16:54:21 -08:00
										 |  |  | 	return meshopt_simplify(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, result_error); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							| 
									
										
										
										
											2021-01-09 10:04:09 -08:00
										 |  |  | inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error) | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							| 
									
										
										
										
											2021-01-09 10:04:09 -08:00
										 |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-01-09 10:04:09 -08:00
										 |  |  | 	return meshopt_simplifySloppy(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, result_error); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, (index_count / 3) * 5); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_stripify(out.data, in.data, index_count, vertex_count, unsigned(restart_index)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, (index_count - 2) * 3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_unstripify(out.data, in.data, index_count, unsigned(restart_index)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_analyzeVertexCache(in.data, index_count, vertex_count, cache_size, warp_size, buffer_size); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_analyzeOverdraw(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_analyzeVertexFetch(in.data, index_count, vertex_count, vertex_size); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  | inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_buildMeshlets(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles) | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  | 	return meshopt_buildMeshletsScan(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_count, max_vertices, max_triangles); | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return meshopt_computeClusterBounds(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T> | 
					
						
							|  |  |  | inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> in(0, indices, index_count); | 
					
						
							|  |  |  | 	meshopt_IndexAdapter<T> out(destination, 0, index_count); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	meshopt_spatialSortTriangles(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							| 
									
										
										
										
											2021-04-18 16:15:43 +02:00
										 |  |  |  * Copyright (c) 2016-2021 Arseny Kapoulkine | 
					
						
							| 
									
										
										
										
											2020-12-12 09:06:59 -03:00
										 |  |  |  * | 
					
						
							|  |  |  |  * Permission is hereby granted, free of charge, to any person | 
					
						
							|  |  |  |  * obtaining a copy of this software and associated documentation | 
					
						
							|  |  |  |  * files (the "Software"), to deal in the Software without | 
					
						
							|  |  |  |  * restriction, including without limitation the rights to use, | 
					
						
							|  |  |  |  * copy, modify, merge, publish, distribute, sublicense, and/or sell | 
					
						
							|  |  |  |  * copies of the Software, and to permit persons to whom the | 
					
						
							|  |  |  |  * Software is furnished to do so, subject to the following | 
					
						
							|  |  |  |  * conditions: | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * The above copyright notice and this permission notice shall be | 
					
						
							|  |  |  |  * included in all copies or substantial portions of the Software. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
					
						
							|  |  |  |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | 
					
						
							|  |  |  |  * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
					
						
							|  |  |  |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | 
					
						
							|  |  |  |  * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | 
					
						
							|  |  |  |  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
					
						
							|  |  |  |  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | 
					
						
							|  |  |  |  * OTHER DEALINGS IN THE SOFTWARE. | 
					
						
							|  |  |  |  */ |