mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-30 21:21:10 +00:00 
			
		
		
		
	
		
			
	
	
		
			729 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			729 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|   | /*
 | ||
|  | 
 | ||
|  | Copyright (c) 2023, Dominic Szablewski - https://phoboslab.org
 | ||
|  | SPDX-License-Identifier: MIT | ||
|  | 
 | ||
|  | QOA - The "Quite OK Audio" format for fast, lossy audio compression | ||
|  | 
 | ||
|  | 
 | ||
|  | -- Data Format | ||
|  | 
 | ||
|  | QOA encodes pulse-code modulated (PCM) audio data with up to 255 channels,  | ||
|  | sample rates from 1 up to 16777215 hertz and a bit depth of 16 bits. | ||
|  | 
 | ||
|  | The compression method employed in QOA is lossy; it discards some information | ||
|  | from the uncompressed PCM data. For many types of audio signals this compression | ||
|  | is "transparent", i.e. the difference from the original file is often not | ||
|  | audible. | ||
|  | 
 | ||
|  | QOA encodes 20 samples of 16 bit PCM data into slices of 64 bits. A single | ||
|  | sample therefore requires 3.2 bits of storage space, resulting in a 5x | ||
|  | compression (16 / 3.2). | ||
|  | 
 | ||
|  | A QOA file consists of an 8 byte file header, followed by a number of frames. | ||
|  | Each frame contains an 8 byte frame header, the current 16 byte en-/decoder | ||
|  | state per channel and 256 slices per channel. Each slice is 8 bytes wide and | ||
|  | encodes 20 samples of audio data. | ||
|  | 
 | ||
|  | All values, including the slices, are big endian. The file layout is as follows: | ||
|  | 
 | ||
|  | struct { | ||
|  | 	struct { | ||
|  | 		char     magic[4];         // magic bytes "qoaf"
 | ||
|  | 		uint32_t samples;          // samples per channel in this file
 | ||
|  | 	} file_header;              | ||
|  | 
 | ||
|  | 	struct { | ||
|  | 		struct { | ||
|  | 			uint8_t  num_channels; // no. of channels
 | ||
|  | 			uint24_t samplerate;   // samplerate in hz
 | ||
|  | 			uint16_t fsamples;     // samples per channel in this frame
 | ||
|  | 			uint16_t fsize;        // frame size (includes this header)
 | ||
|  | 		} frame_header;           | ||
|  | 
 | ||
|  | 		struct { | ||
|  | 			int16_t history[4];    // most recent last
 | ||
|  | 			int16_t weights[4];    // most recent last
 | ||
|  | 		} lms_state[num_channels];  | ||
|  | 
 | ||
|  | 		qoa_slice_t slices[256][num_channels]; | ||
|  | 
 | ||
|  | 	} frames[ceil(samples / (256 * 20))]; | ||
|  | } qoa_file_t; | ||
|  | 
 | ||
|  | Each `qoa_slice_t` contains a quantized scalefactor `sf_quant` and 20 quantized | ||
|  | residuals `qrNN`: | ||
|  | 
 | ||
|  | .- QOA_SLICE -- 64 bits, 20 samples --------------------------/  /------------. | ||
|  | |        Byte[0]         |        Byte[1]         |  Byte[2]  \  \  Byte[7]   | | ||
|  | | 7  6  5  4  3  2  1  0 | 7  6  5  4  3  2  1  0 | 7  6  5   /  /    2  1  0 | | ||
|  | |------------+--------+--------+--------+---------+---------+-\  \--+---------| | ||
|  | |  sf_quant  |  qr00  |  qr01  |  qr02  |  qr03   |  qr04   | /  /  |  qr19   | | ||
|  | `-------------------------------------------------------------\  \------------` | ||
|  | 
 | ||
|  | Each frame except the last must contain exactly 256 slices per channel. The last | ||
|  | frame may contain between 1 .. 256 (inclusive) slices per channel. The last | ||
|  | slice (for each channel) in the last frame may contain less than 20 samples; the | ||
|  | slice still must be 8 bytes wide, with the unused samples zeroed out. | ||
|  | 
 | ||
|  | Channels are interleaved per slice. E.g. for 2 channel stereo:  | ||
|  | slice[0] = L, slice[1] = R, slice[2] = L, slice[3] = R ... | ||
|  | 
 | ||
|  | A valid QOA file or stream must have at least one frame. Each frame must contain | ||
|  | at least one channel and one sample with a samplerate between 1 .. 16777215 | ||
|  | (inclusive). | ||
|  | 
 | ||
|  | If the total number of samples is not known by the encoder, the samples in the | ||
|  | file header may be set to 0x00000000 to indicate that the encoder is  | ||
|  | "streaming". In a streaming context, the samplerate and number of channels may | ||
|  | differ from frame to frame. For static files (those with samples set to a | ||
|  | non-zero value), each frame must have the same number of channels and same | ||
|  | samplerate. | ||
|  | 
 | ||
|  | Note that this implementation of QOA only handles files with a known total | ||
|  | number of samples. | ||
|  | 
 | ||
|  | A decoder should support at least 8 channels. The channel layout for channel | ||
|  | counts 1 .. 8 is: | ||
|  | 
 | ||
|  | 	1. Mono | ||
|  | 	2. L, R | ||
|  | 	3. L, R, C  | ||
|  | 	4. FL, FR, B/SL, B/SR  | ||
|  | 	5. FL, FR, C, B/SL, B/SR  | ||
|  | 	6. FL, FR, C, LFE, B/SL, B/SR | ||
|  | 	7. FL, FR, C, LFE, B, SL, SR  | ||
|  | 	8. FL, FR, C, LFE, BL, BR, SL, SR | ||
|  | 
 | ||
|  | QOA predicts each audio sample based on the previously decoded ones using a | ||
|  | "Sign-Sign Least Mean Squares Filter" (LMS). This prediction plus the  | ||
|  | dequantized residual forms the final output sample. | ||
|  | 
 | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* -----------------------------------------------------------------------------
 | ||
|  | 	Header - Public functions */ | ||
|  | 
 | ||
|  | #ifndef QOA_H
 | ||
|  | #define QOA_H
 | ||
|  | 
 | ||
|  | #ifdef __cplusplus
 | ||
|  | extern "C" { | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define QOA_MIN_FILESIZE 16
 | ||
|  | #define QOA_MAX_CHANNELS 8
 | ||
|  | 
 | ||
|  | #define QOA_SLICE_LEN 20
 | ||
|  | #define QOA_SLICES_PER_FRAME 256
 | ||
|  | #define QOA_FRAME_LEN (QOA_SLICES_PER_FRAME * QOA_SLICE_LEN)
 | ||
|  | #define QOA_LMS_LEN 4
 | ||
|  | #define QOA_MAGIC 0x716f6166 /* 'qoaf' */
 | ||
|  | 
 | ||
|  | #define QOA_FRAME_SIZE(channels, slices) \
 | ||
|  | 	(8 + QOA_LMS_LEN * 4 * channels + 8 * slices * channels) | ||
|  | 
 | ||
|  | typedef struct { | ||
|  | 	int history[QOA_LMS_LEN]; | ||
|  | 	int weights[QOA_LMS_LEN]; | ||
|  | } qoa_lms_t; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  | 	unsigned int channels; | ||
|  | 	unsigned int samplerate; | ||
|  | 	unsigned int samples; | ||
|  | 	qoa_lms_t lms[QOA_MAX_CHANNELS]; | ||
|  | 	#ifdef QOA_RECORD_TOTAL_ERROR
 | ||
|  | 		double error; | ||
|  | 	#endif
 | ||
|  | } qoa_desc; | ||
|  | 
 | ||
|  | inline unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes); | ||
|  | inline unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes); | ||
|  | inline void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len); | ||
|  | 
 | ||
|  | inline unsigned int qoa_max_frame_size(qoa_desc *qoa); | ||
|  | inline unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa); | ||
|  | inline unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len); | ||
|  | inline short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *file); | ||
|  | 
 | ||
|  | #ifndef QOA_NO_STDIO
 | ||
|  | 
 | ||
|  | int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa); | ||
|  | void *qoa_read(const char *filename, qoa_desc *qoa); | ||
|  | 
 | ||
|  | #endif /* QOA_NO_STDIO */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef __cplusplus
 | ||
|  | } | ||
|  | #endif
 | ||
|  | #endif /* QOA_H */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* -----------------------------------------------------------------------------
 | ||
|  | 	Implementation */ | ||
|  | 
 | ||
|  | #ifdef QOA_IMPLEMENTATION
 | ||
|  | #include <stdlib.h>
 | ||
|  | 
 | ||
|  | #ifndef QOA_MALLOC
 | ||
|  | 	#define QOA_MALLOC(sz) malloc(sz)
 | ||
|  | 	#define QOA_FREE(p) free(p)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | typedef unsigned long long qoa_uint64_t; | ||
|  | 
 | ||
|  | 
 | ||
|  | /* The quant_tab provides an index into the dequant_tab for residuals in the
 | ||
|  | range of -8 .. 8. It maps this range to just 3bits and becomes less accurate at  | ||
|  | the higher end. Note that the residual zero is identical to the lowest positive  | ||
|  | value. This is mostly fine, since the qoa_div() function always rounds away  | ||
|  | from zero. */ | ||
|  | 
 | ||
|  | static const int qoa_quant_tab[17] = { | ||
|  | 	7, 7, 7, 5, 5, 3, 3, 1, /* -8..-1 */ | ||
|  | 	0,                      /*  0     */ | ||
|  | 	0, 2, 2, 4, 4, 6, 6, 6  /*  1.. 8 */ | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /* We have 16 different scalefactors. Like the quantized residuals these become
 | ||
|  | less accurate at the higher end. In theory, the highest scalefactor that we | ||
|  | would need to encode the highest 16bit residual is (2**16)/8 = 8192. However we | ||
|  | rely on the LMS filter to predict samples accurately enough that a maximum  | ||
|  | residual of one quarter of the 16 bit range is sufficient. I.e. with the  | ||
|  | scalefactor 2048 times the quant range of 8 we can encode residuals up to 2**14. | ||
|  | 
 | ||
|  | The scalefactor values are computed as: | ||
|  | scalefactor_tab[s] <- round(pow(s + 1, 2.75)) */ | ||
|  | 
 | ||
|  | static const int qoa_scalefactor_tab[16] = { | ||
|  | 	1, 7, 21, 45, 84, 138, 211, 304, 421, 562, 731, 928, 1157, 1419, 1715, 2048 | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /* The reciprocal_tab maps each of the 16 scalefactors to their rounded 
 | ||
|  | reciprocals 1/scalefactor. This allows us to calculate the scaled residuals in  | ||
|  | the encoder with just one multiplication instead of an expensive division. We  | ||
|  | do this in .16 fixed point with integers, instead of floats. | ||
|  | 
 | ||
|  | The reciprocal_tab is computed as: | ||
|  | reciprocal_tab[s] <- ((1<<16) + scalefactor_tab[s] - 1) / scalefactor_tab[s] */ | ||
|  | 
 | ||
|  | static const int qoa_reciprocal_tab[16] = { | ||
|  | 	65536, 9363, 3121, 1457, 781, 475, 311, 216, 156, 117, 90, 71, 57, 47, 39, 32 | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /* The dequant_tab maps each of the scalefactors and quantized residuals to 
 | ||
|  | their unscaled & dequantized version. | ||
|  | 
 | ||
|  | Since qoa_div rounds away from the zero, the smallest entries are mapped to 3/4 | ||
|  | instead of 1. The dequant_tab assumes the following dequantized values for each  | ||
|  | of the quant_tab indices and is computed as: | ||
|  | float dqt[8] = {0.75, -0.75, 2.5, -2.5, 4.5, -4.5, 7, -7}; | ||
|  | dequant_tab[s][q] <- round_ties_away_from_zero(scalefactor_tab[s] * dqt[q]) | ||
|  | 
 | ||
|  | The rounding employed here is "to nearest, ties away from zero",  i.e. positive | ||
|  | and negative values are treated symmetrically. | ||
|  | */ | ||
|  | 
 | ||
|  | static const int qoa_dequant_tab[16][8] = { | ||
|  | 	{   1,    -1,    3,    -3,    5,    -5,     7,     -7}, | ||
|  | 	{   5,    -5,   18,   -18,   32,   -32,    49,    -49}, | ||
|  | 	{  16,   -16,   53,   -53,   95,   -95,   147,   -147}, | ||
|  | 	{  34,   -34,  113,  -113,  203,  -203,   315,   -315}, | ||
|  | 	{  63,   -63,  210,  -210,  378,  -378,   588,   -588}, | ||
|  | 	{ 104,  -104,  345,  -345,  621,  -621,   966,   -966}, | ||
|  | 	{ 158,  -158,  528,  -528,  950,  -950,  1477,  -1477}, | ||
|  | 	{ 228,  -228,  760,  -760, 1368, -1368,  2128,  -2128}, | ||
|  | 	{ 316,  -316, 1053, -1053, 1895, -1895,  2947,  -2947}, | ||
|  | 	{ 422,  -422, 1405, -1405, 2529, -2529,  3934,  -3934}, | ||
|  | 	{ 548,  -548, 1828, -1828, 3290, -3290,  5117,  -5117}, | ||
|  | 	{ 696,  -696, 2320, -2320, 4176, -4176,  6496,  -6496}, | ||
|  | 	{ 868,  -868, 2893, -2893, 5207, -5207,  8099,  -8099}, | ||
|  | 	{1064, -1064, 3548, -3548, 6386, -6386,  9933,  -9933}, | ||
|  | 	{1286, -1286, 4288, -4288, 7718, -7718, 12005, -12005}, | ||
|  | 	{1536, -1536, 5120, -5120, 9216, -9216, 14336, -14336}, | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | /* The Least Mean Squares Filter is the heart of QOA. It predicts the next
 | ||
|  | sample based on the previous 4 reconstructed samples. It does so by continuously | ||
|  | adjusting 4 weights based on the residual of the previous prediction. | ||
|  | 
 | ||
|  | The next sample is predicted as the sum of (weight[i] * history[i]). | ||
|  | 
 | ||
|  | The adjustment of the weights is done with a "Sign-Sign-LMS" that adds or | ||
|  | subtracts the residual to each weight, based on the corresponding sample from  | ||
|  | the history. This, surprisingly, is sufficient to get worthwhile predictions. | ||
|  | 
 | ||
|  | This is all done with fixed point integers. Hence the right-shifts when updating | ||
|  | the weights and calculating the prediction. */ | ||
|  | 
 | ||
|  | static int qoa_lms_predict(qoa_lms_t *lms) { | ||
|  | 	int prediction = 0; | ||
|  | 	for (int i = 0; i < QOA_LMS_LEN; i++) { | ||
|  | 		prediction += lms->weights[i] * lms->history[i]; | ||
|  | 	} | ||
|  | 	return prediction >> 13; | ||
|  | } | ||
|  | 
 | ||
|  | static void qoa_lms_update(qoa_lms_t *lms, int sample, int residual) { | ||
|  | 	int delta = residual >> 4; | ||
|  | 	for (int i = 0; i < QOA_LMS_LEN; i++) { | ||
|  | 		lms->weights[i] += lms->history[i] < 0 ? -delta : delta; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	for (int i = 0; i < QOA_LMS_LEN-1; i++) { | ||
|  | 		lms->history[i] = lms->history[i+1]; | ||
|  | 	} | ||
|  | 	lms->history[QOA_LMS_LEN-1] = sample; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* qoa_div() implements a rounding division, but avoids rounding to zero for 
 | ||
|  | small numbers. E.g. 0.1 will be rounded to 1. Note that 0 itself still  | ||
|  | returns as 0, which is handled in the qoa_quant_tab[]. | ||
|  | qoa_div() takes an index into the .16 fixed point qoa_reciprocal_tab as an | ||
|  | argument, so it can do the division with a cheaper integer multiplication. */ | ||
|  | 
 | ||
|  | static inline int qoa_div(int v, int scalefactor) { | ||
|  | 	int reciprocal = qoa_reciprocal_tab[scalefactor]; | ||
|  | 	int n = (v * reciprocal + (1 << 15)) >> 16; | ||
|  | 	n = n + ((v > 0) - (v < 0)) - ((n > 0) - (n < 0)); /* round away from 0 */ | ||
|  | 	return n; | ||
|  | } | ||
|  | 
 | ||
|  | static inline int qoa_clamp(int v, int min, int max) { | ||
|  | 	if (v < min) { return min; } | ||
|  | 	if (v > max) { return max; } | ||
|  | 	return v; | ||
|  | } | ||
|  | 
 | ||
|  | /* This specialized clamp function for the signed 16 bit range improves decode
 | ||
|  | performance quite a bit. The extra if() statement works nicely with the CPUs | ||
|  | branch prediction as this branch is rarely taken. */ | ||
|  | 
 | ||
|  | static inline int qoa_clamp_s16(int v) { | ||
|  | 	if ((unsigned int)(v + 32768) > 65535) { | ||
|  | 		if (v < -32768) { return -32768; } | ||
|  | 		if (v >  32767) { return  32767; } | ||
|  | 	} | ||
|  | 	return v; | ||
|  | } | ||
|  | 
 | ||
|  | static inline qoa_uint64_t qoa_read_u64(const unsigned char *bytes, unsigned int *p) { | ||
|  | 	bytes += *p; | ||
|  | 	*p += 8; | ||
|  | 	return  | ||
|  | 		((qoa_uint64_t)(bytes[0]) << 56) | ((qoa_uint64_t)(bytes[1]) << 48) | | ||
|  | 		((qoa_uint64_t)(bytes[2]) << 40) | ((qoa_uint64_t)(bytes[3]) << 32) | | ||
|  | 		((qoa_uint64_t)(bytes[4]) << 24) | ((qoa_uint64_t)(bytes[5]) << 16) | | ||
|  | 		((qoa_uint64_t)(bytes[6]) <<  8) | ((qoa_uint64_t)(bytes[7]) <<  0); | ||
|  | } | ||
|  | 
 | ||
|  | static inline void qoa_write_u64(qoa_uint64_t v, unsigned char *bytes, unsigned int *p) { | ||
|  | 	bytes += *p; | ||
|  | 	*p += 8; | ||
|  | 	bytes[0] = (v >> 56) & 0xff; | ||
|  | 	bytes[1] = (v >> 48) & 0xff; | ||
|  | 	bytes[2] = (v >> 40) & 0xff; | ||
|  | 	bytes[3] = (v >> 32) & 0xff; | ||
|  | 	bytes[4] = (v >> 24) & 0xff; | ||
|  | 	bytes[5] = (v >> 16) & 0xff; | ||
|  | 	bytes[6] = (v >>  8) & 0xff; | ||
|  | 	bytes[7] = (v >>  0) & 0xff; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* -----------------------------------------------------------------------------
 | ||
|  | 	Encoder */ | ||
|  | 
 | ||
|  | unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes) { | ||
|  | 	unsigned int p = 0; | ||
|  | 	qoa_write_u64(((qoa_uint64_t)QOA_MAGIC << 32) | qoa->samples, bytes, &p); | ||
|  | 	return p; | ||
|  | } | ||
|  | 
 | ||
|  | unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes) { | ||
|  | 	unsigned int channels = qoa->channels; | ||
|  | 
 | ||
|  | 	unsigned int p = 0; | ||
|  | 	unsigned int slices = (frame_len + QOA_SLICE_LEN - 1) / QOA_SLICE_LEN; | ||
|  | 	unsigned int frame_size = QOA_FRAME_SIZE(channels, slices); | ||
|  | 	int prev_scalefactor[QOA_MAX_CHANNELS] = {0}; | ||
|  | 
 | ||
|  | 	/* Write the frame header */ | ||
|  | 	qoa_write_u64(( | ||
|  | 		(qoa_uint64_t)qoa->channels   << 56 | | ||
|  | 		(qoa_uint64_t)qoa->samplerate << 32 | | ||
|  | 		(qoa_uint64_t)frame_len       << 16 | | ||
|  | 		(qoa_uint64_t)frame_size | ||
|  | 	), bytes, &p); | ||
|  | 
 | ||
|  | 	 | ||
|  | 	for (unsigned int c = 0; c < channels; c++) { | ||
|  | 		/* Write the current LMS state */ | ||
|  | 		qoa_uint64_t weights = 0; | ||
|  | 		qoa_uint64_t history = 0; | ||
|  | 		for (int i = 0; i < QOA_LMS_LEN; i++) { | ||
|  | 			history = (history << 16) | (qoa->lms[c].history[i] & 0xffff); | ||
|  | 			weights = (weights << 16) | (qoa->lms[c].weights[i] & 0xffff); | ||
|  | 		} | ||
|  | 		qoa_write_u64(history, bytes, &p); | ||
|  | 		qoa_write_u64(weights, bytes, &p); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* We encode all samples with the channels interleaved on a slice level.
 | ||
|  | 	E.g. for stereo: (ch-0, slice 0), (ch 1, slice 0), (ch 0, slice 1), ...*/ | ||
|  | 	for (unsigned int sample_index = 0; sample_index < frame_len; sample_index += QOA_SLICE_LEN) { | ||
|  | 
 | ||
|  | 		for (unsigned int c = 0; c < channels; c++) { | ||
|  | 			int slice_len = qoa_clamp(QOA_SLICE_LEN, 0, frame_len - sample_index); | ||
|  | 			int slice_start = sample_index * channels + c; | ||
|  | 			int slice_end = (sample_index + slice_len) * channels + c;			 | ||
|  | 
 | ||
|  | 			/* Brute for search for the best scalefactor. Just go through all
 | ||
|  | 			16 scalefactors, encode all samples for the current slice and  | ||
|  | 			meassure the total squared error. */ | ||
|  | 			qoa_uint64_t best_rank = -1; | ||
|  | 			qoa_uint64_t best_slice = -1; | ||
|  | 			qoa_lms_t best_lms = {{-1, -1, -1, -1}, {-1, -1, -1, -1}}; | ||
|  | 			int best_scalefactor = -1; | ||
|  | 
 | ||
|  | 			for (int sfi = 0; sfi < 16; sfi++) { | ||
|  | 				/* There is a strong correlation between the scalefactors of
 | ||
|  | 				neighboring slices. As an optimization, start testing | ||
|  | 				the best scalefactor of the previous slice first. */ | ||
|  | 				int scalefactor = (sfi + prev_scalefactor[c]) % 16; | ||
|  | 
 | ||
|  | 				/* We have to reset the LMS state to the last known good one
 | ||
|  | 				before trying each scalefactor, as each pass updates the LMS | ||
|  | 				state when encoding. */ | ||
|  | 				qoa_lms_t lms = qoa->lms[c]; | ||
|  | 				qoa_uint64_t slice = scalefactor; | ||
|  | 				qoa_uint64_t current_rank = 0; | ||
|  | 
 | ||
|  | 				for (int si = slice_start; si < slice_end; si += channels) { | ||
|  | 					int sample = sample_data[si]; | ||
|  | 					int predicted = qoa_lms_predict(&lms); | ||
|  | 
 | ||
|  | 					int residual = sample - predicted; | ||
|  | 					int scaled = qoa_div(residual, scalefactor); | ||
|  | 					int clamped = qoa_clamp(scaled, -8, 8); | ||
|  | 					int quantized = qoa_quant_tab[clamped + 8]; | ||
|  | 					int dequantized = qoa_dequant_tab[scalefactor][quantized]; | ||
|  | 					int reconstructed = qoa_clamp_s16(predicted + dequantized); | ||
|  | 
 | ||
|  | 
 | ||
|  | 					/* If the weights have grown too large, we introduce a penalty
 | ||
|  | 					here. This prevents pops/clicks in certain problem cases */ | ||
|  | 					int weights_penalty = (( | ||
|  | 						lms.weights[0] * lms.weights[0] +  | ||
|  | 						lms.weights[1] * lms.weights[1] +  | ||
|  | 						lms.weights[2] * lms.weights[2] +  | ||
|  | 						lms.weights[3] * lms.weights[3] | ||
|  | 					) >> 18) - 0x8ff; | ||
|  | 					if (weights_penalty < 0) { | ||
|  | 						weights_penalty = 0; | ||
|  | 					} | ||
|  | 
 | ||
|  | 					long long error = (sample - reconstructed); | ||
|  | 					qoa_uint64_t error_sq = error * error; | ||
|  | 
 | ||
|  | 					current_rank += error_sq + weights_penalty * weights_penalty; | ||
|  | 					if (current_rank > best_rank) { | ||
|  | 						break; | ||
|  | 					} | ||
|  | 
 | ||
|  | 					qoa_lms_update(&lms, reconstructed, dequantized); | ||
|  | 					slice = (slice << 3) | quantized; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				if (current_rank < best_rank) { | ||
|  | 					best_rank = current_rank; | ||
|  | 					best_slice = slice; | ||
|  | 					best_lms = lms; | ||
|  | 					best_scalefactor = scalefactor; | ||
|  | 				} | ||
|  | 			} | ||
|  | 
 | ||
|  | 			prev_scalefactor[c] = best_scalefactor; | ||
|  | 
 | ||
|  | 			qoa->lms[c] = best_lms; | ||
|  | 			#ifdef QOA_RECORD_TOTAL_ERROR
 | ||
|  | 				qoa->error += best_error; | ||
|  | 			#endif
 | ||
|  | 
 | ||
|  | 			/* If this slice was shorter than QOA_SLICE_LEN, we have to left-
 | ||
|  | 			shift all encoded data, to ensure the rightmost bits are the empty | ||
|  | 			ones. This should only happen in the last frame of a file as all | ||
|  | 			slices are completely filled otherwise. */ | ||
|  | 			best_slice <<= (QOA_SLICE_LEN - slice_len) * 3; | ||
|  | 			qoa_write_u64(best_slice, bytes, &p); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	return p; | ||
|  | } | ||
|  | 
 | ||
|  | void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len) { | ||
|  | 	if ( | ||
|  | 		qoa->samples == 0 ||  | ||
|  | 		qoa->samplerate == 0 || qoa->samplerate > 0xffffff || | ||
|  | 		qoa->channels == 0 || qoa->channels > QOA_MAX_CHANNELS | ||
|  | 	) { | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Calculate the encoded size and allocate */ | ||
|  | 	unsigned int num_frames = (qoa->samples + QOA_FRAME_LEN-1) / QOA_FRAME_LEN; | ||
|  | 	unsigned int num_slices = (qoa->samples + QOA_SLICE_LEN-1) / QOA_SLICE_LEN; | ||
|  | 	unsigned int encoded_size = 8 +                    /* 8 byte file header */ | ||
|  | 		num_frames * 8 +                               /* 8 byte frame headers */ | ||
|  | 		num_frames * QOA_LMS_LEN * 4 * qoa->channels + /* 4 * 4 bytes lms state per channel */ | ||
|  | 		num_slices * 8 * qoa->channels;                /* 8 byte slices */ | ||
|  | 
 | ||
|  | 	unsigned char *bytes = (unsigned char *)QOA_MALLOC(encoded_size); | ||
|  | 
 | ||
|  | 	for (unsigned int c = 0; c < qoa->channels; c++) { | ||
|  | 		/* Set the initial LMS weights to {0, 0, -1, 2}. This helps with the 
 | ||
|  | 		prediction of the first few ms of a file. */ | ||
|  | 		qoa->lms[c].weights[0] = 0; | ||
|  | 		qoa->lms[c].weights[1] = 0; | ||
|  | 		qoa->lms[c].weights[2] = -(1<<13); | ||
|  | 		qoa->lms[c].weights[3] =  (1<<14); | ||
|  | 
 | ||
|  | 		/* Explicitly set the history samples to 0, as we might have some
 | ||
|  | 		garbage in there. */ | ||
|  | 		for (int i = 0; i < QOA_LMS_LEN; i++) { | ||
|  | 			qoa->lms[c].history[i] = 0; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/* Encode the header and go through all frames */ | ||
|  | 	unsigned int p = qoa_encode_header(qoa, bytes); | ||
|  | 	#ifdef QOA_RECORD_TOTAL_ERROR
 | ||
|  | 		qoa->error = 0; | ||
|  | 	#endif
 | ||
|  | 
 | ||
|  | 	int frame_len = QOA_FRAME_LEN; | ||
|  | 	for (unsigned int sample_index = 0; sample_index < qoa->samples; sample_index += frame_len) { | ||
|  | 		frame_len = qoa_clamp(QOA_FRAME_LEN, 0, qoa->samples - sample_index);		 | ||
|  | 		const short *frame_samples = sample_data + sample_index * qoa->channels; | ||
|  | 		unsigned int frame_size = qoa_encode_frame(frame_samples, qoa, frame_len, bytes + p); | ||
|  | 		p += frame_size; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	*out_len = p; | ||
|  | 	return bytes; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* -----------------------------------------------------------------------------
 | ||
|  | 	Decoder */ | ||
|  | 
 | ||
|  | unsigned int qoa_max_frame_size(qoa_desc *qoa) { | ||
|  | 	return QOA_FRAME_SIZE(qoa->channels, QOA_SLICES_PER_FRAME); | ||
|  | } | ||
|  | 
 | ||
|  | unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa) { | ||
|  | 	unsigned int p = 0; | ||
|  | 	if (size < QOA_MIN_FILESIZE) { | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/* Read the file header, verify the magic number ('qoaf') and read the 
 | ||
|  | 	total number of samples. */ | ||
|  | 	qoa_uint64_t file_header = qoa_read_u64(bytes, &p); | ||
|  | 
 | ||
|  | 	if ((file_header >> 32) != QOA_MAGIC) { | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	qoa->samples = file_header & 0xffffffff; | ||
|  | 	if (!qoa->samples) { | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Peek into the first frame header to get the number of channels and
 | ||
|  | 	the samplerate. */ | ||
|  | 	qoa_uint64_t frame_header = qoa_read_u64(bytes, &p); | ||
|  | 	qoa->channels   = (frame_header >> 56) & 0x0000ff; | ||
|  | 	qoa->samplerate = (frame_header >> 32) & 0xffffff; | ||
|  | 
 | ||
|  | 	if (qoa->channels == 0 || qoa->samples == 0 || qoa->samplerate == 0) { | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return 8; | ||
|  | } | ||
|  | 
 | ||
|  | unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len) { | ||
|  | 	unsigned int p = 0; | ||
|  | 	*frame_len = 0; | ||
|  | 
 | ||
|  | 	if (size < 8 + QOA_LMS_LEN * 4 * qoa->channels) { | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Read and verify the frame header */ | ||
|  | 	qoa_uint64_t frame_header = qoa_read_u64(bytes, &p); | ||
|  | 	unsigned int channels   = (frame_header >> 56) & 0x0000ff; | ||
|  | 	unsigned int samplerate = (frame_header >> 32) & 0xffffff; | ||
|  | 	unsigned int samples    = (frame_header >> 16) & 0x00ffff; | ||
|  | 	unsigned int frame_size = (frame_header      ) & 0x00ffff; | ||
|  | 
 | ||
|  | 	int data_size = frame_size - 8 - QOA_LMS_LEN * 4 * channels; | ||
|  | 	int num_slices = data_size / 8; | ||
|  | 	unsigned int max_total_samples = num_slices * QOA_SLICE_LEN; | ||
|  | 
 | ||
|  | 	if ( | ||
|  | 		channels != qoa->channels ||  | ||
|  | 		samplerate != qoa->samplerate || | ||
|  | 		frame_size > size || | ||
|  | 		samples * channels > max_total_samples | ||
|  | 	) { | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/* Read the LMS state: 4 x 2 bytes history, 4 x 2 bytes weights per channel */ | ||
|  | 	for (unsigned int c = 0; c < channels; c++) { | ||
|  | 		qoa_uint64_t history = qoa_read_u64(bytes, &p); | ||
|  | 		qoa_uint64_t weights = qoa_read_u64(bytes, &p); | ||
|  | 		for (int i = 0; i < QOA_LMS_LEN; i++) { | ||
|  | 			qoa->lms[c].history[i] = ((signed short)(history >> 48)); | ||
|  | 			history <<= 16; | ||
|  | 			qoa->lms[c].weights[i] = ((signed short)(weights >> 48)); | ||
|  | 			weights <<= 16; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 
 | ||
|  | 	/* Decode all slices for all channels in this frame */ | ||
|  | 	for (unsigned int sample_index = 0; sample_index < samples; sample_index += QOA_SLICE_LEN) { | ||
|  | 		for (unsigned int c = 0; c < channels; c++) { | ||
|  | 			qoa_uint64_t slice = qoa_read_u64(bytes, &p); | ||
|  | 
 | ||
|  | 			int scalefactor = (slice >> 60) & 0xf; | ||
|  | 			int slice_start = sample_index * channels + c; | ||
|  | 			int slice_end = qoa_clamp(sample_index + QOA_SLICE_LEN, 0, samples) * channels + c; | ||
|  | 
 | ||
|  | 			for (int si = slice_start; si < slice_end; si += channels) { | ||
|  | 				int predicted = qoa_lms_predict(&qoa->lms[c]); | ||
|  | 				int quantized = (slice >> 57) & 0x7; | ||
|  | 				int dequantized = qoa_dequant_tab[scalefactor][quantized]; | ||
|  | 				int reconstructed = qoa_clamp_s16(predicted + dequantized); | ||
|  | 				 | ||
|  | 				sample_data[si] = reconstructed; | ||
|  | 				slice <<= 3; | ||
|  | 
 | ||
|  | 				qoa_lms_update(&qoa->lms[c], reconstructed, dequantized); | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	*frame_len = samples; | ||
|  | 	return p; | ||
|  | } | ||
|  | 
 | ||
|  | short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *qoa) { | ||
|  | 	unsigned int p = qoa_decode_header(bytes, size, qoa); | ||
|  | 	if (!p) { | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Calculate the required size of the sample buffer and allocate */ | ||
|  | 	int total_samples = qoa->samples * qoa->channels; | ||
|  | 	short *sample_data = (short *)QOA_MALLOC(total_samples * sizeof(short)); | ||
|  | 
 | ||
|  | 	unsigned int sample_index = 0; | ||
|  | 	unsigned int frame_len; | ||
|  | 	unsigned int frame_size; | ||
|  | 
 | ||
|  | 	/* Decode all frames */ | ||
|  | 	do { | ||
|  | 		short *sample_ptr = sample_data + sample_index * qoa->channels; | ||
|  | 		frame_size = qoa_decode_frame(bytes + p, size - p, qoa, sample_ptr, &frame_len); | ||
|  | 
 | ||
|  | 		p += frame_size; | ||
|  | 		sample_index += frame_len; | ||
|  | 	} while (frame_size && sample_index < qoa->samples); | ||
|  | 
 | ||
|  | 	qoa->samples = sample_index; | ||
|  | 	return sample_data; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* -----------------------------------------------------------------------------
 | ||
|  | 	File read/write convenience functions */ | ||
|  | 
 | ||
|  | #ifndef QOA_NO_STDIO
 | ||
|  | #include <stdio.h>
 | ||
|  | 
 | ||
|  | int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa) { | ||
|  | 	FILE *f = fopen(filename, "wb"); | ||
|  | 	unsigned int size; | ||
|  | 	void *encoded; | ||
|  | 
 | ||
|  | 	if (!f) { | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	encoded = qoa_encode(sample_data, qoa, &size); | ||
|  | 	if (!encoded) { | ||
|  | 		fclose(f); | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	fwrite(encoded, 1, size, f); | ||
|  | 	fclose(f); | ||
|  | 
 | ||
|  | 	QOA_FREE(encoded); | ||
|  | 	return size; | ||
|  | } | ||
|  | 
 | ||
|  | void *qoa_read(const char *filename, qoa_desc *qoa) { | ||
|  | 	FILE *f = fopen(filename, "rb"); | ||
|  | 	int size, bytes_read; | ||
|  | 	void *data; | ||
|  | 	short *sample_data; | ||
|  | 
 | ||
|  | 	if (!f) { | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	fseek(f, 0, SEEK_END); | ||
|  | 	size = ftell(f); | ||
|  | 	if (size <= 0) { | ||
|  | 		fclose(f); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 	fseek(f, 0, SEEK_SET); | ||
|  | 
 | ||
|  | 	data = QOA_MALLOC(size); | ||
|  | 	if (!data) { | ||
|  | 		fclose(f); | ||
|  | 		return NULL; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	bytes_read = fread(data, 1, size, f); | ||
|  | 	fclose(f); | ||
|  | 
 | ||
|  | 	sample_data = qoa_decode(data, bytes_read, qoa); | ||
|  | 	QOA_FREE(data); | ||
|  | 	return sample_data; | ||
|  | } | ||
|  | 
 | ||
|  | #endif /* QOA_NO_STDIO */
 | ||
|  | #endif /* QOA_IMPLEMENTATION */
 |