godot/thirdparty/meshoptimizer/partition.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

500 lines
14 KiB
C++
Raw Normal View History

// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"
#include <assert.h>
#include <math.h>
#include <string.h>
2025-06-27 01:02:34 +02:00
// This work is based on:
// Takio Kurita. An efficient agglomerative clustering algorithm using a heap. 1991
namespace meshopt
{
struct ClusterAdjacency
{
unsigned int* offsets;
unsigned int* clusters;
unsigned int* shared;
};
2025-06-27 01:02:34 +02:00
static void filterClusterIndices(unsigned int* data, unsigned int* offsets, const unsigned int* cluster_indices, const unsigned int* cluster_index_counts, size_t cluster_count, unsigned char* used, size_t vertex_count, size_t total_index_count)
{
2025-06-27 01:02:34 +02:00
(void)vertex_count;
(void)total_index_count;
2025-06-27 01:02:34 +02:00
size_t cluster_start = 0;
size_t cluster_write = 0;
for (size_t i = 0; i < cluster_count; ++i)
{
2025-06-27 01:02:34 +02:00
offsets[i] = unsigned(cluster_write);
// copy cluster indices, skipping duplicates
for (size_t j = 0; j < cluster_index_counts[i]; ++j)
{
2025-06-27 01:02:34 +02:00
unsigned int v = cluster_indices[cluster_start + j];
assert(v < vertex_count);
2025-06-27 01:02:34 +02:00
data[cluster_write] = v;
cluster_write += 1 - used[v];
used[v] = 1;
}
2025-06-27 01:02:34 +02:00
// reset used flags for the next cluster
for (size_t j = offsets[i]; j < cluster_write; ++j)
used[data[j]] = 0;
cluster_start += cluster_index_counts[i];
}
assert(cluster_start == total_index_count);
assert(cluster_write <= total_index_count);
offsets[cluster_count] = unsigned(cluster_write);
}
static void computeClusterBounds(float* cluster_bounds, const unsigned int* cluster_indices, const unsigned int* cluster_offsets, size_t cluster_count, const float* vertex_positions, size_t vertex_positions_stride)
{
size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
for (size_t i = 0; i < cluster_count; ++i)
{
float center[3] = {0, 0, 0};
// approximate center of the cluster by averaging all vertex positions
for (size_t j = cluster_offsets[i]; j < cluster_offsets[i + 1]; ++j)
{
const float* p = vertex_positions + cluster_indices[j] * vertex_stride_float;
center[0] += p[0];
center[1] += p[1];
center[2] += p[2];
}
// note: technically clusters can't be empty per meshopt_partitionCluster but we check for a division by zero in case that changes
if (size_t cluster_size = cluster_offsets[i + 1] - cluster_offsets[i])
{
center[0] /= float(cluster_size);
center[1] /= float(cluster_size);
center[2] /= float(cluster_size);
}
// compute radius of the bounding sphere for each cluster
float radiussq = 0;
for (size_t j = cluster_offsets[i]; j < cluster_offsets[i + 1]; ++j)
2025-06-27 01:02:34 +02:00
{
const float* p = vertex_positions + cluster_indices[j] * vertex_stride_float;
float d2 = (p[0] - center[0]) * (p[0] - center[0]) + (p[1] - center[1]) * (p[1] - center[1]) + (p[2] - center[2]) * (p[2] - center[2]);
radiussq = radiussq < d2 ? d2 : radiussq;
}
cluster_bounds[i * 4 + 0] = center[0];
cluster_bounds[i * 4 + 1] = center[1];
cluster_bounds[i * 4 + 2] = center[2];
cluster_bounds[i * 4 + 3] = sqrtf(radiussq);
}
}
static void buildClusterAdjacency(ClusterAdjacency& adjacency, const unsigned int* cluster_indices, const unsigned int* cluster_offsets, size_t cluster_count, size_t vertex_count, meshopt_Allocator& allocator)
{
unsigned int* ref_offsets = allocator.allocate<unsigned int>(vertex_count + 1);
// compute number of clusters referenced by each vertex
memset(ref_offsets, 0, vertex_count * sizeof(unsigned int));
for (size_t i = 0; i < cluster_count; ++i)
{
for (size_t j = cluster_offsets[i]; j < cluster_offsets[i + 1]; ++j)
ref_offsets[cluster_indices[j]]++;
}
// compute (worst-case) number of adjacent clusters for each cluster
size_t total_adjacency = 0;
for (size_t i = 0; i < cluster_count; ++i)
{
size_t count = 0;
2025-06-27 01:02:34 +02:00
// worst case is every vertex has a disjoint cluster list
for (size_t j = cluster_offsets[i]; j < cluster_offsets[i + 1]; ++j)
count += ref_offsets[cluster_indices[j]] - 1;
// ... but only every other cluster can be adjacent in the end
total_adjacency += count < cluster_count - 1 ? count : cluster_count - 1;
}
// we can now allocate adjacency buffers
adjacency.offsets = allocator.allocate<unsigned int>(cluster_count + 1);
adjacency.clusters = allocator.allocate<unsigned int>(total_adjacency);
adjacency.shared = allocator.allocate<unsigned int>(total_adjacency);
// convert ref counts to offsets
size_t total_refs = 0;
for (size_t i = 0; i < vertex_count; ++i)
{
size_t count = ref_offsets[i];
ref_offsets[i] = unsigned(total_refs);
total_refs += count;
}
unsigned int* ref_data = allocator.allocate<unsigned int>(total_refs);
// fill cluster refs for each vertex
for (size_t i = 0; i < cluster_count; ++i)
{
for (size_t j = cluster_offsets[i]; j < cluster_offsets[i + 1]; ++j)
2025-06-27 01:02:34 +02:00
ref_data[ref_offsets[cluster_indices[j]]++] = unsigned(i);
}
// after the previous pass, ref_offsets contain the end of the data for each vertex; shift it forward to get the start
memmove(ref_offsets + 1, ref_offsets, vertex_count * sizeof(unsigned int));
ref_offsets[0] = 0;
// fill cluster adjacency for each cluster...
adjacency.offsets[0] = 0;
for (size_t i = 0; i < cluster_count; ++i)
{
unsigned int* adj = adjacency.clusters + adjacency.offsets[i];
unsigned int* shd = adjacency.shared + adjacency.offsets[i];
size_t count = 0;
for (size_t j = cluster_offsets[i]; j < cluster_offsets[i + 1]; ++j)
{
unsigned int v = cluster_indices[j];
// merge the entire cluster list of each vertex into current list
for (size_t k = ref_offsets[v]; k < ref_offsets[v + 1]; ++k)
{
unsigned int c = ref_data[k];
assert(c < cluster_count);
if (c == unsigned(i))
continue;
// if the cluster is already in the list, increment the shared count
bool found = false;
for (size_t l = 0; l < count; ++l)
if (adj[l] == c)
{
found = true;
shd[l]++;
break;
}
// .. or append a new cluster
if (!found)
{
adj[count] = c;
shd[count] = 1;
count++;
}
}
}
// mark the end of the adjacency list; the next cluster will start there as well
adjacency.offsets[i + 1] = adjacency.offsets[i] + unsigned(count);
}
assert(adjacency.offsets[cluster_count] <= total_adjacency);
// ref_offsets can't be deallocated as it was allocated before adjacency
allocator.deallocate(ref_data);
}
struct ClusterGroup
{
int group;
int next;
unsigned int size; // 0 unless root
unsigned int vertices;
};
struct GroupOrder
{
unsigned int id;
int order;
};
static void heapPush(GroupOrder* heap, size_t size, GroupOrder item)
{
// insert a new element at the end (breaks heap invariant)
heap[size++] = item;
// bubble up the new element to its correct position
size_t i = size - 1;
while (i > 0 && heap[i].order < heap[(i - 1) / 2].order)
{
size_t p = (i - 1) / 2;
GroupOrder temp = heap[i];
heap[i] = heap[p];
heap[p] = temp;
i = p;
}
}
static GroupOrder heapPop(GroupOrder* heap, size_t size)
{
assert(size > 0);
GroupOrder top = heap[0];
// move the last element to the top (breaks heap invariant)
heap[0] = heap[--size];
// bubble down the new top element to its correct position
size_t i = 0;
while (i * 2 + 1 < size)
{
// find the smallest child
size_t j = i * 2 + 1;
j += (j + 1 < size && heap[j + 1].order < heap[j].order);
// if the parent is already smaller than both children, we're done
if (heap[j].order >= heap[i].order)
break;
// otherwise, swap the parent and child and continue
GroupOrder temp = heap[i];
heap[i] = heap[j];
heap[j] = temp;
i = j;
}
return top;
}
static unsigned int countShared(const ClusterGroup* groups, int group1, int group2, const ClusterAdjacency& adjacency)
{
unsigned int total = 0;
for (int i1 = group1; i1 >= 0; i1 = groups[i1].next)
for (int i2 = group2; i2 >= 0; i2 = groups[i2].next)
{
for (unsigned int adj = adjacency.offsets[i1]; adj < adjacency.offsets[i1 + 1]; ++adj)
if (adjacency.clusters[adj] == unsigned(i2))
{
total += adjacency.shared[adj];
break;
}
}
return total;
}
2025-06-27 01:02:34 +02:00
static void mergeBounds(float* target, const float* source)
{
float r1 = target[3], r2 = source[3];
float dx = source[0] - target[0], dy = source[1] - target[1], dz = source[2] - target[2];
float d = sqrtf(dx * dx + dy * dy + dz * dz);
if (d + r1 < r2)
{
memcpy(target, source, 4 * sizeof(float));
return;
}
if (d + r2 > r1)
{
float k = d > 0 ? (d + r2 - r1) / (2 * d) : 0.f;
target[0] += dx * k;
target[1] += dy * k;
target[2] += dz * k;
target[3] = (d + r2 + r1) / 2;
}
}
static float boundsScore(const float* target, const float* source)
{
float r1 = target[3], r2 = source[3];
float dx = source[0] - target[0], dy = source[1] - target[1], dz = source[2] - target[2];
float d = sqrtf(dx * dx + dy * dy + dz * dz);
float mr = d + r1 < r2 ? r2 : (d + r2 < r1 ? r1 : (d + r2 + r1) / 2);
return mr > 0 ? r1 / mr : 0.f;
}
static int pickGroupToMerge(const ClusterGroup* groups, int id, const ClusterAdjacency& adjacency, size_t max_partition_size, const float* cluster_bounds)
{
assert(groups[id].size > 0);
float group_rsqrt = 1.f / sqrtf(float(int(groups[id].vertices)));
int best_group = -1;
float best_score = 0;
for (int ci = id; ci >= 0; ci = groups[ci].next)
{
for (unsigned int adj = adjacency.offsets[ci]; adj != adjacency.offsets[ci + 1]; ++adj)
{
int other = groups[adjacency.clusters[adj]].group;
if (other < 0)
continue;
assert(groups[other].size > 0);
if (groups[id].size + groups[other].size > max_partition_size)
continue;
unsigned int shared = countShared(groups, id, other, adjacency);
float other_rsqrt = 1.f / sqrtf(float(int(groups[other].vertices)));
// normalize shared count by the expected boundary of each group (+ keeps scoring symmetric)
float score = float(int(shared)) * (group_rsqrt + other_rsqrt);
2025-06-27 01:02:34 +02:00
// incorporate spatial score to favor merging nearby groups
if (cluster_bounds)
score *= 1.f + 0.4f * boundsScore(&cluster_bounds[id * 4], &cluster_bounds[other * 4]);
if (score > best_score)
{
best_group = other;
best_score = score;
}
}
}
return best_group;
}
} // namespace meshopt
2025-06-27 01:02:34 +02:00
size_t meshopt_partitionClusters(unsigned int* destination, const unsigned int* cluster_indices, size_t total_index_count, const unsigned int* cluster_index_counts, size_t cluster_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_partition_size)
{
using namespace meshopt;
2025-06-27 01:02:34 +02:00
assert((vertex_positions == NULL || vertex_positions_stride >= 12) && vertex_positions_stride <= 256);
assert(vertex_positions_stride % sizeof(float) == 0);
assert(target_partition_size > 0);
size_t max_partition_size = target_partition_size + target_partition_size * 3 / 8;
meshopt_Allocator allocator;
unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
memset(used, 0, vertex_count);
2025-06-27 01:02:34 +02:00
unsigned int* cluster_newindices = allocator.allocate<unsigned int>(total_index_count);
unsigned int* cluster_offsets = allocator.allocate<unsigned int>(cluster_count + 1);
2025-06-27 01:02:34 +02:00
// make new cluster index list that filters out duplicate indices
filterClusterIndices(cluster_newindices, cluster_offsets, cluster_indices, cluster_index_counts, cluster_count, used, vertex_count, total_index_count);
cluster_indices = cluster_newindices;
2025-06-27 01:02:34 +02:00
// compute bounding sphere for each cluster if positions are provided
float* cluster_bounds = NULL;
2025-06-27 01:02:34 +02:00
if (vertex_positions)
{
cluster_bounds = allocator.allocate<float>(cluster_count * 4);
computeClusterBounds(cluster_bounds, cluster_indices, cluster_offsets, cluster_count, vertex_positions, vertex_positions_stride);
}
// build cluster adjacency along with edge weights (shared vertex count)
ClusterAdjacency adjacency = {};
2025-06-27 01:02:34 +02:00
buildClusterAdjacency(adjacency, cluster_indices, cluster_offsets, cluster_count, vertex_count, allocator);
ClusterGroup* groups = allocator.allocate<ClusterGroup>(cluster_count);
GroupOrder* order = allocator.allocate<GroupOrder>(cluster_count);
size_t pending = 0;
// create a singleton group for each cluster and order them by priority
for (size_t i = 0; i < cluster_count; ++i)
{
groups[i].group = int(i);
groups[i].next = -1;
groups[i].size = 1;
2025-06-27 01:02:34 +02:00
groups[i].vertices = cluster_offsets[i + 1] - cluster_offsets[i];
assert(groups[i].vertices > 0);
GroupOrder item = {};
item.id = unsigned(i);
item.order = groups[i].vertices;
heapPush(order, pending++, item);
}
// iteratively merge the smallest group with the best group
while (pending)
{
GroupOrder top = heapPop(order, pending--);
// this group was merged into another group earlier
if (groups[top.id].size == 0)
continue;
// disassociate clusters from the group to prevent them from being merged again; we will re-associate them if the group is reinserted
for (int i = top.id; i >= 0; i = groups[i].next)
{
assert(groups[i].group == int(top.id));
groups[i].group = -1;
}
// the group is large enough, emit as is
if (groups[top.id].size >= target_partition_size)
continue;
2025-06-27 01:02:34 +02:00
int best_group = pickGroupToMerge(groups, top.id, adjacency, max_partition_size, cluster_bounds);
// we can't grow the group any more, emit as is
if (best_group == -1)
continue;
// compute shared vertices to adjust the total vertices estimate after merging
unsigned int shared = countShared(groups, top.id, best_group, adjacency);
// combine groups by linking them together
assert(groups[best_group].size > 0);
for (int i = top.id; i >= 0; i = groups[i].next)
if (groups[i].next < 0)
{
groups[i].next = best_group;
break;
}
2025-06-27 01:02:34 +02:00
// update group sizes; note, the vertex update is a O(1) approximation which avoids recomputing the true size
groups[top.id].size += groups[best_group].size;
groups[top.id].vertices += groups[best_group].vertices;
groups[top.id].vertices = (groups[top.id].vertices > shared) ? groups[top.id].vertices - shared : 1;
groups[best_group].size = 0;
groups[best_group].vertices = 0;
2025-06-27 01:02:34 +02:00
// merge bounding spheres if bounds are available
if (cluster_bounds)
{
mergeBounds(&cluster_bounds[top.id * 4], &cluster_bounds[best_group * 4]);
memset(&cluster_bounds[best_group * 4], 0, 4 * sizeof(float));
}
// re-associate all clusters back to the merged group
for (int i = top.id; i >= 0; i = groups[i].next)
groups[i].group = int(top.id);
top.order = groups[top.id].vertices;
heapPush(order, pending++, top);
}
size_t next_group = 0;
for (size_t i = 0; i < cluster_count; ++i)
{
if (groups[i].size == 0)
continue;
for (int j = int(i); j >= 0; j = groups[j].next)
destination[j] = unsigned(next_group);
next_group++;
}
assert(next_group <= cluster_count);
return next_group;
}