mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
	
	
		
			394 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			394 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|   | /* -----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | 	Copyright (c) 2006 Simon Brown                          si@sjbrown.co.uk | ||
|  | 	Copyright (c) 2007 Ignacio Castano                   icastano@nvidia.com | ||
|  | 
 | ||
|  | 	Permission is hereby granted, free of charge, to any person obtaining | ||
|  | 	a copy of this software and associated documentation files (the  | ||
|  | 	"Software"), to	deal in the Software without restriction, including | ||
|  | 	without limitation the rights to use, copy, modify, merge, publish, | ||
|  | 	distribute, sublicense, and/or sell copies of the Software, and to  | ||
|  | 	permit persons to whom the Software is furnished to do so, subject to  | ||
|  | 	the following conditions: | ||
|  | 
 | ||
|  | 	The above copyright notice and this permission notice shall be included | ||
|  | 	in all copies or substantial portions of the Software. | ||
|  | 
 | ||
|  | 	THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | ||
|  | 	OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF  | ||
|  | 	MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | ||
|  | 	IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  | ||
|  | 	CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  | ||
|  | 	TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE  | ||
|  | 	SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
|  | 	 | ||
|  |    -------------------------------------------------------------------------- */ | ||
|  |     | ||
|  | #include "clusterfit.h"
 | ||
|  | #include "colourset.h"
 | ||
|  | #include "colourblock.h"
 | ||
|  | #include <cfloat>
 | ||
|  | 
 | ||
|  | namespace squish { | ||
|  | 
 | ||
|  | ClusterFit::ClusterFit( ColourSet const* colours, int flags )  | ||
|  |   : ColourFit( colours, flags ) | ||
|  | { | ||
|  | 	// set the iteration count
 | ||
|  | 	m_iterationCount = ( m_flags & kColourIterativeClusterFit ) ? kMaxIterations : 1; | ||
|  | 
 | ||
|  | 	// initialise the best error
 | ||
|  | 	m_besterror = VEC4_CONST( FLT_MAX ); | ||
|  | 
 | ||
|  | 	// initialise the metric
 | ||
|  | 	bool perceptual = ( ( m_flags & kColourMetricPerceptual ) != 0 ); | ||
|  | 	if( perceptual ) | ||
|  | 		m_metric = Vec4( 0.2126f, 0.7152f, 0.0722f, 0.0f ); | ||
|  | 	else | ||
|  | 		m_metric = VEC4_CONST( 1.0f );	 | ||
|  | 
 | ||
|  | 	// cache some values
 | ||
|  | 	int const count = m_colours->GetCount(); | ||
|  | 	Vec3 const* values = m_colours->GetPoints(); | ||
|  | 
 | ||
|  | 	// get the covariance matrix
 | ||
|  | 	Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights() ); | ||
|  | 	 | ||
|  | 	// compute the principle component
 | ||
|  | 	m_principle = ComputePrincipleComponent( covariance ); | ||
|  | } | ||
|  | 
 | ||
|  | bool ClusterFit::ConstructOrdering( Vec3 const& axis, int iteration ) | ||
|  | { | ||
|  | 	// cache some values
 | ||
|  | 	int const count = m_colours->GetCount(); | ||
|  | 	Vec3 const* values = m_colours->GetPoints(); | ||
|  | 
 | ||
|  | 	// build the list of dot products
 | ||
|  | 	float dps[16]; | ||
|  | 	u8* order = ( u8* )m_order + 16*iteration; | ||
|  | 	for( int i = 0; i < count; ++i ) | ||
|  | 	{ | ||
|  | 		dps[i] = Dot( values[i], axis ); | ||
|  | 		order[i] = ( u8 )i; | ||
|  | 	} | ||
|  | 		 | ||
|  | 	// stable sort using them
 | ||
|  | 	for( int i = 0; i < count; ++i ) | ||
|  | 	{ | ||
|  | 		for( int j = i; j > 0 && dps[j] < dps[j - 1]; --j ) | ||
|  | 		{ | ||
|  | 			std::swap( dps[j], dps[j - 1] ); | ||
|  | 			std::swap( order[j], order[j - 1] ); | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// check this ordering is unique
 | ||
|  | 	for( int it = 0; it < iteration; ++it ) | ||
|  | 	{ | ||
|  | 		u8 const* prev = ( u8* )m_order + 16*it; | ||
|  | 		bool same = true; | ||
|  | 		for( int i = 0; i < count; ++i ) | ||
|  | 		{ | ||
|  | 			if( order[i] != prev[i] ) | ||
|  | 			{ | ||
|  | 				same = false; | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		if( same ) | ||
|  | 			return false; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// copy the ordering and weight all the points
 | ||
|  | 	Vec3 const* unweighted = m_colours->GetPoints(); | ||
|  | 	float const* weights = m_colours->GetWeights(); | ||
|  | 	m_xsum_wsum = VEC4_CONST( 0.0f ); | ||
|  | 	for( int i = 0; i < count; ++i ) | ||
|  | 	{ | ||
|  | 		int j = order[i]; | ||
|  | 		Vec4 p( unweighted[j].X(), unweighted[j].Y(), unweighted[j].Z(), 1.0f ); | ||
|  | 		Vec4 w( weights[j] ); | ||
|  | 		Vec4 x = p*w; | ||
|  | 		m_points_weights[i] = x; | ||
|  | 		m_xsum_wsum += x; | ||
|  | 	} | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | void ClusterFit::Compress3( void* block ) | ||
|  | { | ||
|  | 	// declare variables
 | ||
|  | 	int const count = m_colours->GetCount(); | ||
|  | 	Vec4 const two = VEC4_CONST( 2.0 ); | ||
|  | 	Vec4 const one = VEC4_CONST( 1.0f ); | ||
|  | 	Vec4 const half_half2( 0.5f, 0.5f, 0.5f, 0.25f ); | ||
|  | 	Vec4 const zero = VEC4_CONST( 0.0f ); | ||
|  | 	Vec4 const half = VEC4_CONST( 0.5f ); | ||
|  | 	Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); | ||
|  | 	Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); | ||
|  | 
 | ||
|  | 	// prepare an ordering using the principle axis
 | ||
|  | 	ConstructOrdering( m_principle, 0 ); | ||
|  | 	 | ||
|  | 	// check all possible clusters and iterate on the total order
 | ||
|  | 	Vec4 beststart = VEC4_CONST( 0.0f ); | ||
|  | 	Vec4 bestend = VEC4_CONST( 0.0f ); | ||
|  | 	Vec4 besterror = m_besterror; | ||
|  | 	u8 bestindices[16]; | ||
|  | 	int bestiteration = 0; | ||
|  | 	int besti = 0, bestj = 0; | ||
|  | 	 | ||
|  | 	// loop over iterations (we avoid the case that all points in first or last cluster)
 | ||
|  | 	for( int iterationIndex = 0;; ) | ||
|  | 	{ | ||
|  | 		// first cluster [0,i) is at the start
 | ||
|  | 		Vec4 part0 = VEC4_CONST( 0.0f ); | ||
|  | 		for( int i = 0; i < count; ++i ) | ||
|  | 		{ | ||
|  | 			// second cluster [i,j) is half along
 | ||
|  | 			Vec4 part1 = ( i == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); | ||
|  | 			int jmin = ( i == 0 ) ? 1 : i; | ||
|  | 			for( int j = jmin;; ) | ||
|  | 			{ | ||
|  | 				// last cluster [j,count) is at the end
 | ||
|  | 				Vec4 part2 = m_xsum_wsum - part1 - part0; | ||
|  | 				 | ||
|  | 				// compute least squares terms directly
 | ||
|  | 				Vec4 alphax_sum = MultiplyAdd( part1, half_half2, part0 ); | ||
|  | 				Vec4 alpha2_sum = alphax_sum.SplatW(); | ||
|  | 
 | ||
|  | 				Vec4 betax_sum = MultiplyAdd( part1, half_half2, part2 ); | ||
|  | 				Vec4 beta2_sum = betax_sum.SplatW(); | ||
|  | 
 | ||
|  | 				Vec4 alphabeta_sum = ( part1*half_half2 ).SplatW(); | ||
|  | 
 | ||
|  | 				// compute the least-squares optimal points
 | ||
|  | 				Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); | ||
|  | 				Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; | ||
|  | 				Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; | ||
|  | 
 | ||
|  | 				// clamp to the grid
 | ||
|  | 				a = Min( one, Max( zero, a ) ); | ||
|  | 				b = Min( one, Max( zero, b ) ); | ||
|  | 				a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; | ||
|  | 				b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; | ||
|  | 				 | ||
|  | 				// compute the error (we skip the constant xxsum)
 | ||
|  | 				Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); | ||
|  | 				Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); | ||
|  | 				Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); | ||
|  | 				Vec4 e4 = MultiplyAdd( two, e3, e1 ); | ||
|  | 
 | ||
|  | 				// apply the metric to the error term
 | ||
|  | 				Vec4 e5 = e4*m_metric; | ||
|  | 				Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); | ||
|  | 				 | ||
|  | 				// keep the solution if it wins
 | ||
|  | 				if( CompareAnyLessThan( error, besterror ) ) | ||
|  | 				{ | ||
|  | 					beststart = a; | ||
|  | 					bestend = b; | ||
|  | 					besti = i; | ||
|  | 					bestj = j; | ||
|  | 					besterror = error; | ||
|  | 					bestiteration = iterationIndex; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				// advance
 | ||
|  | 				if( j == count ) | ||
|  | 					break; | ||
|  | 				part1 += m_points_weights[j]; | ||
|  | 				++j; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			// advance
 | ||
|  | 			part0 += m_points_weights[i]; | ||
|  | 		} | ||
|  | 		 | ||
|  | 		// stop if we didn't improve in this iteration
 | ||
|  | 		if( bestiteration != iterationIndex ) | ||
|  | 			break; | ||
|  | 			 | ||
|  | 		// advance if possible
 | ||
|  | 		++iterationIndex; | ||
|  | 		if( iterationIndex == m_iterationCount ) | ||
|  | 			break; | ||
|  | 			 | ||
|  | 		// stop if a new iteration is an ordering that has already been tried
 | ||
|  | 		Vec3 axis = ( bestend - beststart ).GetVec3(); | ||
|  | 		if( !ConstructOrdering( axis, iterationIndex ) ) | ||
|  | 			break; | ||
|  | 	} | ||
|  | 		 | ||
|  | 	// save the block if necessary
 | ||
|  | 	if( CompareAnyLessThan( besterror, m_besterror ) ) | ||
|  | 	{ | ||
|  | 		// remap the indices
 | ||
|  | 		u8 const* order = ( u8* )m_order + 16*bestiteration; | ||
|  | 
 | ||
|  | 		u8 unordered[16]; | ||
|  | 		for( int m = 0; m < besti; ++m ) | ||
|  | 			unordered[order[m]] = 0; | ||
|  | 		for( int m = besti; m < bestj; ++m ) | ||
|  | 			unordered[order[m]] = 2; | ||
|  | 		for( int m = bestj; m < count; ++m ) | ||
|  | 			unordered[order[m]] = 1; | ||
|  | 
 | ||
|  | 		m_colours->RemapIndices( unordered, bestindices ); | ||
|  | 		 | ||
|  | 		// save the block
 | ||
|  | 		WriteColourBlock3( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); | ||
|  | 
 | ||
|  | 		// save the error
 | ||
|  | 		m_besterror = besterror; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void ClusterFit::Compress4( void* block ) | ||
|  | { | ||
|  | 	// declare variables
 | ||
|  | 	int const count = m_colours->GetCount(); | ||
|  | 	Vec4 const two = VEC4_CONST( 2.0f ); | ||
|  | 	Vec4 const one = VEC4_CONST( 1.0f ); | ||
|  | 	Vec4 const onethird_onethird2( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f ); | ||
|  | 	Vec4 const twothirds_twothirds2( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f ); | ||
|  | 	Vec4 const twonineths = VEC4_CONST( 2.0f/9.0f ); | ||
|  | 	Vec4 const zero = VEC4_CONST( 0.0f ); | ||
|  | 	Vec4 const half = VEC4_CONST( 0.5f ); | ||
|  | 	Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f ); | ||
|  | 	Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); | ||
|  | 
 | ||
|  | 	// prepare an ordering using the principle axis
 | ||
|  | 	ConstructOrdering( m_principle, 0 ); | ||
|  | 	 | ||
|  | 	// check all possible clusters and iterate on the total order
 | ||
|  | 	Vec4 beststart = VEC4_CONST( 0.0f ); | ||
|  | 	Vec4 bestend = VEC4_CONST( 0.0f ); | ||
|  | 	Vec4 besterror = m_besterror; | ||
|  | 	u8 bestindices[16]; | ||
|  | 	int bestiteration = 0; | ||
|  | 	int besti = 0, bestj = 0, bestk = 0; | ||
|  | 	 | ||
|  | 	// loop over iterations (we avoid the case that all points in first or last cluster)
 | ||
|  | 	for( int iterationIndex = 0;; ) | ||
|  | 	{ | ||
|  | 		// first cluster [0,i) is at the start
 | ||
|  | 		Vec4 part0 = VEC4_CONST( 0.0f ); | ||
|  | 		for( int i = 0; i < count; ++i ) | ||
|  | 		{ | ||
|  | 			// second cluster [i,j) is one third along
 | ||
|  | 			Vec4 part1 = VEC4_CONST( 0.0f ); | ||
|  | 			for( int j = i;; ) | ||
|  | 			{ | ||
|  | 				// third cluster [j,k) is two thirds along
 | ||
|  | 				Vec4 part2 = ( j == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f ); | ||
|  | 				int kmin = ( j == 0 ) ? 1 : j; | ||
|  | 				for( int k = kmin;; ) | ||
|  | 				{ | ||
|  | 					// last cluster [k,count) is at the end
 | ||
|  | 					Vec4 part3 = m_xsum_wsum - part2 - part1 - part0; | ||
|  | 
 | ||
|  | 					// compute least squares terms directly
 | ||
|  | 					Vec4 const alphax_sum = MultiplyAdd( part2, onethird_onethird2, MultiplyAdd( part1, twothirds_twothirds2, part0 ) ); | ||
|  | 					Vec4 const alpha2_sum = alphax_sum.SplatW(); | ||
|  | 					 | ||
|  | 					Vec4 const betax_sum = MultiplyAdd( part1, onethird_onethird2, MultiplyAdd( part2, twothirds_twothirds2, part3 ) ); | ||
|  | 					Vec4 const beta2_sum = betax_sum.SplatW(); | ||
|  | 					 | ||
|  | 					Vec4 const alphabeta_sum = twonineths*( part1 + part2 ).SplatW(); | ||
|  | 
 | ||
|  | 					// compute the least-squares optimal points
 | ||
|  | 					Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) ); | ||
|  | 					Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor; | ||
|  | 					Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor; | ||
|  | 
 | ||
|  | 					// clamp to the grid
 | ||
|  | 					a = Min( one, Max( zero, a ) ); | ||
|  | 					b = Min( one, Max( zero, b ) ); | ||
|  | 					a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp; | ||
|  | 					b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp; | ||
|  | 					 | ||
|  | 					// compute the error (we skip the constant xxsum)
 | ||
|  | 					Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); | ||
|  | 					Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); | ||
|  | 					Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 ); | ||
|  | 					Vec4 e4 = MultiplyAdd( two, e3, e1 ); | ||
|  | 
 | ||
|  | 					// apply the metric to the error term
 | ||
|  | 					Vec4 e5 = e4*m_metric; | ||
|  | 					Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ(); | ||
|  | 
 | ||
|  | 					// keep the solution if it wins
 | ||
|  | 					if( CompareAnyLessThan( error, besterror ) ) | ||
|  | 					{ | ||
|  | 						beststart = a; | ||
|  | 						bestend = b; | ||
|  | 						besterror = error; | ||
|  | 						besti = i; | ||
|  | 						bestj = j; | ||
|  | 						bestk = k; | ||
|  | 						bestiteration = iterationIndex; | ||
|  | 					} | ||
|  | 
 | ||
|  | 					// advance
 | ||
|  | 					if( k == count ) | ||
|  | 						break; | ||
|  | 					part2 += m_points_weights[k]; | ||
|  | 					++k; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				// advance
 | ||
|  | 				if( j == count ) | ||
|  | 					break; | ||
|  | 				part1 += m_points_weights[j]; | ||
|  | 				++j; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			// advance
 | ||
|  | 			part0 += m_points_weights[i]; | ||
|  | 		} | ||
|  | 		 | ||
|  | 		// stop if we didn't improve in this iteration
 | ||
|  | 		if( bestiteration != iterationIndex ) | ||
|  | 			break; | ||
|  | 			 | ||
|  | 		// advance if possible
 | ||
|  | 		++iterationIndex; | ||
|  | 		if( iterationIndex == m_iterationCount ) | ||
|  | 			break; | ||
|  | 			 | ||
|  | 		// stop if a new iteration is an ordering that has already been tried
 | ||
|  | 		Vec3 axis = ( bestend - beststart ).GetVec3(); | ||
|  | 		if( !ConstructOrdering( axis, iterationIndex ) ) | ||
|  | 			break; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// save the block if necessary
 | ||
|  | 	if( CompareAnyLessThan( besterror, m_besterror ) ) | ||
|  | 	{ | ||
|  | 		// remap the indices
 | ||
|  | 		u8 const* order = ( u8* )m_order + 16*bestiteration; | ||
|  | 
 | ||
|  | 		u8 unordered[16]; | ||
|  | 		for( int m = 0; m < besti; ++m ) | ||
|  | 			unordered[order[m]] = 0; | ||
|  | 		for( int m = besti; m < bestj; ++m ) | ||
|  | 			unordered[order[m]] = 2; | ||
|  | 		for( int m = bestj; m < bestk; ++m ) | ||
|  | 			unordered[order[m]] = 3; | ||
|  | 		for( int m = bestk; m < count; ++m ) | ||
|  | 			unordered[order[m]] = 1; | ||
|  | 
 | ||
|  | 		m_colours->RemapIndices( unordered, bestindices ); | ||
|  | 		 | ||
|  | 		// save the block
 | ||
|  | 		WriteColourBlock4( beststart.GetVec3(), bestend.GetVec3(), bestindices, block ); | ||
|  | 
 | ||
|  | 		// save the error
 | ||
|  | 		m_besterror = besterror; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace squish
 |