| 
									
										
										
										
											2020-05-14 13:20:05 +02:00
										 |  |  | /*************************************************************************/ | 
					
						
							|  |  |  | /*  delaunay_3d.h                                                        */ | 
					
						
							|  |  |  | /*************************************************************************/ | 
					
						
							|  |  |  | /*                       This file is part of:                           */ | 
					
						
							|  |  |  | /*                           GODOT ENGINE                                */ | 
					
						
							|  |  |  | /*                      https://godotengine.org                          */ | 
					
						
							|  |  |  | /*************************************************************************/ | 
					
						
							| 
									
										
										
										
											2021-01-01 20:13:46 +01:00
										 |  |  | /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */ | 
					
						
							|  |  |  | /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */ | 
					
						
							| 
									
										
										
										
											2020-05-14 13:20:05 +02:00
										 |  |  | /*                                                                       */ | 
					
						
							|  |  |  | /* Permission is hereby granted, free of charge, to any person obtaining */ | 
					
						
							|  |  |  | /* a copy of this software and associated documentation files (the       */ | 
					
						
							|  |  |  | /* "Software"), to deal in the Software without restriction, including   */ | 
					
						
							|  |  |  | /* without limitation the rights to use, copy, modify, merge, publish,   */ | 
					
						
							|  |  |  | /* distribute, sublicense, and/or sell copies of the Software, and to    */ | 
					
						
							|  |  |  | /* permit persons to whom the Software is furnished to do so, subject to */ | 
					
						
							|  |  |  | /* the following conditions:                                             */ | 
					
						
							|  |  |  | /*                                                                       */ | 
					
						
							|  |  |  | /* The above copyright notice and this permission notice shall be        */ | 
					
						
							|  |  |  | /* included in all copies or substantial portions of the Software.       */ | 
					
						
							|  |  |  | /*                                                                       */ | 
					
						
							|  |  |  | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */ | 
					
						
							|  |  |  | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */ | 
					
						
							|  |  |  | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ | 
					
						
							|  |  |  | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */ | 
					
						
							|  |  |  | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */ | 
					
						
							|  |  |  | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */ | 
					
						
							|  |  |  | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */ | 
					
						
							|  |  |  | /*************************************************************************/ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-01 09:34:23 -03:00
										 |  |  | #ifndef DELAUNAY_3D_H
 | 
					
						
							|  |  |  | #define DELAUNAY_3D_H
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "core/math/aabb.h"
 | 
					
						
							|  |  |  | #include "core/math/camera_matrix.h"
 | 
					
						
							|  |  |  | #include "core/math/vector3.h"
 | 
					
						
							|  |  |  | #include "core/os/file_access.h"
 | 
					
						
							| 
									
										
										
										
											2020-11-07 19:33:38 -03:00
										 |  |  | #include "core/string/print_string.h"
 | 
					
						
							|  |  |  | #include "core/templates/local_vector.h"
 | 
					
						
							|  |  |  | #include "core/templates/oa_hash_map.h"
 | 
					
						
							|  |  |  | #include "core/templates/vector.h"
 | 
					
						
							|  |  |  | #include "core/variant/variant.h"
 | 
					
						
							| 
									
										
										
										
											2020-05-11 14:36:46 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  | #include "thirdparty/misc/r128.h"
 | 
					
						
							| 
									
										
										
										
											2020-05-01 09:34:23 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | class Delaunay3D { | 
					
						
							|  |  |  | 	struct Simplex; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	enum { | 
					
						
							|  |  |  | 		ACCEL_GRID_SIZE = 16 | 
					
						
							|  |  |  | 	}; | 
					
						
							|  |  |  | 	struct GridPos { | 
					
						
							|  |  |  | 		Vector3i pos; | 
					
						
							|  |  |  | 		List<Simplex *>::Element *E = nullptr; | 
					
						
							|  |  |  | 	}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	struct Simplex { | 
					
						
							|  |  |  | 		uint32_t points[4]; | 
					
						
							|  |  |  | 		R128 circum_center_x; | 
					
						
							|  |  |  | 		R128 circum_center_y; | 
					
						
							|  |  |  | 		R128 circum_center_z; | 
					
						
							|  |  |  | 		R128 circum_r2; | 
					
						
							|  |  |  | 		LocalVector<GridPos> grid_positions; | 
					
						
							|  |  |  | 		List<Simplex *>::Element *SE = nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		_FORCE_INLINE_ Simplex() {} | 
					
						
							|  |  |  | 		_FORCE_INLINE_ Simplex(uint32_t p_a, uint32_t p_b, uint32_t p_c, uint32_t p_d) { | 
					
						
							|  |  |  | 			points[0] = p_a; | 
					
						
							|  |  |  | 			points[1] = p_b; | 
					
						
							|  |  |  | 			points[2] = p_c; | 
					
						
							|  |  |  | 			points[3] = p_d; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	struct Triangle { | 
					
						
							|  |  |  | 		uint32_t triangle[3]; | 
					
						
							| 
									
										
										
										
											2020-05-12 17:01:17 +02:00
										 |  |  | 		bool bad = false; | 
					
						
							| 
									
										
										
										
											2020-05-01 09:34:23 -03:00
										 |  |  | 		_FORCE_INLINE_ bool operator==(const Triangle &p_triangle) const { | 
					
						
							|  |  |  | 			return triangle[0] == p_triangle.triangle[0] && triangle[1] == p_triangle.triangle[1] && triangle[2] == p_triangle.triangle[2]; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-05-12 17:01:17 +02:00
										 |  |  | 		_FORCE_INLINE_ Triangle() {} | 
					
						
							| 
									
										
										
										
											2020-05-01 09:34:23 -03:00
										 |  |  | 		_FORCE_INLINE_ Triangle(uint32_t p_a, uint32_t p_b, uint32_t p_c) { | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			if (p_a > p_b) { | 
					
						
							| 
									
										
										
										
											2020-05-01 09:34:23 -03:00
										 |  |  | 				SWAP(p_a, p_b); | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			} | 
					
						
							|  |  |  | 			if (p_b > p_c) { | 
					
						
							| 
									
										
										
										
											2020-05-01 09:34:23 -03:00
										 |  |  | 				SWAP(p_b, p_c); | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			} | 
					
						
							|  |  |  | 			if (p_a > p_b) { | 
					
						
							| 
									
										
										
										
											2020-05-01 09:34:23 -03:00
										 |  |  | 				SWAP(p_a, p_b); | 
					
						
							| 
									
										
										
										
											2020-05-14 16:41:43 +02:00
										 |  |  | 			} | 
					
						
							| 
									
										
										
										
											2020-05-01 09:34:23 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			triangle[0] = p_a; | 
					
						
							|  |  |  | 			triangle[1] = p_b; | 
					
						
							|  |  |  | 			triangle[2] = p_c; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	struct TriangleHasher { | 
					
						
							|  |  |  | 		_FORCE_INLINE_ static uint32_t hash(const Triangle &p_triangle) { | 
					
						
							|  |  |  | 			uint32_t h = hash_djb2_one_32(p_triangle.triangle[0]); | 
					
						
							|  |  |  | 			h = hash_djb2_one_32(p_triangle.triangle[1], h); | 
					
						
							|  |  |  | 			return hash_djb2_one_32(p_triangle.triangle[2], h); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	_FORCE_INLINE_ static void circum_sphere_compute(const Vector3 *p_points, Simplex *p_simplex) { | 
					
						
							|  |  |  | 		// the only part in the algorithm where there may be precision errors is this one, so ensure that
 | 
					
						
							|  |  |  | 		// we do it as maximum precision as possible
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		R128 v0_x = p_points[p_simplex->points[0]].x; | 
					
						
							|  |  |  | 		R128 v0_y = p_points[p_simplex->points[0]].y; | 
					
						
							|  |  |  | 		R128 v0_z = p_points[p_simplex->points[0]].z; | 
					
						
							|  |  |  | 		R128 v1_x = p_points[p_simplex->points[1]].x; | 
					
						
							|  |  |  | 		R128 v1_y = p_points[p_simplex->points[1]].y; | 
					
						
							|  |  |  | 		R128 v1_z = p_points[p_simplex->points[1]].z; | 
					
						
							|  |  |  | 		R128 v2_x = p_points[p_simplex->points[2]].x; | 
					
						
							|  |  |  | 		R128 v2_y = p_points[p_simplex->points[2]].y; | 
					
						
							|  |  |  | 		R128 v2_z = p_points[p_simplex->points[2]].z; | 
					
						
							|  |  |  | 		R128 v3_x = p_points[p_simplex->points[3]].x; | 
					
						
							|  |  |  | 		R128 v3_y = p_points[p_simplex->points[3]].y; | 
					
						
							|  |  |  | 		R128 v3_z = p_points[p_simplex->points[3]].z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		//Create the rows of our "unrolled" 3x3 matrix
 | 
					
						
							|  |  |  | 		R128 row1_x = v1_x - v0_x; | 
					
						
							|  |  |  | 		R128 row1_y = v1_y - v0_y; | 
					
						
							|  |  |  | 		R128 row1_z = v1_z - v0_z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		R128 row2_x = v2_x - v0_x; | 
					
						
							|  |  |  | 		R128 row2_y = v2_y - v0_y; | 
					
						
							|  |  |  | 		R128 row2_z = v2_z - v0_z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		R128 row3_x = v3_x - v0_x; | 
					
						
							|  |  |  | 		R128 row3_y = v3_y - v0_y; | 
					
						
							|  |  |  | 		R128 row3_z = v3_z - v0_z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		R128 sq_lenght1 = row1_x * row1_x + row1_y * row1_y + row1_z * row1_z; | 
					
						
							|  |  |  | 		R128 sq_lenght2 = row2_x * row2_x + row2_y * row2_y + row2_z * row2_z; | 
					
						
							|  |  |  | 		R128 sq_lenght3 = row3_x * row3_x + row3_y * row3_y + row3_z * row3_z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		//Compute the determinant of said matrix
 | 
					
						
							|  |  |  | 		R128 determinant = row1_x * (row2_y * row3_z - row3_y * row2_z) - row2_x * (row1_y * row3_z - row3_y * row1_z) + row3_x * (row1_y * row2_z - row2_y * row1_z); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// Compute the volume of the tetrahedron, and precompute a scalar quantity for re-use in the formula
 | 
					
						
							|  |  |  | 		R128 volume = determinant / R128(6.f); | 
					
						
							|  |  |  | 		R128 i12volume = R128(1.f) / (volume * R128(12.f)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		R128 center_x = v0_x + i12volume * ((row2_y * row3_z - row3_y * row2_z) * sq_lenght1 - (row1_y * row3_z - row3_y * row1_z) * sq_lenght2 + (row1_y * row2_z - row2_y * row1_z) * sq_lenght3); | 
					
						
							|  |  |  | 		R128 center_y = v0_y + i12volume * (-(row2_x * row3_z - row3_x * row2_z) * sq_lenght1 + (row1_x * row3_z - row3_x * row1_z) * sq_lenght2 - (row1_x * row2_z - row2_x * row1_z) * sq_lenght3); | 
					
						
							|  |  |  | 		R128 center_z = v0_z + i12volume * ((row2_x * row3_y - row3_x * row2_y) * sq_lenght1 - (row1_x * row3_y - row3_x * row1_y) * sq_lenght2 + (row1_x * row2_y - row2_x * row1_y) * sq_lenght3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		//Once we know the center, the radius is clearly the distance to any vertex
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		R128 rel1_x = center_x - v0_x; | 
					
						
							|  |  |  | 		R128 rel1_y = center_y - v0_y; | 
					
						
							|  |  |  | 		R128 rel1_z = center_z - v0_z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		R128 radius1 = rel1_x * rel1_x + rel1_y * rel1_y + rel1_z * rel1_z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		p_simplex->circum_center_x = center_x; | 
					
						
							|  |  |  | 		p_simplex->circum_center_y = center_y; | 
					
						
							|  |  |  | 		p_simplex->circum_center_z = center_z; | 
					
						
							|  |  |  | 		p_simplex->circum_r2 = radius1; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	_FORCE_INLINE_ static bool simplex_contains(const Vector3 *p_points, const Simplex &p_simplex, uint32_t p_vertex) { | 
					
						
							|  |  |  | 		R128 v_x = p_points[p_vertex].x; | 
					
						
							|  |  |  | 		R128 v_y = p_points[p_vertex].y; | 
					
						
							|  |  |  | 		R128 v_z = p_points[p_vertex].z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		R128 rel2_x = p_simplex.circum_center_x - v_x; | 
					
						
							|  |  |  | 		R128 rel2_y = p_simplex.circum_center_y - v_y; | 
					
						
							|  |  |  | 		R128 rel2_z = p_simplex.circum_center_z - v_z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		R128 radius2 = rel2_x * rel2_x + rel2_y * rel2_y + rel2_z * rel2_z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return radius2 < (p_simplex.circum_r2 - R128(0.00001)); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	static bool simplex_is_coplanar(const Vector3 *p_points, const Simplex &p_simplex) { | 
					
						
							|  |  |  | 		Plane p(p_points[p_simplex.points[0]], p_points[p_simplex.points[1]], p_points[p_simplex.points[2]]); | 
					
						
							|  |  |  | 		if (ABS(p.distance_to(p_points[p_simplex.points[3]])) < CMP_EPSILON) { | 
					
						
							|  |  |  | 			return true; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		CameraMatrix cm; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		cm.matrix[0][0] = p_points[p_simplex.points[0]].x; | 
					
						
							|  |  |  | 		cm.matrix[0][1] = p_points[p_simplex.points[1]].x; | 
					
						
							|  |  |  | 		cm.matrix[0][2] = p_points[p_simplex.points[2]].x; | 
					
						
							|  |  |  | 		cm.matrix[0][3] = p_points[p_simplex.points[3]].x; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		cm.matrix[1][0] = p_points[p_simplex.points[0]].y; | 
					
						
							|  |  |  | 		cm.matrix[1][1] = p_points[p_simplex.points[1]].y; | 
					
						
							|  |  |  | 		cm.matrix[1][2] = p_points[p_simplex.points[2]].y; | 
					
						
							|  |  |  | 		cm.matrix[1][3] = p_points[p_simplex.points[3]].y; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		cm.matrix[2][0] = p_points[p_simplex.points[0]].z; | 
					
						
							|  |  |  | 		cm.matrix[2][1] = p_points[p_simplex.points[1]].z; | 
					
						
							|  |  |  | 		cm.matrix[2][2] = p_points[p_simplex.points[2]].z; | 
					
						
							|  |  |  | 		cm.matrix[2][3] = p_points[p_simplex.points[3]].z; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		cm.matrix[3][0] = 1.0; | 
					
						
							|  |  |  | 		cm.matrix[3][1] = 1.0; | 
					
						
							|  |  |  | 		cm.matrix[3][2] = 1.0; | 
					
						
							|  |  |  | 		cm.matrix[3][3] = 1.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return ABS(cm.determinant()) <= CMP_EPSILON; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  | 	struct OutputSimplex { | 
					
						
							|  |  |  | 		uint32_t points[4]; | 
					
						
							|  |  |  | 	}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	static Vector<OutputSimplex> tetrahedralize(const Vector<Vector3> &p_points) { | 
					
						
							|  |  |  | 		uint32_t point_count = p_points.size(); | 
					
						
							|  |  |  | 		Vector3 *points = (Vector3 *)memalloc(sizeof(Vector3) * (point_count + 4)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			const Vector3 *src_points = p_points.ptr(); | 
					
						
							|  |  |  | 			AABB rect; | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < point_count; i++) { | 
					
						
							|  |  |  | 				Vector3 point = src_points[i]; | 
					
						
							|  |  |  | 				if (i == 0) { | 
					
						
							|  |  |  | 					rect.position = point; | 
					
						
							|  |  |  | 				} else { | 
					
						
							|  |  |  | 					rect.expand_to(point); | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				points[i] = point; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < point_count; i++) { | 
					
						
							|  |  |  | 				points[i] = (points[i] - rect.position) / rect.size; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			float delta_max = Math::sqrt(2.0) * 20.0; | 
					
						
							|  |  |  | 			Vector3 center = Vector3(0.5, 0.5, 0.5); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// any simplex that contains everything is good
 | 
					
						
							|  |  |  | 			points[point_count + 0] = center + Vector3(0, 1, 0) * delta_max; | 
					
						
							|  |  |  | 			points[point_count + 1] = center + Vector3(0, -1, 1) * delta_max; | 
					
						
							|  |  |  | 			points[point_count + 2] = center + Vector3(1, -1, -1) * delta_max; | 
					
						
							|  |  |  | 			points[point_count + 3] = center + Vector3(-1, -1, -1) * delta_max; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		List<Simplex *> acceleration_grid[ACCEL_GRID_SIZE][ACCEL_GRID_SIZE][ACCEL_GRID_SIZE]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		List<Simplex *> simplex_list; | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			//create root simplex
 | 
					
						
							|  |  |  | 			Simplex *root = memnew(Simplex(point_count + 0, point_count + 1, point_count + 2, point_count + 3)); | 
					
						
							|  |  |  | 			root->SE = simplex_list.push_back(root); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < ACCEL_GRID_SIZE; i++) { | 
					
						
							|  |  |  | 				for (uint32_t j = 0; j < ACCEL_GRID_SIZE; j++) { | 
					
						
							|  |  |  | 					for (uint32_t k = 0; k < ACCEL_GRID_SIZE; k++) { | 
					
						
							|  |  |  | 						GridPos gp; | 
					
						
							|  |  |  | 						gp.E = acceleration_grid[i][j][k].push_back(root); | 
					
						
							|  |  |  | 						gp.pos = Vector3i(i, j, k); | 
					
						
							|  |  |  | 						root->grid_positions.push_back(gp); | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			circum_sphere_compute(points, root); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		OAHashMap<Triangle, uint32_t, TriangleHasher> triangles_inserted; | 
					
						
							|  |  |  | 		LocalVector<Triangle> triangles; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < point_count; i++) { | 
					
						
							|  |  |  | 			bool unique = true; | 
					
						
							|  |  |  | 			for (uint32_t j = i + 1; j < point_count; j++) { | 
					
						
							|  |  |  | 				if (points[i].is_equal_approx(points[j])) { | 
					
						
							|  |  |  | 					unique = false; | 
					
						
							|  |  |  | 					break; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			if (!unique) { | 
					
						
							|  |  |  | 				continue; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			Vector3i grid_pos = Vector3i(points[i] * ACCEL_GRID_SIZE); | 
					
						
							|  |  |  | 			grid_pos.x = CLAMP(grid_pos.x, 0, ACCEL_GRID_SIZE - 1); | 
					
						
							|  |  |  | 			grid_pos.y = CLAMP(grid_pos.y, 0, ACCEL_GRID_SIZE - 1); | 
					
						
							|  |  |  | 			grid_pos.z = CLAMP(grid_pos.z, 0, ACCEL_GRID_SIZE - 1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (List<Simplex *>::Element *E = acceleration_grid[grid_pos.x][grid_pos.y][grid_pos.z].front(); E;) { | 
					
						
							|  |  |  | 				List<Simplex *>::Element *N = E->next(); //may be deleted
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				Simplex *simplex = E->get(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				if (simplex_contains(points, *simplex, i)) { | 
					
						
							|  |  |  | 					static const uint32_t triangle_order[4][3] = { | 
					
						
							|  |  |  | 						{ 0, 1, 2 }, | 
					
						
							|  |  |  | 						{ 0, 1, 3 }, | 
					
						
							|  |  |  | 						{ 0, 2, 3 }, | 
					
						
							|  |  |  | 						{ 1, 2, 3 }, | 
					
						
							|  |  |  | 					}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					for (uint32_t k = 0; k < 4; k++) { | 
					
						
							|  |  |  | 						Triangle t = Triangle(simplex->points[triangle_order[k][0]], simplex->points[triangle_order[k][1]], simplex->points[triangle_order[k][2]]); | 
					
						
							|  |  |  | 						uint32_t *p = triangles_inserted.lookup_ptr(t); | 
					
						
							|  |  |  | 						if (p) { | 
					
						
							|  |  |  | 							triangles[*p].bad = true; | 
					
						
							|  |  |  | 						} else { | 
					
						
							|  |  |  | 							triangles_inserted.insert(t, triangles.size()); | 
					
						
							|  |  |  | 							triangles.push_back(t); | 
					
						
							|  |  |  | 						} | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					//remove simplex and continue
 | 
					
						
							|  |  |  | 					simplex_list.erase(simplex->SE); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					for (uint32_t k = 0; k < simplex->grid_positions.size(); k++) { | 
					
						
							|  |  |  | 						Vector3i p = simplex->grid_positions[k].pos; | 
					
						
							|  |  |  | 						acceleration_grid[p.x][p.y][p.z].erase(simplex->grid_positions[k].E); | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 					memdelete(simplex); | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				E = N; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			uint32_t good_triangles = 0; | 
					
						
							|  |  |  | 			for (uint32_t j = 0; j < triangles.size(); j++) { | 
					
						
							|  |  |  | 				if (triangles[j].bad) { | 
					
						
							|  |  |  | 					continue; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				Simplex *new_simplex = memnew(Simplex(triangles[j].triangle[0], triangles[j].triangle[1], triangles[j].triangle[2], i)); | 
					
						
							|  |  |  | 				circum_sphere_compute(points, new_simplex); | 
					
						
							|  |  |  | 				new_simplex->SE = simplex_list.push_back(new_simplex); | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					Vector3 center; | 
					
						
							|  |  |  | 					center.x = double(new_simplex->circum_center_x); | 
					
						
							|  |  |  | 					center.y = double(new_simplex->circum_center_y); | 
					
						
							|  |  |  | 					center.z = double(new_simplex->circum_center_z); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					float radius2 = Math::sqrt(double(new_simplex->circum_r2)); | 
					
						
							|  |  |  | 					radius2 += 0.0001; //
 | 
					
						
							|  |  |  | 					Vector3 extents = Vector3(radius2, radius2, radius2); | 
					
						
							|  |  |  | 					Vector3i from = Vector3i((center - extents) * ACCEL_GRID_SIZE); | 
					
						
							|  |  |  | 					Vector3i to = Vector3i((center + extents) * ACCEL_GRID_SIZE); | 
					
						
							|  |  |  | 					from.x = CLAMP(from.x, 0, ACCEL_GRID_SIZE - 1); | 
					
						
							|  |  |  | 					from.y = CLAMP(from.y, 0, ACCEL_GRID_SIZE - 1); | 
					
						
							|  |  |  | 					from.z = CLAMP(from.z, 0, ACCEL_GRID_SIZE - 1); | 
					
						
							|  |  |  | 					to.x = CLAMP(to.x, 0, ACCEL_GRID_SIZE - 1); | 
					
						
							|  |  |  | 					to.y = CLAMP(to.y, 0, ACCEL_GRID_SIZE - 1); | 
					
						
							|  |  |  | 					to.z = CLAMP(to.z, 0, ACCEL_GRID_SIZE - 1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					for (int32_t x = from.x; x <= to.x; x++) { | 
					
						
							|  |  |  | 						for (int32_t y = from.y; y <= to.y; y++) { | 
					
						
							|  |  |  | 							for (int32_t z = from.z; z <= to.z; z++) { | 
					
						
							|  |  |  | 								GridPos gp; | 
					
						
							|  |  |  | 								gp.pos = Vector3(x, y, z); | 
					
						
							|  |  |  | 								gp.E = acceleration_grid[x][y][z].push_back(new_simplex); | 
					
						
							|  |  |  | 								new_simplex->grid_positions.push_back(gp); | 
					
						
							|  |  |  | 							} | 
					
						
							|  |  |  | 						} | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				good_triangles++; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			//print_line("at point " + itos(i) + "/" + itos(point_count) + " simplices added " + itos(good_triangles) + "/" + itos(simplex_list.size()) + " - triangles: " + itos(triangles.size()));
 | 
					
						
							|  |  |  | 			triangles.clear(); | 
					
						
							|  |  |  | 			triangles_inserted.clear(); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		//print_line("end with simplices: " + itos(simplex_list.size()));
 | 
					
						
							|  |  |  | 		Vector<OutputSimplex> ret_simplices; | 
					
						
							|  |  |  | 		ret_simplices.resize(simplex_list.size()); | 
					
						
							|  |  |  | 		OutputSimplex *ret_simplicesw = ret_simplices.ptrw(); | 
					
						
							|  |  |  | 		uint32_t simplices_written = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (List<Simplex *>::Element *E = simplex_list.front(); E; E = E->next()) { | 
					
						
							|  |  |  | 			Simplex *simplex = E->get(); | 
					
						
							|  |  |  | 			bool invalid = false; | 
					
						
							|  |  |  | 			for (int j = 0; j < 4; j++) { | 
					
						
							|  |  |  | 				if (simplex->points[j] >= point_count) { | 
					
						
							|  |  |  | 					invalid = true; | 
					
						
							|  |  |  | 					break; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			if (invalid || simplex_is_coplanar(points, *simplex)) { | 
					
						
							|  |  |  | 				memdelete(simplex); | 
					
						
							|  |  |  | 				continue; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			ret_simplicesw[simplices_written].points[0] = simplex->points[0]; | 
					
						
							|  |  |  | 			ret_simplicesw[simplices_written].points[1] = simplex->points[1]; | 
					
						
							|  |  |  | 			ret_simplicesw[simplices_written].points[2] = simplex->points[2]; | 
					
						
							|  |  |  | 			ret_simplicesw[simplices_written].points[3] = simplex->points[3]; | 
					
						
							|  |  |  | 			simplices_written++; | 
					
						
							|  |  |  | 			memdelete(simplex); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		ret_simplices.resize(simplices_written); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		memfree(points); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return ret_simplices; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif // DELAUNAY_3D_H
 |