| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | // basisu_enc.cpp
 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | // Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | //
 | 
					
						
							|  |  |  | // Licensed under the Apache License, Version 2.0 (the "License");
 | 
					
						
							|  |  |  | // you may not use this file except in compliance with the License.
 | 
					
						
							|  |  |  | // You may obtain a copy of the License at
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //    http://www.apache.org/licenses/LICENSE-2.0
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // Unless required by applicable law or agreed to in writing, software
 | 
					
						
							|  |  |  | // distributed under the License is distributed on an "AS IS" BASIS,
 | 
					
						
							|  |  |  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
					
						
							|  |  |  | // See the License for the specific language governing permissions and
 | 
					
						
							|  |  |  | // limitations under the License.
 | 
					
						
							|  |  |  | #include "basisu_enc.h"
 | 
					
						
							|  |  |  | #include "basisu_resampler.h"
 | 
					
						
							|  |  |  | #include "basisu_resampler_filters.h"
 | 
					
						
							|  |  |  | #include "basisu_etc.h"
 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | #include "../transcoder/basisu_transcoder.h"
 | 
					
						
							|  |  |  | #include "basisu_bc7enc.h"
 | 
					
						
							|  |  |  | #include "jpgd.h"
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | #include "pvpngreader.h"
 | 
					
						
							|  |  |  | #include "basisu_opencl.h"
 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | #include <vector>
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | #define MINIZ_HEADER_FILE_ONLY
 | 
					
						
							|  |  |  | #define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
 | 
					
						
							|  |  |  | #include "basisu_miniz.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | #if defined(_WIN32)
 | 
					
						
							|  |  |  | // For QueryPerformanceCounter/QueryPerformanceFrequency
 | 
					
						
							|  |  |  | #define WIN32_LEAN_AND_MEAN
 | 
					
						
							|  |  |  | #include <windows.h>
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace basisu | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  | 	uint64_t interval_timer::g_init_ticks, interval_timer::g_freq; | 
					
						
							|  |  |  | 	double interval_timer::g_timer_freq; | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | #if BASISU_SUPPORT_SSE
 | 
					
						
							|  |  |  | 	bool g_cpu_supports_sse41; | 
					
						
							|  |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	uint8_t g_hamming_dist[256] = | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, | 
					
						
							|  |  |  | 		1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, | 
					
						
							|  |  |  | 		1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, | 
					
						
							|  |  |  | 		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | 
					
						
							|  |  |  | 		1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, | 
					
						
							|  |  |  | 		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | 
					
						
							|  |  |  | 		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | 
					
						
							|  |  |  | 		3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, | 
					
						
							|  |  |  | 		1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, | 
					
						
							|  |  |  | 		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | 
					
						
							|  |  |  | 		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | 
					
						
							|  |  |  | 		3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, | 
					
						
							|  |  |  | 		2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, | 
					
						
							|  |  |  | 		3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, | 
					
						
							|  |  |  | 		3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, | 
					
						
							|  |  |  | 		4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 | 
					
						
							|  |  |  | 	}; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 	// This is a Public Domain 8x8 font from here:
 | 
					
						
							|  |  |  | 	// https://github.com/dhepper/font8x8/blob/master/font8x8_basic.h
 | 
					
						
							|  |  |  | 	const uint8_t g_debug_font8x8_basic[127 - 32 + 1][8] =  | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},	// U+0020 ( )
 | 
					
						
							|  |  |  | 	 { 0x18, 0x3C, 0x3C, 0x18, 0x18, 0x00, 0x18, 0x00},   // U+0021 (!)
 | 
					
						
							|  |  |  | 	 { 0x36, 0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},   // U+0022 (")
 | 
					
						
							|  |  |  | 	 { 0x36, 0x36, 0x7F, 0x36, 0x7F, 0x36, 0x36, 0x00},   // U+0023 (#)
 | 
					
						
							|  |  |  | 	 { 0x0C, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x0C, 0x00},   // U+0024 ($)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x63, 0x33, 0x18, 0x0C, 0x66, 0x63, 0x00},   // U+0025 (%)
 | 
					
						
							|  |  |  | 	 { 0x1C, 0x36, 0x1C, 0x6E, 0x3B, 0x33, 0x6E, 0x00},   // U+0026 (&)
 | 
					
						
							|  |  |  | 	 { 0x06, 0x06, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00},   // U+0027 (')
 | 
					
						
							|  |  |  | 	 { 0x18, 0x0C, 0x06, 0x06, 0x06, 0x0C, 0x18, 0x00},   // U+0028 (()
 | 
					
						
							|  |  |  | 	 { 0x06, 0x0C, 0x18, 0x18, 0x18, 0x0C, 0x06, 0x00},   // U+0029 ())
 | 
					
						
							|  |  |  | 	 { 0x00, 0x66, 0x3C, 0xFF, 0x3C, 0x66, 0x00, 0x00},   // U+002A (*)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x0C, 0x0C, 0x3F, 0x0C, 0x0C, 0x00, 0x00},   // U+002B (+)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x06},   // U+002C (,)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00},   // U+002D (-)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x00},   // U+002E (.)
 | 
					
						
							|  |  |  | 	 { 0x60, 0x30, 0x18, 0x0C, 0x06, 0x03, 0x01, 0x00},   // U+002F (/)
 | 
					
						
							|  |  |  | 	 { 0x3E, 0x63, 0x73, 0x7B, 0x6F, 0x67, 0x3E, 0x00},   // U+0030 (0)
 | 
					
						
							|  |  |  | 	 { 0x0C, 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x3F, 0x00},   // U+0031 (1)
 | 
					
						
							|  |  |  | 	 { 0x1E, 0x33, 0x30, 0x1C, 0x06, 0x33, 0x3F, 0x00},   // U+0032 (2)
 | 
					
						
							|  |  |  | 	 { 0x1E, 0x33, 0x30, 0x1C, 0x30, 0x33, 0x1E, 0x00},   // U+0033 (3)
 | 
					
						
							|  |  |  | 	 { 0x38, 0x3C, 0x36, 0x33, 0x7F, 0x30, 0x78, 0x00},   // U+0034 (4)
 | 
					
						
							|  |  |  | 	 { 0x3F, 0x03, 0x1F, 0x30, 0x30, 0x33, 0x1E, 0x00},   // U+0035 (5)
 | 
					
						
							|  |  |  | 	 { 0x1C, 0x06, 0x03, 0x1F, 0x33, 0x33, 0x1E, 0x00},   // U+0036 (6)
 | 
					
						
							|  |  |  | 	 { 0x3F, 0x33, 0x30, 0x18, 0x0C, 0x0C, 0x0C, 0x00},   // U+0037 (7)
 | 
					
						
							|  |  |  | 	 { 0x1E, 0x33, 0x33, 0x1E, 0x33, 0x33, 0x1E, 0x00},   // U+0038 (8)
 | 
					
						
							|  |  |  | 	 { 0x1E, 0x33, 0x33, 0x3E, 0x30, 0x18, 0x0E, 0x00},   // U+0039 (9)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x00},   // U+003A (:)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x06},   // U+003B (;)
 | 
					
						
							|  |  |  | 	 { 0x18, 0x0C, 0x06, 0x03, 0x06, 0x0C, 0x18, 0x00},   // U+003C (<)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x3F, 0x00, 0x00, 0x3F, 0x00, 0x00},   // U+003D (=)
 | 
					
						
							|  |  |  | 	 { 0x06, 0x0C, 0x18, 0x30, 0x18, 0x0C, 0x06, 0x00},   // U+003E (>)
 | 
					
						
							|  |  |  | 	 { 0x1E, 0x33, 0x30, 0x18, 0x0C, 0x00, 0x0C, 0x00},   // U+003F (?)
 | 
					
						
							|  |  |  | 	 { 0x3E, 0x63, 0x7B, 0x7B, 0x7B, 0x03, 0x1E, 0x00},   // U+0040 (@)
 | 
					
						
							|  |  |  | 	 { 0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x00},   // U+0041 (A)
 | 
					
						
							|  |  |  | 	 { 0x3F, 0x66, 0x66, 0x3E, 0x66, 0x66, 0x3F, 0x00},   // U+0042 (B)
 | 
					
						
							|  |  |  | 	 { 0x3C, 0x66, 0x03, 0x03, 0x03, 0x66, 0x3C, 0x00},   // U+0043 (C)
 | 
					
						
							|  |  |  | 	 { 0x1F, 0x36, 0x66, 0x66, 0x66, 0x36, 0x1F, 0x00},   // U+0044 (D)
 | 
					
						
							|  |  |  | 	 { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x46, 0x7F, 0x00},   // U+0045 (E)
 | 
					
						
							|  |  |  | 	 { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x06, 0x0F, 0x00},   // U+0046 (F)
 | 
					
						
							|  |  |  | 	 { 0x3C, 0x66, 0x03, 0x03, 0x73, 0x66, 0x7C, 0x00},   // U+0047 (G)
 | 
					
						
							|  |  |  | 	 { 0x33, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x33, 0x00},   // U+0048 (H)
 | 
					
						
							|  |  |  | 	 { 0x1E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00},   // U+0049 (I)
 | 
					
						
							|  |  |  | 	 { 0x78, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E, 0x00},   // U+004A (J)
 | 
					
						
							|  |  |  | 	 { 0x67, 0x66, 0x36, 0x1E, 0x36, 0x66, 0x67, 0x00},   // U+004B (K)
 | 
					
						
							|  |  |  | 	 { 0x0F, 0x06, 0x06, 0x06, 0x46, 0x66, 0x7F, 0x00},   // U+004C (L)
 | 
					
						
							|  |  |  | 	 { 0x63, 0x77, 0x7F, 0x7F, 0x6B, 0x63, 0x63, 0x00},   // U+004D (M)
 | 
					
						
							|  |  |  | 	 { 0x63, 0x67, 0x6F, 0x7B, 0x73, 0x63, 0x63, 0x00},   // U+004E (N)
 | 
					
						
							|  |  |  | 	 { 0x1C, 0x36, 0x63, 0x63, 0x63, 0x36, 0x1C, 0x00},   // U+004F (O)
 | 
					
						
							|  |  |  | 	 { 0x3F, 0x66, 0x66, 0x3E, 0x06, 0x06, 0x0F, 0x00},   // U+0050 (P)
 | 
					
						
							|  |  |  | 	 { 0x1E, 0x33, 0x33, 0x33, 0x3B, 0x1E, 0x38, 0x00},   // U+0051 (Q)
 | 
					
						
							|  |  |  | 	 { 0x3F, 0x66, 0x66, 0x3E, 0x36, 0x66, 0x67, 0x00},   // U+0052 (R)
 | 
					
						
							|  |  |  | 	 { 0x1E, 0x33, 0x07, 0x0E, 0x38, 0x33, 0x1E, 0x00},   // U+0053 (S)
 | 
					
						
							|  |  |  | 	 { 0x3F, 0x2D, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00},   // U+0054 (T)
 | 
					
						
							|  |  |  | 	 { 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x3F, 0x00},   // U+0055 (U)
 | 
					
						
							|  |  |  | 	 { 0x33, 0x33, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00},   // U+0056 (V)
 | 
					
						
							|  |  |  | 	 { 0x63, 0x63, 0x63, 0x6B, 0x7F, 0x77, 0x63, 0x00},   // U+0057 (W)
 | 
					
						
							|  |  |  | 	 { 0x63, 0x63, 0x36, 0x1C, 0x1C, 0x36, 0x63, 0x00},   // U+0058 (X)
 | 
					
						
							|  |  |  | 	 { 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x0C, 0x1E, 0x00},   // U+0059 (Y)
 | 
					
						
							|  |  |  | 	 { 0x7F, 0x63, 0x31, 0x18, 0x4C, 0x66, 0x7F, 0x00},   // U+005A (Z)
 | 
					
						
							|  |  |  | 	 { 0x1E, 0x06, 0x06, 0x06, 0x06, 0x06, 0x1E, 0x00},   // U+005B ([)
 | 
					
						
							|  |  |  | 	 { 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0x40, 0x00},   // U+005C (\)
 | 
					
						
							|  |  |  | 	 { 0x1E, 0x18, 0x18, 0x18, 0x18, 0x18, 0x1E, 0x00},   // U+005D (])
 | 
					
						
							|  |  |  | 	 { 0x08, 0x1C, 0x36, 0x63, 0x00, 0x00, 0x00, 0x00},   // U+005E (^)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF},   // U+005F (_)
 | 
					
						
							|  |  |  | 	 { 0x0C, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00},   // U+0060 (`)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x1E, 0x30, 0x3E, 0x33, 0x6E, 0x00},   // U+0061 (a)
 | 
					
						
							|  |  |  | 	 { 0x07, 0x06, 0x06, 0x3E, 0x66, 0x66, 0x3B, 0x00},   // U+0062 (b)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x1E, 0x33, 0x03, 0x33, 0x1E, 0x00},   // U+0063 (c)
 | 
					
						
							|  |  |  | 	 { 0x38, 0x30, 0x30, 0x3e, 0x33, 0x33, 0x6E, 0x00},   // U+0064 (d)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x1E, 0x33, 0x3f, 0x03, 0x1E, 0x00},   // U+0065 (e)
 | 
					
						
							|  |  |  | 	 { 0x1C, 0x36, 0x06, 0x0f, 0x06, 0x06, 0x0F, 0x00},   // U+0066 (f)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x1F},   // U+0067 (g)
 | 
					
						
							|  |  |  | 	 { 0x07, 0x06, 0x36, 0x6E, 0x66, 0x66, 0x67, 0x00},   // U+0068 (h)
 | 
					
						
							|  |  |  | 	 { 0x0C, 0x00, 0x0E, 0x0C, 0x0C, 0x0C, 0x1E, 0x00},   // U+0069 (i)
 | 
					
						
							|  |  |  | 	 { 0x30, 0x00, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E},   // U+006A (j)
 | 
					
						
							|  |  |  | 	 { 0x07, 0x06, 0x66, 0x36, 0x1E, 0x36, 0x67, 0x00},   // U+006B (k)
 | 
					
						
							|  |  |  | 	 { 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00},   // U+006C (l)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x33, 0x7F, 0x7F, 0x6B, 0x63, 0x00},   // U+006D (m)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x1F, 0x33, 0x33, 0x33, 0x33, 0x00},   // U+006E (n)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x1E, 0x33, 0x33, 0x33, 0x1E, 0x00},   // U+006F (o)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x3B, 0x66, 0x66, 0x3E, 0x06, 0x0F},   // U+0070 (p)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x78},   // U+0071 (q)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x3B, 0x6E, 0x66, 0x06, 0x0F, 0x00},   // U+0072 (r)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x00},   // U+0073 (s)
 | 
					
						
							|  |  |  | 	 { 0x08, 0x0C, 0x3E, 0x0C, 0x0C, 0x2C, 0x18, 0x00},   // U+0074 (t)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x33, 0x33, 0x33, 0x33, 0x6E, 0x00},   // U+0075 (u)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00},   // U+0076 (v)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x63, 0x6B, 0x7F, 0x7F, 0x36, 0x00},   // U+0077 (w)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x63, 0x36, 0x1C, 0x36, 0x63, 0x00},   // U+0078 (x)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x33, 0x33, 0x33, 0x3E, 0x30, 0x1F},   // U+0079 (y)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x3F, 0x19, 0x0C, 0x26, 0x3F, 0x00},   // U+007A (z)
 | 
					
						
							|  |  |  | 	 { 0x38, 0x0C, 0x0C, 0x07, 0x0C, 0x0C, 0x38, 0x00},   // U+007B ({)
 | 
					
						
							|  |  |  | 	 { 0x18, 0x18, 0x18, 0x00, 0x18, 0x18, 0x18, 0x00},   // U+007C (|)
 | 
					
						
							|  |  |  | 	 { 0x07, 0x0C, 0x0C, 0x38, 0x0C, 0x0C, 0x07, 0x00},   // U+007D (})
 | 
					
						
							|  |  |  | 	 { 0x6E, 0x3B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},   // U+007E (~)
 | 
					
						
							|  |  |  | 	 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}    // U+007F
 | 
					
						
							|  |  |  | 	}; | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	bool g_library_initialized; | 
					
						
							|  |  |  | 	std::mutex g_encoder_init_mutex; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	// Encoder library initialization (just call once at startup)
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 	void basisu_encoder_init(bool use_opencl, bool opencl_force_serialization) | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		std::lock_guard<std::mutex> lock(g_encoder_init_mutex); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (g_library_initialized) | 
					
						
							|  |  |  | 			return; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		detect_sse41(); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 		basist::basisu_transcoder_init(); | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		pack_etc1_solid_color_init(); | 
					
						
							|  |  |  | 		//uastc_init();
 | 
					
						
							|  |  |  | 		bc7enc_compress_block_init(); // must be after uastc_init()
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		// Don't bother initializing the OpenCL module at all if it's been completely disabled.
 | 
					
						
							|  |  |  | 		if (use_opencl) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			opencl_init(opencl_force_serialization); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-12-08 13:49:45 +01:00
										 |  |  | 		interval_timer::init(); // make sure interval_timer globals are initialized from main thread to avoid TSAN reports
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		g_library_initialized = true; | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 	void basisu_encoder_deinit() | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		opencl_deinit(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		g_library_initialized = false; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void error_vprintf(const char* pFmt, va_list args) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		char buf[8192]; | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | #ifdef _WIN32		
 | 
					
						
							|  |  |  | 		vsprintf_s(buf, sizeof(buf), pFmt, args); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 		vsnprintf(buf, sizeof(buf), pFmt, args); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		fprintf(stderr, "ERROR: %s", buf); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 	void error_printf(const char *pFmt, ...) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		va_list args; | 
					
						
							|  |  |  | 		va_start(args, pFmt); | 
					
						
							|  |  |  | 		error_vprintf(pFmt, args); | 
					
						
							|  |  |  | 		va_end(args); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | #if defined(_WIN32)
 | 
					
						
							|  |  |  | 	inline void query_counter(timer_ticks* pTicks) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(pTicks)); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	inline void query_counter_frequency(timer_ticks* pTicks) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks)); | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2022-12-08 13:49:45 +01:00
										 |  |  | #elif defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__EMSCRIPTEN__)
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | #include <sys/time.h>
 | 
					
						
							|  |  |  | 	inline void query_counter(timer_ticks* pTicks) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		struct timeval cur_time; | 
					
						
							|  |  |  | 		gettimeofday(&cur_time, NULL); | 
					
						
							|  |  |  | 		*pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	inline void query_counter_frequency(timer_ticks* pTicks) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		*pTicks = 1000000; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | #elif defined(__GNUC__)
 | 
					
						
							|  |  |  | #include <sys/timex.h>
 | 
					
						
							|  |  |  | 	inline void query_counter(timer_ticks* pTicks) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		struct timeval cur_time; | 
					
						
							|  |  |  | 		gettimeofday(&cur_time, NULL); | 
					
						
							|  |  |  | 		*pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	inline void query_counter_frequency(timer_ticks* pTicks) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		*pTicks = 1000000; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | #error TODO
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 				 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		if (!g_timer_freq) | 
					
						
							|  |  |  | 			init(); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void interval_timer::start() | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		query_counter(&m_start_time); | 
					
						
							|  |  |  | 		m_started = true; | 
					
						
							|  |  |  | 		m_stopped = false; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void interval_timer::stop() | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		assert(m_started); | 
					
						
							|  |  |  | 		query_counter(&m_stop_time); | 
					
						
							|  |  |  | 		m_stopped = true; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	double interval_timer::get_elapsed_secs() const | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		assert(m_started); | 
					
						
							|  |  |  | 		if (!m_started) | 
					
						
							|  |  |  | 			return 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		timer_ticks stop_time = m_stop_time; | 
					
						
							|  |  |  | 		if (!m_stopped) | 
					
						
							|  |  |  | 			query_counter(&stop_time); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		timer_ticks delta = stop_time - m_start_time; | 
					
						
							|  |  |  | 		return delta * g_timer_freq; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 	void interval_timer::init() | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		if (!g_timer_freq) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			query_counter_frequency(&g_freq); | 
					
						
							|  |  |  | 			g_timer_freq = 1.0f / g_freq; | 
					
						
							|  |  |  | 			query_counter(&g_init_ticks); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	timer_ticks interval_timer::get_ticks() | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		if (!g_timer_freq) | 
					
						
							|  |  |  | 			init(); | 
					
						
							|  |  |  | 		timer_ticks ticks; | 
					
						
							|  |  |  | 		query_counter(&ticks); | 
					
						
							|  |  |  | 		return ticks - g_init_ticks; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	double interval_timer::ticks_to_secs(timer_ticks ticks) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		if (!g_timer_freq) | 
					
						
							|  |  |  | 			init(); | 
					
						
							|  |  |  | 		return ticks * g_timer_freq; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 		 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 	const uint32_t MAX_32BIT_ALLOC_SIZE = 250000000; | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 	bool load_tga(const char* pFilename, image& img) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		int w = 0, h = 0, n_chans = 0; | 
					
						
							|  |  |  | 		uint8_t* pImage_data = read_tga(pFilename, w, h, n_chans); | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 				 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		if ((!pImage_data) || (!w) || (!h) || ((n_chans != 3) && (n_chans != 4))) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			error_printf("Failed loading .TGA image \"%s\"!\n", pFilename); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if (pImage_data) | 
					
						
							|  |  |  | 				free(pImage_data); | 
					
						
							|  |  |  | 						 | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 		if (sizeof(void *) == sizeof(uint32_t)) | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		{ | 
					
						
							|  |  |  | 			if ((w * h * n_chans) > MAX_32BIT_ALLOC_SIZE) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				if (pImage_data) | 
					
						
							|  |  |  | 					free(pImage_data); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				return false; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		img.resize(w, h); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const uint8_t *pSrc = pImage_data; | 
					
						
							|  |  |  | 		for (int y = 0; y < h; y++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			color_rgba *pDst = &img(0, y); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (int x = 0; x < w; x++) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				pDst->r = pSrc[0]; | 
					
						
							|  |  |  | 				pDst->g = pSrc[1]; | 
					
						
							|  |  |  | 				pDst->b = pSrc[2]; | 
					
						
							|  |  |  | 				pDst->a = (n_chans == 3) ? 255 : pSrc[3]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				pSrc += n_chans; | 
					
						
							|  |  |  | 				++pDst; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		free(pImage_data); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return true; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	bool load_png(const uint8_t *pBuf, size_t buf_size, image &img, const char *pFilename) | 
					
						
							|  |  |  | 	{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		interval_timer tm; | 
					
						
							|  |  |  | 		tm.start(); | 
					
						
							|  |  |  | 		 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		if (!buf_size) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		uint32_t width = 0, height = 0, num_chans = 0; | 
					
						
							|  |  |  | 		void* pImage = pv_png::load_png(pBuf, buf_size, 4, width, height, num_chans); | 
					
						
							|  |  |  | 		if (!pBuf) | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 		{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 			error_printf("pv_png::load_png failed while loading image \"%s\"\n", pFilename); | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 			return false; | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		} | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		img.grant_ownership(reinterpret_cast<color_rgba*>(pImage), width, height); | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		//debug_printf("Total load_png() time: %3.3f secs\n", tm.get_elapsed_secs());
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		return true; | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		 | 
					
						
							|  |  |  | 	bool load_png(const char* pFilename, image& img) | 
					
						
							|  |  |  | 	{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		uint8_vec buffer; | 
					
						
							|  |  |  | 		if (!read_file_to_vec(pFilename, buffer)) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			error_printf("load_png: Failed reading file \"%s\"!\n", pFilename); | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 			return false; | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		} | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		return load_png(buffer.data(), buffer.size(), img, pFilename); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	bool load_jpg(const char *pFilename, image& img) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		int width = 0, height = 0, actual_comps = 0; | 
					
						
							| 
									
										
										
										
											2024-02-18 18:48:14 +01:00
										 |  |  | 		uint8_t *pImage_data = jpgd::decompress_jpeg_image_from_file(pFilename, &width, &height, &actual_comps, 4, jpgd::jpeg_decoder::cFlagBoxChromaFiltering); | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		if (!pImage_data) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		img.init(pImage_data, width, height, 4); | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		free(pImage_data); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return true; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	bool load_image(const char* pFilename, image& img) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		std::string ext(string_get_extension(std::string(pFilename))); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (ext.length() == 0) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const char *pExt = ext.c_str(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (strcasecmp(pExt, "png") == 0) | 
					
						
							|  |  |  | 			return load_png(pFilename, img); | 
					
						
							|  |  |  | 		if (strcasecmp(pExt, "tga") == 0) | 
					
						
							|  |  |  | 			return load_tga(pFilename, img); | 
					
						
							|  |  |  | 		if ( (strcasecmp(pExt, "jpg") == 0) || (strcasecmp(pExt, "jfif") == 0) || (strcasecmp(pExt, "jpeg") == 0) ) | 
					
						
							|  |  |  | 			return load_jpg(pFilename, img); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return false; | 
					
						
							|  |  |  | 	} | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 	bool save_png(const char* pFilename, const image &img, uint32_t image_save_flags, uint32_t grayscale_comp) | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	{ | 
					
						
							|  |  |  | 		if (!img.get_total_pixels()) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 				 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		void* pPNG_data = nullptr; | 
					
						
							|  |  |  | 		size_t PNG_data_size = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 		if (image_save_flags & cImageSaveGrayscale) | 
					
						
							|  |  |  | 		{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 			uint8_vec g_pixels(img.get_total_pixels()); | 
					
						
							|  |  |  | 			uint8_t* pDst = &g_pixels[0]; | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			for (uint32_t y = 0; y < img.get_height(); y++) | 
					
						
							|  |  |  | 				for (uint32_t x = 0; x < img.get_width(); x++) | 
					
						
							|  |  |  | 					*pDst++ = img(x, y)[grayscale_comp]; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 			pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(g_pixels.data(), img.get_width(), img.get_height(), 1, &PNG_data_size, 1, false); | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 		} | 
					
						
							|  |  |  | 		else | 
					
						
							|  |  |  | 		{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 			bool has_alpha = false; | 
					
						
							|  |  |  | 			 | 
					
						
							|  |  |  | 			if ((image_save_flags & cImageSaveIgnoreAlpha) == 0) | 
					
						
							|  |  |  | 				has_alpha = img.has_alpha(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if (!has_alpha) | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 			{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 				uint8_vec rgb_pixels(img.get_total_pixels() * 3); | 
					
						
							|  |  |  | 				uint8_t* pDst = &rgb_pixels[0]; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 				for (uint32_t y = 0; y < img.get_height(); y++) | 
					
						
							|  |  |  | 				{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 					const color_rgba* pSrc = &img(0, y); | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 					for (uint32_t x = 0; x < img.get_width(); x++) | 
					
						
							|  |  |  | 					{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 						pDst[0] = pSrc->r; | 
					
						
							|  |  |  | 						pDst[1] = pSrc->g; | 
					
						
							|  |  |  | 						pDst[2] = pSrc->b; | 
					
						
							|  |  |  | 						 | 
					
						
							|  |  |  | 						pSrc++; | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 						pDst += 3; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 				pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(rgb_pixels.data(), img.get_width(), img.get_height(), 3, &PNG_data_size, 1, false); | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 			} | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 			{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 				pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(img.get_ptr(), img.get_width(), img.get_height(), 4, &PNG_data_size, 1, false); | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		if (!pPNG_data) | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 			return false; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		bool status = write_data_to_file(pFilename, pPNG_data, PNG_data_size); | 
					
						
							|  |  |  | 		if (!status) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			error_printf("save_png: Failed writing to filename \"%s\"!\n", pFilename); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		free(pPNG_data); | 
					
						
							|  |  |  | 						 | 
					
						
							|  |  |  | 		return status; | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	} | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 	bool read_file_to_vec(const char* pFilename, uint8_vec& data) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		FILE* pFile = nullptr; | 
					
						
							|  |  |  | #ifdef _WIN32
 | 
					
						
							|  |  |  | 		fopen_s(&pFile, pFilename, "rb"); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 		pFile = fopen(pFilename, "rb"); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 		if (!pFile) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 				 | 
					
						
							|  |  |  | 		fseek(pFile, 0, SEEK_END); | 
					
						
							|  |  |  | #ifdef _WIN32
 | 
					
						
							|  |  |  | 		int64_t filesize = _ftelli64(pFile); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 		int64_t filesize = ftello(pFile); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 		if (filesize < 0) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			fclose(pFile); | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		fseek(pFile, 0, SEEK_SET); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (sizeof(size_t) == sizeof(uint32_t)) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if (filesize > 0x70000000) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				// File might be too big to load safely in one alloc
 | 
					
						
							|  |  |  | 				fclose(pFile); | 
					
						
							|  |  |  | 				return false; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		if (!data.try_resize((size_t)filesize)) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			fclose(pFile); | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 		} | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		if (filesize) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				fclose(pFile); | 
					
						
							|  |  |  | 				return false; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		fclose(pFile); | 
					
						
							|  |  |  | 		return true; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	bool write_data_to_file(const char* pFilename, const void* pData, size_t len) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		FILE* pFile = nullptr; | 
					
						
							|  |  |  | #ifdef _WIN32
 | 
					
						
							|  |  |  | 		fopen_s(&pFile, pFilename, "wb"); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 		pFile = fopen(pFilename, "wb"); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 		if (!pFile) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (len) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if (fwrite(pData, 1, len, pFile) != len) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				fclose(pFile); | 
					
						
							|  |  |  | 				return false; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return fclose(pFile) != EOF; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	float linear_to_srgb(float l) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		assert(l >= 0.0f && l <= 1.0f); | 
					
						
							|  |  |  | 		if (l < .0031308f) | 
					
						
							|  |  |  | 			return saturate(l * 12.92f); | 
					
						
							|  |  |  | 		else | 
					
						
							|  |  |  | 			return saturate(1.055f * powf(l, 1.0f/2.4f) - .055f); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	float srgb_to_linear(float s) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		assert(s >= 0.0f && s <= 1.0f); | 
					
						
							|  |  |  | 		if (s < .04045f) | 
					
						
							|  |  |  | 			return saturate(s * (1.0f/12.92f)); | 
					
						
							|  |  |  | 		else | 
					
						
							|  |  |  | 			return saturate(powf((s + .055f) * (1.0f/1.055f), 2.4f)); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	bool image_resample(const image &src, image &dst, bool srgb, | 
					
						
							|  |  |  | 		const char *pFilter, float filter_scale,  | 
					
						
							|  |  |  | 		bool wrapping, | 
					
						
							|  |  |  | 		uint32_t first_comp, uint32_t num_comps) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		assert((first_comp + num_comps) <= 4); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const int cMaxComps = 4; | 
					
						
							|  |  |  | 				 | 
					
						
							|  |  |  | 		const uint32_t src_w = src.get_width(), src_h = src.get_height(); | 
					
						
							|  |  |  | 		const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height(); | 
					
						
							|  |  |  | 				 | 
					
						
							|  |  |  | 		if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			printf("Image is too large!\n"); | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (!src_w || !src_h || !dst_w || !dst_h) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 				 | 
					
						
							|  |  |  | 		if ((num_comps < 1) || (num_comps > cMaxComps)) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 				 | 
					
						
							|  |  |  | 		if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION)) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			printf("Image is too large!\n"); | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if ((src_w == dst_w) && (src_h == dst_h)) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			dst = src; | 
					
						
							|  |  |  | 			return true; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		float srgb_to_linear_table[256]; | 
					
						
							|  |  |  | 		if (srgb) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			for (int i = 0; i < 256; ++i) | 
					
						
							|  |  |  | 				srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f)); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const int LINEAR_TO_SRGB_TABLE_SIZE = 8192; | 
					
						
							|  |  |  | 		uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (srgb) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i) | 
					
						
							|  |  |  | 				linear_to_srgb_table[i] = (uint8_t)clamp<int>((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		std::vector<float> samples[cMaxComps]; | 
					
						
							|  |  |  | 		Resampler *resamplers[cMaxComps]; | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h, | 
					
						
							|  |  |  | 			wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, | 
					
						
							|  |  |  | 			pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0); | 
					
						
							|  |  |  | 		samples[0].resize(src_w); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 1; i < num_comps; ++i) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h, | 
					
						
							|  |  |  | 				wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f, | 
					
						
							|  |  |  | 				pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0); | 
					
						
							|  |  |  | 			samples[i].resize(src_w); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t dst_y = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t src_y = 0; src_y < src_h; ++src_y) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			const color_rgba *pSrc = &src(0, src_y); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Put source lines into resampler(s)
 | 
					
						
							|  |  |  | 			for (uint32_t x = 0; x < src_w; ++x) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				for (uint32_t c = 0; c < num_comps; ++c) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					const uint32_t comp_index = first_comp + c; | 
					
						
							|  |  |  | 					const uint32_t v = (*pSrc)[comp_index]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					if (!srgb || (comp_index == 3)) | 
					
						
							|  |  |  | 						samples[c][x] = v * (1.0f / 255.0f); | 
					
						
							|  |  |  | 					else | 
					
						
							|  |  |  | 						samples[c][x] = srgb_to_linear_table[v]; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				pSrc++; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (uint32_t c = 0; c < num_comps; ++c) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				if (!resamplers[c]->put_line(&samples[c][0])) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					for (uint32_t i = 0; i < num_comps; i++) | 
					
						
							|  |  |  | 						delete resamplers[i]; | 
					
						
							|  |  |  | 					return false; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Now retrieve any output lines
 | 
					
						
							|  |  |  | 			for (;;) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				uint32_t c; | 
					
						
							|  |  |  | 				for (c = 0; c < num_comps; ++c) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					const uint32_t comp_index = first_comp + c; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					const float *pOutput_samples = resamplers[c]->get_line(); | 
					
						
							|  |  |  | 					if (!pOutput_samples) | 
					
						
							|  |  |  | 						break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					const bool linear_flag = !srgb || (comp_index == 3); | 
					
						
							|  |  |  | 					 | 
					
						
							|  |  |  | 					color_rgba *pDst = &dst(0, dst_y); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					for (uint32_t x = 0; x < dst_w; x++) | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						// TODO: Add dithering
 | 
					
						
							|  |  |  | 						if (linear_flag) | 
					
						
							|  |  |  | 						{ | 
					
						
							|  |  |  | 							int j = (int)(255.0f * pOutput_samples[x] + .5f); | 
					
						
							|  |  |  | 							(*pDst)[comp_index] = (uint8_t)clamp<int>(j, 0, 255); | 
					
						
							|  |  |  | 						} | 
					
						
							|  |  |  | 						else | 
					
						
							|  |  |  | 						{ | 
					
						
							|  |  |  | 							int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f); | 
					
						
							|  |  |  | 							(*pDst)[comp_index] = linear_to_srgb_table[clamp<int>(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)]; | 
					
						
							|  |  |  | 						} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 						pDst++; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				if (c < num_comps) | 
					
						
							|  |  |  | 					break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				++dst_y; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < num_comps; ++i) | 
					
						
							|  |  |  | 			delete resamplers[i]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return true; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		// See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen
 | 
					
						
							|  |  |  | 		if (!num_syms) | 
					
						
							|  |  |  | 			return; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (1 == num_syms) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			A[0].m_key = 1; | 
					
						
							|  |  |  | 			return; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		A[0].m_key += A[1].m_key; | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		int s = 2, r = 0, next; | 
					
						
							|  |  |  | 		for (next = 1; next < (num_syms - 1); ++next) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if ((s >= num_syms) || (A[r].m_key < A[s].m_key)) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				A[next].m_key = A[r].m_key; | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 				A[r].m_key = next; | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 				++r; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				A[next].m_key = A[s].m_key; | 
					
						
							|  |  |  | 				++s; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key)) | 
					
						
							|  |  |  | 			{ | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 				A[next].m_key = A[next].m_key + A[r].m_key; | 
					
						
							|  |  |  | 				A[r].m_key = next; | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 				++r; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 			{ | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 				A[next].m_key = A[next].m_key + A[s].m_key; | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 				++s; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		A[num_syms - 2].m_key = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (next = num_syms - 3; next >= 0; --next) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			A[next].m_key = 1 + A[A[next].m_key].m_key; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		int num_avail = 1, num_used = 0, depth = 0; | 
					
						
							|  |  |  | 		r = num_syms - 2; | 
					
						
							|  |  |  | 		next = num_syms - 1; | 
					
						
							|  |  |  | 		while (num_avail > 0) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r ) | 
					
						
							|  |  |  | 				; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for ( ; num_avail > num_used; --next, --num_avail) | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 				A[next].m_key = depth; | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 			num_avail = 2 * num_used; | 
					
						
							|  |  |  | 			num_used = 0; | 
					
						
							|  |  |  | 			++depth; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		int i; | 
					
						
							|  |  |  | 		uint32_t total = 0; | 
					
						
							|  |  |  | 		if (code_list_len <= 1) | 
					
						
							|  |  |  | 			return; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++) | 
					
						
							|  |  |  | 			pNum_codes[max_code_size] += pNum_codes[i]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (i = max_code_size; i > 0; i--) | 
					
						
							|  |  |  | 			total += (((uint32_t)pNum_codes[i]) << (max_code_size - i)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		while (total != (1UL << max_code_size)) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			pNum_codes[max_code_size]--; | 
					
						
							|  |  |  | 			for (i = max_code_size - 1; i > 0; i--) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				if (pNum_codes[i]) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					pNum_codes[i]--; | 
					
						
							|  |  |  | 					pNum_codes[i + 1] += 2; | 
					
						
							|  |  |  | 					break; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			total--; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2]; | 
					
						
							|  |  |  | 		sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		clear_obj(hist); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (i = 0; i < num_syms; i++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			uint32_t freq = pSyms0[i].m_key; | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 			 | 
					
						
							|  |  |  | 			// We scale all input frequencies to 16-bits.
 | 
					
						
							|  |  |  | 			assert(freq <= UINT16_MAX); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 			hist[freq & 0xFF]++; | 
					
						
							|  |  |  | 			hist[256 + ((freq >> 8) & 0xFF)]++; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) | 
					
						
							|  |  |  | 			total_passes--; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			const uint32_t *pHist = &hist[pass << 8]; | 
					
						
							|  |  |  | 			uint32_t offsets[256], cur_ofs = 0; | 
					
						
							|  |  |  | 			for (i = 0; i < 256; i++) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				offsets[i] = cur_ofs; | 
					
						
							|  |  |  | 				cur_ofs += pHist[i]; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (i = 0; i < num_syms; i++) | 
					
						
							|  |  |  | 				pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			sym_freq *t = pCur_syms; | 
					
						
							|  |  |  | 			pCur_syms = pNew_syms; | 
					
						
							|  |  |  | 			pNew_syms = t; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return pCur_syms; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		if (max_code_size > cHuffmanMaxSupportedCodeSize) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 		if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t total_used_syms = 0; | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < num_syms; i++) | 
					
						
							|  |  |  | 			if (pFreq[i]) | 
					
						
							|  |  |  | 				total_used_syms++; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (!total_used_syms) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		std::vector<sym_freq> sym_freq0(total_used_syms), sym_freq1(total_used_syms); | 
					
						
							|  |  |  | 		for (uint32_t i = 0, j = 0; i < num_syms; i++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if (pFreq[i]) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				sym_freq0[j].m_key = pFreq[i]; | 
					
						
							|  |  |  | 				sym_freq0[j++].m_sym_index = static_cast<uint16_t>(i); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1]; | 
					
						
							|  |  |  | 		clear_obj(num_codes); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < total_used_syms; i++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize) | 
					
						
							|  |  |  | 				return false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			num_codes[pSym_freq[i].m_key]++; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		m_code_sizes.resize(0); | 
					
						
							|  |  |  | 		m_code_sizes.resize(num_syms); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		m_codes.resize(0); | 
					
						
							|  |  |  | 		m_codes.resize(num_syms); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++) | 
					
						
							|  |  |  | 			for (uint32_t l = num_codes[i]; l > 0; l--) | 
					
						
							|  |  |  | 				m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast<uint8_t>(i); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		next_code[1] = 0; | 
					
						
							|  |  |  | 		for (uint32_t j = 0, i = 2; i <= max_code_size; i++) | 
					
						
							|  |  |  | 			next_code[i] = j = ((j + num_codes[i - 1]) << 1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < num_syms; i++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			uint32_t rev_code = 0, code, code_size; | 
					
						
							|  |  |  | 			if ((code_size = m_code_sizes[i]) == 0) | 
					
						
							|  |  |  | 				continue; | 
					
						
							|  |  |  | 			if (code_size > cHuffmanMaxSupportedInternalCodeSize) | 
					
						
							|  |  |  | 				return false; | 
					
						
							|  |  |  | 			code = next_code[code_size]++; | 
					
						
							|  |  |  | 			for (uint32_t l = code_size; l > 0; l--, code >>= 1) | 
					
						
							|  |  |  | 				rev_code = (rev_code << 1) | (code & 1); | 
					
						
							|  |  |  | 			m_codes[i] = static_cast<uint16_t>(rev_code); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return true; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		if ((!num_syms) || (num_syms > cHuffmanMaxSyms)) | 
					
						
							|  |  |  | 			return false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint16_vec sym_freq(num_syms); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t max_freq = 0; | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < num_syms; i++) | 
					
						
							|  |  |  | 			max_freq = maximum(max_freq, pSym_freq[i]); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (max_freq < UINT16_MAX) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < num_syms; i++) | 
					
						
							|  |  |  | 				sym_freq[i] = static_cast<uint16_t>(pSym_freq[i]); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		else | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < num_syms; i++) | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 			{ | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 				if (pSym_freq[i]) | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 				{ | 
					
						
							|  |  |  | 					uint32_t f = static_cast<uint32_t>((static_cast<uint64_t>(pSym_freq[i]) * 65534U + (max_freq >> 1)) / max_freq); | 
					
						
							|  |  |  | 					sym_freq[i] = static_cast<uint16_t>(clamp<uint32_t>(f, 1, 65534)); | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return init(num_syms, &sym_freq[0], max_code_size); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		if (run_size) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if (run_size < cHuffmanSmallRepeatSizeMin) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				while (run_size--) | 
					
						
							|  |  |  | 					syms.push_back(static_cast<uint16_t>(len)); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else if (run_size <= cHuffmanSmallRepeatSizeMax) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				syms.push_back(static_cast<uint16_t>(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6))); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax)); | 
					
						
							|  |  |  | 				syms.push_back(static_cast<uint16_t>(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6))); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		run_size = 0; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		if (run_size) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if (run_size < cHuffmanSmallZeroRunSizeMin) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				while (run_size--) | 
					
						
							|  |  |  | 					syms.push_back(0); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else if (run_size <= cHuffmanSmallZeroRunSizeMax) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				syms.push_back(static_cast<uint16_t>(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6))); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax)); | 
					
						
							|  |  |  | 				syms.push_back(static_cast<uint16_t>(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6))); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		run_size = 0; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		const uint64_t start_bits = m_total_bits; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const uint8_vec &code_sizes = tab.get_code_sizes(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t total_used = tab.get_total_used_codes(); | 
					
						
							|  |  |  | 		put_bits(total_used, cHuffmanMaxSymsLog2); | 
					
						
							|  |  |  | 			 | 
					
						
							|  |  |  | 		if (!total_used) | 
					
						
							|  |  |  | 			return 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint16_vec syms; | 
					
						
							|  |  |  | 		syms.reserve(total_used + 16); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i <= total_used; ++i) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i]; | 
					
						
							|  |  |  | 			assert((code_len == 0xFF) || (code_len <= 16)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if (code_len) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				end_zero_run(syms, zero_run_size); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				if (code_len != prev_code_len) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					end_nonzero_run(syms, nonzero_run_size, prev_code_len); | 
					
						
							|  |  |  | 					if (code_len != 0xFF) | 
					
						
							|  |  |  | 						syms.push_back(static_cast<uint16_t>(code_len)); | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax) | 
					
						
							|  |  |  | 					end_nonzero_run(syms, nonzero_run_size, prev_code_len); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				end_nonzero_run(syms, nonzero_run_size, prev_code_len); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				if (++zero_run_size == cHuffmanBigZeroRunSizeMax) | 
					
						
							|  |  |  | 					end_zero_run(syms, zero_run_size); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			prev_code_len = code_len; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		histogram h(cHuffmanTotalCodelengthCodes); | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < syms.size(); i++) | 
					
						
							|  |  |  | 			h.inc(syms[i] & 63); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		huffman_encoding_table ct; | 
					
						
							|  |  |  | 		if (!ct.init(h, 7)) | 
					
						
							|  |  |  | 			return 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t total_codelength_codes; | 
					
						
							|  |  |  | 		for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--) | 
					
						
							|  |  |  | 			if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]]) | 
					
						
							|  |  |  | 				break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		assert(total_codelength_codes); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		put_bits(total_codelength_codes, 5); | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < total_codelength_codes; i++) | 
					
						
							|  |  |  | 			put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < syms.size(); ++i) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			const uint32_t l = syms[i] & 63, e = syms[i] >> 6; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			put_code(l, ct); | 
					
						
							|  |  |  | 				 | 
					
						
							|  |  |  | 			if (l == cHuffmanSmallZeroRunCode) | 
					
						
							|  |  |  | 				put_bits(e, cHuffmanSmallZeroRunExtraBits); | 
					
						
							|  |  |  | 			else if (l == cHuffmanBigZeroRunCode) | 
					
						
							|  |  |  | 				put_bits(e, cHuffmanBigZeroRunExtraBits); | 
					
						
							|  |  |  | 			else if (l == cHuffmanSmallRepeatCode) | 
					
						
							|  |  |  | 				put_bits(e, cHuffmanSmallRepeatExtraBits); | 
					
						
							|  |  |  | 			else if (l == cHuffmanBigRepeatCode) | 
					
						
							|  |  |  | 				put_bits(e, cHuffmanBigRepeatExtraBits); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return (uint32_t)(m_total_bits - start_bits); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	bool huffman_test(int rand_seed) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		histogram h(19); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// Feed in a fibonacci sequence to force large codesizes
 | 
					
						
							|  |  |  | 		h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3; | 
					
						
							|  |  |  | 		h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21; | 
					
						
							|  |  |  | 		h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144; | 
					
						
							|  |  |  | 		h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987; | 
					
						
							|  |  |  | 		h[16] += 1597; h[17] += 2584; h[18] += 4181; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		huffman_encoding_table etab; | 
					
						
							|  |  |  | 		etab.init(h, 16); | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			bitwise_coder c; | 
					
						
							|  |  |  | 			c.init(1024); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			c.emit_huffman_table(etab); | 
					
						
							|  |  |  | 			for (int i = 0; i < 19; i++) | 
					
						
							|  |  |  | 				c.put_code(i, etab); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			c.flush(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			basist::bitwise_decoder d; | 
					
						
							|  |  |  | 			d.init(&c.get_bytes()[0], static_cast<uint32_t>(c.get_bytes().size())); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			basist::huffman_decoding_table dtab; | 
					
						
							|  |  |  | 			bool success = d.read_huffman_table(dtab); | 
					
						
							|  |  |  | 			if (!success) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				assert(0); | 
					
						
							|  |  |  | 				printf("Failure 5\n"); | 
					
						
							|  |  |  | 				return false; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < 19; i++) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				uint32_t s = d.decode_huffman(dtab); | 
					
						
							|  |  |  | 				if (s != i) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					assert(0); | 
					
						
							|  |  |  | 					printf("Failure 5\n"); | 
					
						
							|  |  |  | 					return false; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		basisu::rand r; | 
					
						
							|  |  |  | 		r.seed(rand_seed); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (int iter = 0; iter < 500000; iter++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			printf("%u\n", iter); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			uint32_t max_sym = r.irand(0, 8193); | 
					
						
							|  |  |  | 			uint32_t num_codes = r.irand(1, 10000); | 
					
						
							|  |  |  | 			uint_vec syms(num_codes); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < num_codes; i++) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				if (r.bit()) | 
					
						
							|  |  |  | 					syms[i] = r.irand(0, max_sym); | 
					
						
							|  |  |  | 				else | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum<int>(1, max_sym / 2)) + .5f); | 
					
						
							|  |  |  | 					s = basisu::clamp<int>(s, 0, max_sym); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					syms[i] = s; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			histogram h1(max_sym + 1); | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < num_codes; i++) | 
					
						
							|  |  |  | 				h1[syms[i]]++; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			huffman_encoding_table etab2; | 
					
						
							|  |  |  | 			if (!etab2.init(h1, 16)) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				assert(0); | 
					
						
							|  |  |  | 				printf("Failed 0\n"); | 
					
						
							|  |  |  | 				return false; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			bitwise_coder c; | 
					
						
							|  |  |  | 			c.init(1024); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			c.emit_huffman_table(etab2); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < num_codes; i++) | 
					
						
							|  |  |  | 				c.put_code(syms[i], etab2); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			c.flush(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			basist::bitwise_decoder d; | 
					
						
							|  |  |  | 			d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			basist::huffman_decoding_table dtab; | 
					
						
							|  |  |  | 			bool success = d.read_huffman_table(dtab); | 
					
						
							|  |  |  | 			if (!success) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				assert(0); | 
					
						
							|  |  |  | 				printf("Failed 2\n"); | 
					
						
							|  |  |  | 				return false; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < num_codes; i++) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				uint32_t s = d.decode_huffman(dtab); | 
					
						
							|  |  |  | 				if (s != syms[i]) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					assert(0); | 
					
						
							|  |  |  | 					printf("Failed 4\n"); | 
					
						
							|  |  |  | 					return false; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		return true; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		assert((num_syms > 0) && (num_indices > 0)); | 
					
						
							|  |  |  | 		assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		clear(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		m_remap_table.resize(num_syms); | 
					
						
							|  |  |  | 		m_entries_picked.reserve(num_syms); | 
					
						
							|  |  |  | 		m_total_count_to_picked.resize(num_syms); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (num_indices <= 1) | 
					
						
							|  |  |  | 			return; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		prepare_hist(num_syms, num_indices, pIndices); | 
					
						
							|  |  |  | 		find_initial(num_syms); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		while (m_entries_to_do.size()) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			// Find the best entry to move into the picked list.
 | 
					
						
							|  |  |  | 			uint32_t best_entry; | 
					
						
							|  |  |  | 			double best_count; | 
					
						
							|  |  |  | 			find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// We now have chosen an entry to place in the picked list, now determine which side it goes on.
 | 
					
						
							|  |  |  | 			const uint32_t entry_to_move = m_entries_to_do[best_entry]; | 
					
						
							|  |  |  | 								 | 
					
						
							|  |  |  | 			float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight); | 
					
						
							|  |  |  | 								 | 
					
						
							|  |  |  | 			// Put entry_to_move either on the "left" or "right" side of the picked entries
 | 
					
						
							|  |  |  | 			if (side <= 0) | 
					
						
							|  |  |  | 				m_entries_picked.push_back(entry_to_move); | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 				m_entries_picked.insert(m_entries_picked.begin(), entry_to_move); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Erase best_entry from the todo list
 | 
					
						
							|  |  |  | 			m_entries_to_do.erase(m_entries_to_do.begin() + best_entry); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry
 | 
					
						
							|  |  |  | 			for (uint32_t i = 0; i < m_entries_to_do.size(); i++) | 
					
						
							|  |  |  | 				m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < num_syms; i++) | 
					
						
							|  |  |  | 			m_remap_table[m_entries_picked[i]] = i; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		m_hist.resize(0); | 
					
						
							|  |  |  | 		m_hist.resize(num_syms * num_syms); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < num_indices; i++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			const uint32_t idx = pIndices[i]; | 
					
						
							|  |  |  | 			inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms); | 
					
						
							|  |  |  | 			inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void palette_index_reorderer::find_initial(uint32_t num_syms) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		uint32_t max_count = 0, max_index = 0; | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < num_syms * num_syms; i++) | 
					
						
							|  |  |  | 			if (m_hist[i] > max_count) | 
					
						
							|  |  |  | 				max_count = m_hist[i], max_index = i; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t a = max_index / num_syms, b = max_index % num_syms; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		m_entries_picked.push_back(a); | 
					
						
							|  |  |  | 		m_entries_picked.push_back(b); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < num_syms; i++) | 
					
						
							|  |  |  | 			if ((i != b) && (i != a)) | 
					
						
							|  |  |  | 				m_entries_to_do.push_back(i); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < m_entries_to_do.size(); i++) | 
					
						
							|  |  |  | 			for (uint32_t j = 0; j < m_entries_picked.size(); j++) | 
					
						
							|  |  |  | 				m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		best_entry = 0; | 
					
						
							|  |  |  | 		best_count = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < m_entries_to_do.size(); i++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			const uint32_t u = m_entries_to_do[i]; | 
					
						
							|  |  |  | 			double total_count = m_total_count_to_picked[u]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if (pDist_func) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				float w = maximum<float>((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx)); | 
					
						
							|  |  |  | 				assert((w >= 0.0f) && (w <= 1.0f)); | 
					
						
							|  |  |  | 				total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w); | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if (total_count <= best_count) | 
					
						
							|  |  |  | 				continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			best_entry = i; | 
					
						
							|  |  |  | 			best_count = total_count; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		float which_side = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		int l_count = 0, r_count = 0; | 
					
						
							|  |  |  | 		for (uint32_t j = 0; j < m_entries_picked.size(); j++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1)); | 
					
						
							|  |  |  | 			which_side += static_cast<float>(r * count); | 
					
						
							|  |  |  | 			if (r >= 0) | 
					
						
							|  |  |  | 				l_count += r * count; | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 				r_count += -r * count; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (pDist_func) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx)); | 
					
						
							|  |  |  | 			float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx)); | 
					
						
							|  |  |  | 			which_side = w_left * l_count - w_right * r_count; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		return which_side; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		assert((first_chan < 4U) && (first_chan + total_chans <= 4U)); | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		const uint32_t width = basisu::minimum(a.get_width(), b.get_width()); | 
					
						
							|  |  |  | 		const uint32_t height = basisu::minimum(a.get_height(), b.get_height()); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 		double hist[256]; | 
					
						
							|  |  |  | 		clear_obj(hist); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (uint32_t y = 0; y < height; y++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			for (uint32_t x = 0; x < width; x++) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				const color_rgba &ca = a(x, y), &cb = b(x, y); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				if (total_chans) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					for (uint32_t c = 0; c < total_chans; c++) | 
					
						
							|  |  |  | 						hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				else | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					if (use_601_luma) | 
					
						
							|  |  |  | 						hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++; | 
					
						
							|  |  |  | 					else | 
					
						
							|  |  |  | 						hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		m_max = 0; | 
					
						
							|  |  |  | 		double sum = 0.0f, sum2 = 0.0f; | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < 256; i++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if (hist[i]) | 
					
						
							|  |  |  | 			{ | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 				m_max = basisu::maximum<float>(m_max, (float)i); | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 				double v = i * hist[i]; | 
					
						
							|  |  |  | 				sum += v; | 
					
						
							|  |  |  | 				sum2 += i * v; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		double total_values = (double)width * (double)height; | 
					
						
							|  |  |  | 		if (avg_comp_error) | 
					
						
							|  |  |  | 			total_values *= (double)clamp<uint32_t>(total_chans, 1, 4); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0); | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0f * 255.0f); | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 		m_rms = (float)sqrt(m_mean_squared); | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0f, 0.0f, 100.0f) : 100.0f; | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		rand r(seed); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint8_t *pDst = static_cast<uint8_t *>(pBuf); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		while (size >= sizeof(uint32_t)) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			*(uint32_t *)pDst = r.urand32(); | 
					
						
							|  |  |  | 			pDst += sizeof(uint32_t); | 
					
						
							|  |  |  | 			size -= sizeof(uint32_t); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		while (size) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			*pDst++ = r.byte(); | 
					
						
							|  |  |  | 			size--; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	uint32_t hash_hsieh(const uint8_t *pBuf, size_t len) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		if (!pBuf || !len)  | 
					
						
							|  |  |  | 			return 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t h = static_cast<uint32_t>(len); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const uint32_t bytes_left = len & 3; | 
					
						
							|  |  |  | 		len >>= 2; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		while (len--) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			const uint16_t *pWords = reinterpret_cast<const uint16_t *>(pBuf); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			h += pWords[0]; | 
					
						
							|  |  |  | 			 | 
					
						
							|  |  |  | 			const uint32_t t = (pWords[1] << 11) ^ h; | 
					
						
							|  |  |  | 			h = (h << 16) ^ t; | 
					
						
							|  |  |  | 			 | 
					
						
							|  |  |  | 			pBuf += sizeof(uint32_t); | 
					
						
							|  |  |  | 			 | 
					
						
							|  |  |  | 			h += h >> 11; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		switch (bytes_left) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 		case 1:  | 
					
						
							|  |  |  | 			h += *reinterpret_cast<const signed char*>(pBuf); | 
					
						
							|  |  |  | 			h ^= h << 10; | 
					
						
							|  |  |  | 			h += h >> 1; | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		case 2:  | 
					
						
							|  |  |  | 			h += *reinterpret_cast<const uint16_t *>(pBuf); | 
					
						
							|  |  |  | 			h ^= h << 11; | 
					
						
							|  |  |  | 			h += h >> 17; | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		case 3: | 
					
						
							|  |  |  | 			h += *reinterpret_cast<const uint16_t *>(pBuf); | 
					
						
							|  |  |  | 			h ^= h << 16; | 
					
						
							|  |  |  | 			h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18; | 
					
						
							|  |  |  | 			h += h >> 11; | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		default: | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		h ^= h << 3; | 
					
						
							|  |  |  | 		h += h >> 5; | 
					
						
							|  |  |  | 		h ^= h << 4; | 
					
						
							|  |  |  | 		h += h >> 17; | 
					
						
							|  |  |  | 		h ^= h << 25; | 
					
						
							|  |  |  | 		h += h >> 6; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return h; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	job_pool::job_pool(uint32_t num_threads) :  | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		m_num_active_jobs(0), | 
					
						
							|  |  |  | 		m_kill_flag(false) | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	{ | 
					
						
							|  |  |  | 		assert(num_threads >= 1U); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		debug_printf("job_pool::job_pool: %u total threads\n", num_threads); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (num_threads > 1) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			m_threads.resize(num_threads - 1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (int i = 0; i < ((int)num_threads - 1); i++) | 
					
						
							|  |  |  | 			   m_threads[i] = std::thread([this, i] { job_thread(i); }); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	job_pool::~job_pool() | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		debug_printf("job_pool::~job_pool\n"); | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		// Notify all workers that they need to die right now.
 | 
					
						
							|  |  |  | 		m_kill_flag = true; | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		m_has_work.notify_all(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// Wait for all workers to die.
 | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < m_threads.size(); i++) | 
					
						
							|  |  |  | 			m_threads[i].join(); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 				 | 
					
						
							|  |  |  | 	void job_pool::add_job(const std::function<void()>& job) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		std::unique_lock<std::mutex> lock(m_mutex); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		m_queue.emplace_back(job); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const size_t queue_size = m_queue.size(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		lock.unlock(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (queue_size > 1) | 
					
						
							|  |  |  | 			m_has_work.notify_one(); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void job_pool::add_job(std::function<void()>&& job) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		std::unique_lock<std::mutex> lock(m_mutex); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		m_queue.emplace_back(std::move(job)); | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 						 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 		const size_t queue_size = m_queue.size(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		lock.unlock(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (queue_size > 1) | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		{ | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 			m_has_work.notify_one(); | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		} | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void job_pool::wait_for_all() | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		std::unique_lock<std::mutex> lock(m_mutex); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// Drain the job queue on the calling thread.
 | 
					
						
							|  |  |  | 		while (!m_queue.empty()) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			std::function<void()> job(m_queue.back()); | 
					
						
							|  |  |  | 			m_queue.pop_back(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			lock.unlock(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			job(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			lock.lock(); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// The queue is empty, now wait for all active jobs to finish up.
 | 
					
						
							|  |  |  | 		m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } ); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void job_pool::job_thread(uint32_t index) | 
					
						
							|  |  |  | 	{ | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		BASISU_NOTE_UNUSED(index); | 
					
						
							|  |  |  | 		//debug_printf("job_pool::job_thread: starting %u\n", index);
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 		 | 
					
						
							|  |  |  | 		while (true) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			std::unique_lock<std::mutex> lock(m_mutex); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Wait for any jobs to be issued.
 | 
					
						
							|  |  |  | 			m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } ); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Check to see if we're supposed to exit.
 | 
					
						
							|  |  |  | 			if (m_kill_flag) | 
					
						
							|  |  |  | 				break; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Get the job and execute it.
 | 
					
						
							|  |  |  | 			std::function<void()> job(m_queue.back()); | 
					
						
							|  |  |  | 			m_queue.pop_back(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			++m_num_active_jobs; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			lock.unlock(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			job(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			lock.lock(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			--m_num_active_jobs; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Now check if there are no more jobs remaining. 
 | 
					
						
							|  |  |  | 			const bool all_done = m_queue.empty() && !m_num_active_jobs; | 
					
						
							|  |  |  | 			 | 
					
						
							|  |  |  | 			lock.unlock(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if (all_done) | 
					
						
							|  |  |  | 				m_no_more_jobs.notify_all(); | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		//debug_printf("job_pool::job_thread: exiting\n");
 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 	// .TGA image loading
 | 
					
						
							|  |  |  | 	#pragma pack(push)
 | 
					
						
							|  |  |  | 	#pragma pack(1)
 | 
					
						
							|  |  |  | 	struct tga_header | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		uint8_t			m_id_len; | 
					
						
							|  |  |  | 		uint8_t			m_cmap; | 
					
						
							|  |  |  | 		uint8_t			m_type; | 
					
						
							|  |  |  | 		packed_uint<2>	m_cmap_first; | 
					
						
							|  |  |  | 		packed_uint<2> m_cmap_len; | 
					
						
							|  |  |  | 		uint8_t			m_cmap_bpp; | 
					
						
							|  |  |  | 		packed_uint<2> m_x_org; | 
					
						
							|  |  |  | 		packed_uint<2> m_y_org; | 
					
						
							|  |  |  | 		packed_uint<2> m_width; | 
					
						
							|  |  |  | 		packed_uint<2> m_height; | 
					
						
							|  |  |  | 		uint8_t			m_depth; | 
					
						
							|  |  |  | 		uint8_t			m_desc; | 
					
						
							|  |  |  | 	}; | 
					
						
							|  |  |  | 	#pragma pack(pop)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	const uint32_t MAX_TGA_IMAGE_SIZE = 16384; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	enum tga_image_type | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		cITPalettized = 1, | 
					
						
							|  |  |  | 		cITRGB = 2, | 
					
						
							|  |  |  | 		cITGrayscale = 3 | 
					
						
							|  |  |  | 	}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	uint8_t *read_tga(const uint8_t *pBuf, uint32_t buf_size, int &width, int &height, int &n_chans) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		width = 0; | 
					
						
							|  |  |  | 		height = 0; | 
					
						
							|  |  |  | 		n_chans = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (buf_size <= sizeof(tga_header)) | 
					
						
							|  |  |  | 			return nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const tga_header &hdr = *reinterpret_cast<const tga_header *>(pBuf); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if ((!hdr.m_width) || (!hdr.m_height) || (hdr.m_width > MAX_TGA_IMAGE_SIZE) || (hdr.m_height > MAX_TGA_IMAGE_SIZE)) | 
					
						
							|  |  |  | 			return nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (hdr.m_desc >> 6) | 
					
						
							|  |  |  | 			return nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// Simple validation
 | 
					
						
							|  |  |  | 		if ((hdr.m_cmap != 0) && (hdr.m_cmap != 1)) | 
					
						
							|  |  |  | 			return nullptr; | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		if (hdr.m_cmap) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if ((hdr.m_cmap_bpp == 0) || (hdr.m_cmap_bpp > 32)) | 
					
						
							|  |  |  | 				return nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Nobody implements CMapFirst correctly, so we're not supporting it. Never seen it used, either.
 | 
					
						
							|  |  |  | 			if (hdr.m_cmap_first != 0) | 
					
						
							|  |  |  | 				return nullptr; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const bool x_flipped = (hdr.m_desc & 0x10) != 0; | 
					
						
							|  |  |  | 		const bool y_flipped = (hdr.m_desc & 0x20) == 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		bool rle_flag = false; | 
					
						
							|  |  |  | 		int file_image_type = hdr.m_type; | 
					
						
							|  |  |  | 		if (file_image_type > 8) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			file_image_type -= 8; | 
					
						
							|  |  |  | 			rle_flag = true; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const tga_image_type image_type = static_cast<tga_image_type>(file_image_type); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		switch (file_image_type) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 		case cITRGB: | 
					
						
							|  |  |  | 			if (hdr.m_depth == 8) | 
					
						
							|  |  |  | 				return nullptr; | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		case cITPalettized: | 
					
						
							|  |  |  | 			if ((hdr.m_depth != 8) || (hdr.m_cmap != 1) || (hdr.m_cmap_len == 0)) | 
					
						
							|  |  |  | 				return nullptr; | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		case cITGrayscale: | 
					
						
							|  |  |  | 			if ((hdr.m_cmap != 0) || (hdr.m_cmap_len != 0)) | 
					
						
							|  |  |  | 				return nullptr; | 
					
						
							|  |  |  | 			if ((hdr.m_depth != 8) && (hdr.m_depth != 16)) | 
					
						
							|  |  |  | 				return nullptr; | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		default: | 
					
						
							|  |  |  | 			return nullptr; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint32_t tga_bytes_per_pixel = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		switch (hdr.m_depth) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 		case 32: | 
					
						
							|  |  |  | 			tga_bytes_per_pixel = 4; | 
					
						
							|  |  |  | 			n_chans = 4; | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		case 24: | 
					
						
							|  |  |  | 			tga_bytes_per_pixel = 3; | 
					
						
							|  |  |  | 			n_chans = 3; | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		case 16: | 
					
						
							|  |  |  | 		case 15: | 
					
						
							|  |  |  | 			tga_bytes_per_pixel = 2; | 
					
						
							|  |  |  | 			// For compatibility with stb_image_write.h
 | 
					
						
							|  |  |  | 			n_chans = ((file_image_type == cITGrayscale) && (hdr.m_depth == 16)) ? 4 : 3; | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		case 8: | 
					
						
							|  |  |  | 			tga_bytes_per_pixel = 1; | 
					
						
							|  |  |  | 			// For palettized RGBA support, which both FreeImage and stb_image support.
 | 
					
						
							|  |  |  | 			n_chans = ((file_image_type == cITPalettized) && (hdr.m_cmap_bpp == 32)) ? 4 : 3; | 
					
						
							|  |  |  | 			break; | 
					
						
							|  |  |  | 		default: | 
					
						
							|  |  |  | 			return nullptr; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-24 12:39:24 -07:00
										 |  |  | 		//const uint32_t bytes_per_line = hdr.m_width * tga_bytes_per_pixel;
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-07 17:00:41 +02:00
										 |  |  | 		const uint8_t *pSrc = pBuf + sizeof(tga_header); | 
					
						
							|  |  |  | 		uint32_t bytes_remaining = buf_size - sizeof(tga_header); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (hdr.m_id_len) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if (bytes_remaining < hdr.m_id_len) | 
					
						
							|  |  |  | 				return nullptr; | 
					
						
							|  |  |  | 			pSrc += hdr.m_id_len; | 
					
						
							|  |  |  | 			bytes_remaining += hdr.m_id_len; | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		color_rgba pal[256]; | 
					
						
							|  |  |  | 		for (uint32_t i = 0; i < 256; i++) | 
					
						
							|  |  |  | 			pal[i].set(0, 0, 0, 255); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if ((hdr.m_cmap) && (hdr.m_cmap_len)) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			if (image_type == cITPalettized) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				// Note I cannot find any files using 32bpp palettes in the wild (never seen any in ~30 years).
 | 
					
						
							|  |  |  | 				if ( ((hdr.m_cmap_bpp != 32) && (hdr.m_cmap_bpp != 24) && (hdr.m_cmap_bpp != 15) && (hdr.m_cmap_bpp != 16)) || (hdr.m_cmap_len > 256) ) | 
					
						
							|  |  |  | 					return nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				if (hdr.m_cmap_bpp == 32) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					const uint32_t pal_size = hdr.m_cmap_len * 4; | 
					
						
							|  |  |  | 					if (bytes_remaining < pal_size) | 
					
						
							|  |  |  | 						return nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					for (uint32_t i = 0; i < hdr.m_cmap_len; i++) | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						pal[i].r = pSrc[i * 4 + 2]; | 
					
						
							|  |  |  | 						pal[i].g = pSrc[i * 4 + 1]; | 
					
						
							|  |  |  | 						pal[i].b = pSrc[i * 4 + 0]; | 
					
						
							|  |  |  | 						pal[i].a = pSrc[i * 4 + 3]; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					bytes_remaining -= pal_size; | 
					
						
							|  |  |  | 					pSrc += pal_size; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				else if (hdr.m_cmap_bpp == 24) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					const uint32_t pal_size = hdr.m_cmap_len * 3; | 
					
						
							|  |  |  | 					if (bytes_remaining < pal_size) | 
					
						
							|  |  |  | 						return nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					for (uint32_t i = 0; i < hdr.m_cmap_len; i++) | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						pal[i].r = pSrc[i * 3 + 2]; | 
					
						
							|  |  |  | 						pal[i].g = pSrc[i * 3 + 1]; | 
					
						
							|  |  |  | 						pal[i].b = pSrc[i * 3 + 0]; | 
					
						
							|  |  |  | 						pal[i].a = 255; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					bytes_remaining -= pal_size; | 
					
						
							|  |  |  | 					pSrc += pal_size; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				else | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					const uint32_t pal_size = hdr.m_cmap_len * 2; | 
					
						
							|  |  |  | 					if (bytes_remaining < pal_size) | 
					
						
							|  |  |  | 						return nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					for (uint32_t i = 0; i < hdr.m_cmap_len; i++) | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						const uint32_t v = pSrc[i * 2 + 0] | (pSrc[i * 2 + 1] << 8); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 						pal[i].r = (((v >> 10) & 31) * 255 + 15) / 31; | 
					
						
							|  |  |  | 						pal[i].g = (((v >> 5) & 31) * 255 + 15) / 31; | 
					
						
							|  |  |  | 						pal[i].b = ((v & 31) * 255 + 15) / 31; | 
					
						
							|  |  |  | 						pal[i].a = 255; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					bytes_remaining -= pal_size; | 
					
						
							|  |  |  | 					pSrc += pal_size; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				const uint32_t bytes_to_skip = (hdr.m_cmap_bpp >> 3) * hdr.m_cmap_len; | 
					
						
							|  |  |  | 				if (bytes_remaining < bytes_to_skip) | 
					
						
							|  |  |  | 					return nullptr; | 
					
						
							|  |  |  | 				pSrc += bytes_to_skip; | 
					
						
							|  |  |  | 				bytes_remaining += bytes_to_skip; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		width = hdr.m_width; | 
					
						
							|  |  |  | 		height = hdr.m_height; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const uint32_t source_pitch = width * tga_bytes_per_pixel; | 
					
						
							|  |  |  | 		const uint32_t dest_pitch = width * n_chans; | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		uint8_t *pImage = (uint8_t *)malloc(dest_pitch * height); | 
					
						
							|  |  |  | 		if (!pImage) | 
					
						
							|  |  |  | 			return nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		std::vector<uint8_t> input_line_buf; | 
					
						
							|  |  |  | 		if (rle_flag) | 
					
						
							|  |  |  | 			input_line_buf.resize(source_pitch); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		int run_type = 0, run_remaining = 0; | 
					
						
							|  |  |  | 		uint8_t run_pixel[4]; | 
					
						
							|  |  |  | 		memset(run_pixel, 0, sizeof(run_pixel)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		for (int y = 0; y < height; y++) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			const uint8_t *pLine_data; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			if (rle_flag) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				int pixels_remaining = width; | 
					
						
							|  |  |  | 				uint8_t *pDst = &input_line_buf[0]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				do  | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					if (!run_remaining) | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						if (bytes_remaining < 1) | 
					
						
							|  |  |  | 						{ | 
					
						
							|  |  |  | 							free(pImage); | 
					
						
							|  |  |  | 							return nullptr; | 
					
						
							|  |  |  | 						} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 						int v = *pSrc++; | 
					
						
							|  |  |  | 						bytes_remaining--; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 						run_type = v & 0x80; | 
					
						
							|  |  |  | 						run_remaining = (v & 0x7F) + 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 						if (run_type) | 
					
						
							|  |  |  | 						{ | 
					
						
							|  |  |  | 							if (bytes_remaining < tga_bytes_per_pixel) | 
					
						
							|  |  |  | 							{ | 
					
						
							|  |  |  | 								free(pImage); | 
					
						
							|  |  |  | 								return nullptr; | 
					
						
							|  |  |  | 							} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 							memcpy(run_pixel, pSrc, tga_bytes_per_pixel); | 
					
						
							|  |  |  | 							pSrc += tga_bytes_per_pixel; | 
					
						
							|  |  |  | 							bytes_remaining -= tga_bytes_per_pixel; | 
					
						
							|  |  |  | 						} | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					const uint32_t n = basisu::minimum<uint32_t>(pixels_remaining, run_remaining); | 
					
						
							|  |  |  | 					pixels_remaining -= n; | 
					
						
							|  |  |  | 					run_remaining -= n; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					if (run_type) | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						for (uint32_t i = 0; i < n; i++) | 
					
						
							|  |  |  | 							for (uint32_t j = 0; j < tga_bytes_per_pixel; j++) | 
					
						
							|  |  |  | 								*pDst++ = run_pixel[j]; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 					else | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						const uint32_t bytes_wanted = n * tga_bytes_per_pixel; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 						if (bytes_remaining < bytes_wanted) | 
					
						
							|  |  |  | 						{ | 
					
						
							|  |  |  | 							free(pImage); | 
					
						
							|  |  |  | 							return nullptr; | 
					
						
							|  |  |  | 						} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 						memcpy(pDst, pSrc, bytes_wanted); | 
					
						
							|  |  |  | 						pDst += bytes_wanted; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 						pSrc += bytes_wanted; | 
					
						
							|  |  |  | 						bytes_remaining -= bytes_wanted; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				} while (pixels_remaining); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				assert((pDst - &input_line_buf[0]) == width * tga_bytes_per_pixel); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				pLine_data = &input_line_buf[0]; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 			else | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				if (bytes_remaining < source_pitch) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					free(pImage); | 
					
						
							|  |  |  | 					return nullptr; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 				pLine_data = pSrc; | 
					
						
							|  |  |  | 				bytes_remaining -= source_pitch; | 
					
						
							|  |  |  | 				pSrc += source_pitch; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			// Convert to 24bpp RGB or 32bpp RGBA.
 | 
					
						
							|  |  |  | 			uint8_t *pDst = pImage + (y_flipped ? (height - 1 - y) : y) * dest_pitch + (x_flipped ? (width - 1) * n_chans : 0); | 
					
						
							|  |  |  | 			const int dst_stride = x_flipped ? -((int)n_chans) : n_chans; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			switch (hdr.m_depth) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 			case 32: | 
					
						
							|  |  |  | 				assert(tga_bytes_per_pixel == 4 && n_chans == 4); | 
					
						
							|  |  |  | 				for (int i = 0; i < width; i++, pLine_data += 4, pDst += dst_stride) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					pDst[0] = pLine_data[2]; | 
					
						
							|  |  |  | 					pDst[1] = pLine_data[1]; | 
					
						
							|  |  |  | 					pDst[2] = pLine_data[0]; | 
					
						
							|  |  |  | 					pDst[3] = pLine_data[3]; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				break; | 
					
						
							|  |  |  | 			case 24: | 
					
						
							|  |  |  | 				assert(tga_bytes_per_pixel == 3 && n_chans == 3); | 
					
						
							|  |  |  | 				for (int i = 0; i < width; i++, pLine_data += 3, pDst += dst_stride) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					pDst[0] = pLine_data[2]; | 
					
						
							|  |  |  | 					pDst[1] = pLine_data[1]; | 
					
						
							|  |  |  | 					pDst[2] = pLine_data[0]; | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				break; | 
					
						
							|  |  |  | 			case 16: | 
					
						
							|  |  |  | 			case 15: | 
					
						
							|  |  |  | 				if (image_type == cITRGB) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					assert(tga_bytes_per_pixel == 2 && n_chans == 3); | 
					
						
							|  |  |  | 					for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride) | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						const uint32_t v = pLine_data[0] | (pLine_data[1] << 8); | 
					
						
							|  |  |  | 						pDst[0] = (((v >> 10) & 31) * 255 + 15) / 31; | 
					
						
							|  |  |  | 						pDst[1] = (((v >> 5) & 31) * 255 + 15) / 31; | 
					
						
							|  |  |  | 						pDst[2] = ((v & 31) * 255 + 15) / 31; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				else | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					assert(image_type == cITGrayscale && tga_bytes_per_pixel == 2 && n_chans == 4); | 
					
						
							|  |  |  | 					for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride) | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						pDst[0] = pLine_data[0]; | 
					
						
							|  |  |  | 						pDst[1] = pLine_data[0]; | 
					
						
							|  |  |  | 						pDst[2] = pLine_data[0]; | 
					
						
							|  |  |  | 						pDst[3] = pLine_data[1]; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				break; | 
					
						
							|  |  |  | 			case 8: | 
					
						
							|  |  |  | 				assert(tga_bytes_per_pixel == 1); | 
					
						
							|  |  |  | 				if (image_type == cITPalettized) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					if (hdr.m_cmap_bpp == 32) | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						assert(n_chans == 4); | 
					
						
							|  |  |  | 						for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) | 
					
						
							|  |  |  | 						{ | 
					
						
							|  |  |  | 							const uint32_t c = *pLine_data; | 
					
						
							|  |  |  | 							pDst[0] = pal[c].r; | 
					
						
							|  |  |  | 							pDst[1] = pal[c].g; | 
					
						
							|  |  |  | 							pDst[2] = pal[c].b; | 
					
						
							|  |  |  | 							pDst[3] = pal[c].a; | 
					
						
							|  |  |  | 						} | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 					else | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						assert(n_chans == 3); | 
					
						
							|  |  |  | 						for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) | 
					
						
							|  |  |  | 						{ | 
					
						
							|  |  |  | 							const uint32_t c = *pLine_data; | 
					
						
							|  |  |  | 							pDst[0] = pal[c].r; | 
					
						
							|  |  |  | 							pDst[1] = pal[c].g; | 
					
						
							|  |  |  | 							pDst[2] = pal[c].b; | 
					
						
							|  |  |  | 						} | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				else | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					assert(n_chans == 3); | 
					
						
							|  |  |  | 					for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride) | 
					
						
							|  |  |  | 					{ | 
					
						
							|  |  |  | 						const uint8_t c = *pLine_data; | 
					
						
							|  |  |  | 						pDst[0] = c; | 
					
						
							|  |  |  | 						pDst[1] = c; | 
					
						
							|  |  |  | 						pDst[2] = c; | 
					
						
							|  |  |  | 					} | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 				break; | 
					
						
							|  |  |  | 			default: | 
					
						
							|  |  |  | 				assert(0); | 
					
						
							|  |  |  | 				break; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} // y
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return pImage; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	uint8_t *read_tga(const char *pFilename, int &width, int &height, int &n_chans) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		width = height = n_chans = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		uint8_vec filedata; | 
					
						
							|  |  |  | 		if (!read_file_to_vec(pFilename, filedata)) | 
					
						
							|  |  |  | 			return nullptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		if (!filedata.size() || (filedata.size() > UINT32_MAX)) | 
					
						
							|  |  |  | 			return nullptr; | 
					
						
							|  |  |  | 		 | 
					
						
							|  |  |  | 		return read_tga(&filedata[0], (uint32_t)filedata.size(), width, height, n_chans); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	void image::debug_text(uint32_t x_ofs, uint32_t y_ofs, uint32_t scale_x, uint32_t scale_y, const color_rgba& fg, const color_rgba* pBG, bool alpha_only, const char* pFmt, ...) | 
					
						
							|  |  |  | 	{ | 
					
						
							|  |  |  | 		char buf[2048]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		va_list args; | 
					
						
							|  |  |  | 		va_start(args, pFmt); | 
					
						
							|  |  |  | #ifdef _WIN32		
 | 
					
						
							|  |  |  | 		vsprintf_s(buf, sizeof(buf), pFmt, args); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 		vsnprintf(buf, sizeof(buf), pFmt, args); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 		va_end(args); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const char* p = buf; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		const uint32_t orig_x_ofs = x_ofs; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		while (*p) | 
					
						
							|  |  |  | 		{ | 
					
						
							|  |  |  | 			uint8_t c = *p++; | 
					
						
							|  |  |  | 			if ((c < 32) || (c > 127)) | 
					
						
							|  |  |  | 				c = '.'; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			const uint8_t* pGlpyh = &g_debug_font8x8_basic[c - 32][0]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			for (uint32_t y = 0; y < 8; y++) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				uint32_t row_bits = pGlpyh[y]; | 
					
						
							|  |  |  | 				for (uint32_t x = 0; x < 8; x++) | 
					
						
							|  |  |  | 				{ | 
					
						
							|  |  |  | 					const uint32_t q = row_bits & (1 << x); | 
					
						
							|  |  |  | 										 | 
					
						
							|  |  |  | 					const color_rgba* pColor = q ? &fg : pBG; | 
					
						
							|  |  |  | 					if (!pColor) | 
					
						
							|  |  |  | 						continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 					if (alpha_only) | 
					
						
							|  |  |  | 						fill_box_alpha(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor); | 
					
						
							|  |  |  | 					else | 
					
						
							|  |  |  | 						fill_box(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor); | 
					
						
							|  |  |  | 				} | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 			x_ofs += 8 * scale_x; | 
					
						
							|  |  |  | 			if ((x_ofs + 8 * scale_x) > m_width) | 
					
						
							|  |  |  | 			{ | 
					
						
							|  |  |  | 				x_ofs = orig_x_ofs; | 
					
						
							|  |  |  | 				y_ofs += 8 * scale_y; | 
					
						
							|  |  |  | 			} | 
					
						
							|  |  |  | 		} | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 		 | 
					
						
							| 
									
										
										
										
											2019-09-26 23:16:44 -03:00
										 |  |  | } // namespace basisu
 |