| 
									
										
										
										
											2021-05-20 12:49:33 +02:00
										 |  |  | // Copyright 2009-2021 Intel Corporation
 | 
					
						
							| 
									
										
										
										
											2021-04-20 18:38:09 +02:00
										 |  |  | // SPDX-License-Identifier: Apache-2.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "../common/ray.h"
 | 
					
						
							|  |  |  | #include "curve_intersector_precalculations.h"
 | 
					
						
							|  |  |  | #include "curve_intersector_sweep.h"
 | 
					
						
							|  |  |  | #include "../subdiv/linear_bezier_patch.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define DBG(x)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace embree | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   namespace isa | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |     template<typename Ray, typename Epilog> | 
					
						
							|  |  |  |       struct TensorLinearCubicBezierSurfaceIntersector | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const LinearSpace3fa& ray_space; | 
					
						
							|  |  |  |         Ray& ray; | 
					
						
							|  |  |  |         TensorLinearCubicBezierSurface3fa curve3d; | 
					
						
							|  |  |  |         TensorLinearCubicBezierSurface2fa curve2d; | 
					
						
							|  |  |  |         float eps; | 
					
						
							|  |  |  |         const Epilog& epilog; | 
					
						
							|  |  |  |         bool isHit; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         __forceinline TensorLinearCubicBezierSurfaceIntersector (const LinearSpace3fa& ray_space, Ray& ray, const TensorLinearCubicBezierSurface3fa& curve3d, const Epilog& epilog) | 
					
						
							|  |  |  |           : ray_space(ray_space), ray(ray), curve3d(curve3d), epilog(epilog), isHit(false) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           const TensorLinearCubicBezierSurface3fa curve3dray = curve3d.xfm(ray_space,ray.org); | 
					
						
							|  |  |  |           curve2d = TensorLinearCubicBezierSurface2fa(CubicBezierCurve2fa(curve3dray.L),CubicBezierCurve2fa(curve3dray.R)); | 
					
						
							|  |  |  |           const BBox2fa b2 = curve2d.bounds(); | 
					
						
							|  |  |  |           eps = 8.0f*float(ulp)*reduce_max(max(abs(b2.lower),abs(b2.upper))); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         __forceinline Interval1f solve_linear(const float u0, const float u1, const float& p0, const float& p1) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           if (p1 == p0) { | 
					
						
							|  |  |  |             if (p0 == 0.0f) return Interval1f(u0,u1); | 
					
						
							|  |  |  |             else return Interval1f(empty); | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           const float t = -p0/(p1-p0); | 
					
						
							|  |  |  |           const float tt = lerp(u0,u1,t); | 
					
						
							|  |  |  |           return Interval1f(tt); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         __forceinline void solve_linear(const float u0, const float u1, const Interval1f& p0, const Interval1f& p1, Interval1f& u) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           if (sign(p0.lower) != sign(p0.upper)) u.extend(u0); | 
					
						
							|  |  |  |           if (sign(p0.lower) != sign(p1.lower)) u.extend(solve_linear(u0,u1,p0.lower,p1.lower)); | 
					
						
							|  |  |  |           if (sign(p0.upper) != sign(p1.upper)) u.extend(solve_linear(u0,u1,p0.upper,p1.upper)); | 
					
						
							|  |  |  |           if (sign(p1.lower) != sign(p1.upper)) u.extend(u1); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         __forceinline Interval1f bezier_clipping(const CubicBezierCurve<Interval1f>& curve) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           Interval1f u = empty; | 
					
						
							|  |  |  |           solve_linear(0.0f/3.0f,1.0f/3.0f,curve.v0,curve.v1,u); | 
					
						
							|  |  |  |           solve_linear(0.0f/3.0f,2.0f/3.0f,curve.v0,curve.v2,u); | 
					
						
							|  |  |  |           solve_linear(0.0f/3.0f,3.0f/3.0f,curve.v0,curve.v3,u); | 
					
						
							|  |  |  |           solve_linear(1.0f/3.0f,2.0f/3.0f,curve.v1,curve.v2,u); | 
					
						
							|  |  |  |           solve_linear(1.0f/3.0f,3.0f/3.0f,curve.v1,curve.v3,u); | 
					
						
							|  |  |  |           solve_linear(2.0f/3.0f,3.0f/3.0f,curve.v2,curve.v3,u); | 
					
						
							|  |  |  |           return intersect(u,Interval1f(0.0f,1.0f)); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         __forceinline Interval1f bezier_clipping(const LinearBezierCurve<Interval1f>& curve) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           Interval1f v = empty; | 
					
						
							|  |  |  |           solve_linear(0.0f,1.0f,curve.v0,curve.v1,v); | 
					
						
							|  |  |  |           return intersect(v,Interval1f(0.0f,1.0f)); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         __forceinline void solve_bezier_clipping(BBox1f cu, BBox1f cv, const TensorLinearCubicBezierSurface2fa& curve2) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           BBox2fa bounds = curve2.bounds(); | 
					
						
							|  |  |  |           if (bounds.upper.x < 0.0f) return; | 
					
						
							|  |  |  |           if (bounds.upper.y < 0.0f) return; | 
					
						
							|  |  |  |           if (bounds.lower.x > 0.0f) return; | 
					
						
							|  |  |  |           if (bounds.lower.y > 0.0f) return; | 
					
						
							|  |  |  |            | 
					
						
							|  |  |  |           if (max(cu.size(),cv.size()) < 1E-4f) | 
					
						
							|  |  |  |           { | 
					
						
							|  |  |  |             const float u = cu.center(); | 
					
						
							|  |  |  |             const float v = cv.center(); | 
					
						
							|  |  |  |             TensorLinearCubicBezierSurface1f curve_z = curve3d.xfm(ray_space.row2(),ray.org); | 
					
						
							|  |  |  |             const float t = curve_z.eval(u,v); | 
					
						
							|  |  |  |             if (ray.tnear() <= t && t <= ray.tfar) { | 
					
						
							|  |  |  |               const Vec3fa Ng = cross(curve3d.eval_du(u,v),curve3d.eval_dv(u,v)); | 
					
						
							|  |  |  |               BezierCurveHit hit(t,u,v,Ng); | 
					
						
							|  |  |  |               isHit |= epilog(hit); | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             return; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |            | 
					
						
							|  |  |  |           const Vec2fa dv = curve2.axis_v(); | 
					
						
							|  |  |  |           const TensorLinearCubicBezierSurface1f curve1v = curve2.xfm(dv); | 
					
						
							|  |  |  |           LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u(); | 
					
						
							|  |  |  |           if (!curve0v.hasRoot()) return; | 
					
						
							|  |  |  |            | 
					
						
							|  |  |  |           const Interval1f v = bezier_clipping(curve0v); | 
					
						
							|  |  |  |           if (isEmpty(v)) return; | 
					
						
							|  |  |  |           TensorLinearCubicBezierSurface2fa curve2a = curve2.clip_v(v); | 
					
						
							|  |  |  |           cv = BBox1f(lerp(cv.lower,cv.upper,v.lower),lerp(cv.lower,cv.upper,v.upper)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           const Vec2fa du = curve2.axis_u(); | 
					
						
							|  |  |  |           const TensorLinearCubicBezierSurface1f curve1u = curve2a.xfm(du); | 
					
						
							|  |  |  |           CubicBezierCurve<Interval1f> curve0u = curve1u.reduce_v();          | 
					
						
							|  |  |  |           int roots = curve0u.maxRoots(); | 
					
						
							|  |  |  |           if (roots == 0) return; | 
					
						
							|  |  |  |            | 
					
						
							|  |  |  |           if (roots == 1) | 
					
						
							|  |  |  |           { | 
					
						
							|  |  |  |             const Interval1f u = bezier_clipping(curve0u); | 
					
						
							|  |  |  |             if (isEmpty(u)) return; | 
					
						
							|  |  |  |             TensorLinearCubicBezierSurface2fa curve2b = curve2a.clip_u(u); | 
					
						
							|  |  |  |             cu = BBox1f(lerp(cu.lower,cu.upper,u.lower),lerp(cu.lower,cu.upper,u.upper)); | 
					
						
							|  |  |  |             solve_bezier_clipping(cu,cv,curve2b); | 
					
						
							|  |  |  |             return; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           TensorLinearCubicBezierSurface2fa curve2l, curve2r; | 
					
						
							|  |  |  |           curve2a.split_u(curve2l,curve2r); | 
					
						
							|  |  |  |           solve_bezier_clipping(BBox1f(cu.lower,cu.center()),cv,curve2l); | 
					
						
							|  |  |  |           solve_bezier_clipping(BBox1f(cu.center(),cu.upper),cv,curve2r); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         __forceinline bool solve_bezier_clipping() | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           solve_bezier_clipping(BBox1f(0.0f,1.0f),BBox1f(0.0f,1.0f),curve2d); | 
					
						
							|  |  |  |           return isHit; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         __forceinline void solve_newton_raphson(BBox1f cu, BBox1f cv) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           Vec2fa uv(cu.center(),cv.center()); | 
					
						
							|  |  |  |           const Vec2fa dfdu = curve2d.eval_du(uv.x,uv.y); | 
					
						
							|  |  |  |           const Vec2fa dfdv = curve2d.eval_dv(uv.x,uv.y); | 
					
						
							|  |  |  |           const LinearSpace2fa rcp_J = rcp(LinearSpace2fa(dfdu,dfdv)); | 
					
						
							|  |  |  |           solve_newton_raphson_loop(cu,cv,uv,dfdu,dfdv,rcp_J); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         __forceinline void solve_newton_raphson_loop(BBox1f cu, BBox1f cv, const Vec2fa& uv_in, const Vec2fa& dfdu, const Vec2fa& dfdv, const LinearSpace2fa& rcp_J) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           Vec2fa uv = uv_in; | 
					
						
							|  |  |  |            | 
					
						
							|  |  |  |           for (size_t i=0; i<200; i++) | 
					
						
							|  |  |  |           { | 
					
						
							|  |  |  |             const Vec2fa f = curve2d.eval(uv.x,uv.y); | 
					
						
							|  |  |  |             const Vec2fa duv = rcp_J*f; | 
					
						
							|  |  |  |             uv -= duv; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             if (max(abs(f.x),abs(f.y)) < eps) | 
					
						
							|  |  |  |             { | 
					
						
							|  |  |  |               const float u = uv.x; | 
					
						
							|  |  |  |               const float v = uv.y; | 
					
						
							|  |  |  |               if (!(u >= 0.0f && u <= 1.0f)) return; // rejects NaNs
 | 
					
						
							|  |  |  |               if (!(v >= 0.0f && v <= 1.0f)) return; // rejects NaNs
 | 
					
						
							|  |  |  |               const TensorLinearCubicBezierSurface1f curve_z = curve3d.xfm(ray_space.row2(),ray.org); | 
					
						
							|  |  |  |               const float t = curve_z.eval(u,v); | 
					
						
							|  |  |  |               if (!(ray.tnear() <= t && t <= ray.tfar)) return; // rejects NaNs
 | 
					
						
							|  |  |  |               const Vec3fa Ng = cross(curve3d.eval_du(u,v),curve3d.eval_dv(u,v)); | 
					
						
							|  |  |  |               BezierCurveHit hit(t,u,v,Ng); | 
					
						
							|  |  |  |               isHit |= epilog(hit); | 
					
						
							|  |  |  |               return; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |           }        | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         __forceinline bool clip_v(BBox1f& cu, BBox1f& cv) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           const Vec2fa dv = curve2d.eval_dv(cu.lower,cv.lower); | 
					
						
							|  |  |  |           const TensorLinearCubicBezierSurface1f curve1v = curve2d.xfm(dv).clip(cu,cv); | 
					
						
							|  |  |  |           LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u(); | 
					
						
							|  |  |  |           if (!curve0v.hasRoot()) return false; | 
					
						
							|  |  |  |           Interval1f v = bezier_clipping(curve0v); | 
					
						
							|  |  |  |           if (isEmpty(v)) return false; | 
					
						
							|  |  |  |           v = intersect(v + Interval1f(-0.1f,+0.1f),Interval1f(0.0f,1.0f)); | 
					
						
							|  |  |  |           cv = BBox1f(lerp(cv.lower,cv.upper,v.lower),lerp(cv.lower,cv.upper,v.upper)); | 
					
						
							|  |  |  |           return true; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         __forceinline bool solve_krawczyk(bool very_small, BBox1f& cu, BBox1f& cv) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           /* perform bezier clipping in v-direction to get tight v-bounds */ | 
					
						
							|  |  |  |           TensorLinearCubicBezierSurface2fa curve2 = curve2d.clip(cu,cv); | 
					
						
							|  |  |  |           const Vec2fa dv = curve2.axis_v(); | 
					
						
							|  |  |  |           const TensorLinearCubicBezierSurface1f curve1v = curve2.xfm(dv); | 
					
						
							|  |  |  |           LinearBezierCurve<Interval1f> curve0v = curve1v.reduce_u(); | 
					
						
							|  |  |  |           if (unlikely(!curve0v.hasRoot())) return true; | 
					
						
							|  |  |  |           Interval1f v = bezier_clipping(curve0v); | 
					
						
							|  |  |  |           if (unlikely(isEmpty(v))) return true; | 
					
						
							|  |  |  |           v = intersect(v + Interval1f(-0.1f,+0.1f),Interval1f(0.0f,1.0f)); | 
					
						
							|  |  |  |           curve2 = curve2.clip_v(v); | 
					
						
							|  |  |  |           cv = BBox1f(lerp(cv.lower,cv.upper,v.lower),lerp(cv.lower,cv.upper,v.upper)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           /* perform one newton raphson iteration */ | 
					
						
							|  |  |  |           Vec2fa c(cu.center(),cv.center()); | 
					
						
							|  |  |  |           Vec2fa f,dfdu,dfdv; curve2d.eval(c.x,c.y,f,dfdu,dfdv); | 
					
						
							|  |  |  |           const LinearSpace2fa rcp_J = rcp(LinearSpace2fa(dfdu,dfdv)); | 
					
						
							|  |  |  |           const Vec2fa c1 = c - rcp_J*f; | 
					
						
							|  |  |  |            | 
					
						
							|  |  |  |           /* calculate bounds of derivatives */ | 
					
						
							|  |  |  |           const BBox2fa bounds_du = (1.0f/cu.size())*curve2.derivative_u().bounds(); | 
					
						
							|  |  |  |           const BBox2fa bounds_dv = (1.0f/cv.size())*curve2.derivative_v().bounds(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           /* calculate krawczyk test */ | 
					
						
							|  |  |  |           LinearSpace2<Vec2<Interval1f>> I(Interval1f(1.0f), Interval1f(0.0f), | 
					
						
							|  |  |  |                                            Interval1f(0.0f), Interval1f(1.0f)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           LinearSpace2<Vec2<Interval1f>> G(Interval1f(bounds_du.lower.x,bounds_du.upper.x), Interval1f(bounds_dv.lower.x,bounds_dv.upper.x), | 
					
						
							|  |  |  |                                            Interval1f(bounds_du.lower.y,bounds_du.upper.y), Interval1f(bounds_dv.lower.y,bounds_dv.upper.y)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           const LinearSpace2<Vec2f> rcp_J2(rcp_J); | 
					
						
							|  |  |  |           const LinearSpace2<Vec2<Interval1f>> rcp_Ji(rcp_J2); | 
					
						
							|  |  |  |            | 
					
						
							|  |  |  |           const Vec2<Interval1f> x(cu,cv); | 
					
						
							|  |  |  |           const Vec2<Interval1f> K = Vec2<Interval1f>(Vec2f(c1)) + (I - rcp_Ji*G)*(x-Vec2<Interval1f>(Vec2f(c))); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           /* test if there is no solution */ | 
					
						
							|  |  |  |           const Vec2<Interval1f> KK = intersect(K,x); | 
					
						
							|  |  |  |           if (unlikely(isEmpty(KK.x) || isEmpty(KK.y))) return true; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           /* exit if convergence cannot get proven, but terminate if we are very small */ | 
					
						
							|  |  |  |           if (unlikely(!subset(K,x) && !very_small)) return false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           /* solve using newton raphson iteration of convergence is guarenteed */ | 
					
						
							|  |  |  |           solve_newton_raphson_loop(cu,cv,c1,dfdu,dfdv,rcp_J); | 
					
						
							|  |  |  |           return true; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         __forceinline void solve_newton_raphson_no_recursion(BBox1f cu, BBox1f cv) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |            if (!clip_v(cu,cv)) return; | 
					
						
							|  |  |  |            return solve_newton_raphson(cu,cv); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         __forceinline void solve_newton_raphson_recursion(BBox1f cu, BBox1f cv) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           unsigned int sptr = 0; | 
					
						
							|  |  |  |           const unsigned int stack_size = 4; | 
					
						
							|  |  |  |           unsigned int mask_stack[stack_size]; | 
					
						
							|  |  |  |           BBox1f cu_stack[stack_size]; | 
					
						
							|  |  |  |           BBox1f cv_stack[stack_size]; | 
					
						
							|  |  |  |           goto entry; | 
					
						
							|  |  |  |            | 
					
						
							|  |  |  |           /* terminate if stack is empty */ | 
					
						
							|  |  |  |           while (sptr) | 
					
						
							|  |  |  |           { | 
					
						
							|  |  |  |             /* pop from stack */ | 
					
						
							|  |  |  |             { | 
					
						
							|  |  |  |               sptr--; | 
					
						
							|  |  |  |               size_t mask = mask_stack[sptr]; | 
					
						
							|  |  |  |               cu = cu_stack[sptr]; | 
					
						
							|  |  |  |               cv = cv_stack[sptr]; | 
					
						
							|  |  |  |               const size_t i = bscf(mask); | 
					
						
							|  |  |  |               mask_stack[sptr] = mask; | 
					
						
							|  |  |  |               if (mask) sptr++; // there are still items on the stack
 | 
					
						
							|  |  |  |                | 
					
						
							|  |  |  |               /* process next element recurse into each hit curve segment */ | 
					
						
							|  |  |  |               const float u0 = float(i+0)*(1.0f/(VSIZEX-1)); | 
					
						
							|  |  |  |               const float u1 = float(i+1)*(1.0f/(VSIZEX-1)); | 
					
						
							|  |  |  |               const BBox1f cui(lerp(cu.lower,cu.upper,u0),lerp(cu.lower,cu.upper,u1)); | 
					
						
							|  |  |  |               cu = cui; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if 0
 | 
					
						
							|  |  |  |             solve_newton_raphson_no_recursion(cu,cv); | 
					
						
							|  |  |  |             continue; | 
					
						
							|  |  |  |              | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |             /* we assume convergence for small u ranges and verify using krawczyk */ | 
					
						
							|  |  |  |             if (cu.size() < 1.0f/6.0f) { | 
					
						
							|  |  |  |               const bool very_small = cu.size() < 0.001f || sptr >= stack_size; | 
					
						
							|  |  |  |               if (solve_krawczyk(very_small,cu,cv)) { | 
					
						
							|  |  |  |                 continue; | 
					
						
							|  |  |  |               } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |           entry: | 
					
						
							|  |  |  |            | 
					
						
							|  |  |  |             /* split the curve into VSIZEX-1 segments in u-direction */ | 
					
						
							|  |  |  |             vboolx valid = true; | 
					
						
							|  |  |  |             TensorLinearCubicBezierSurface<Vec2vfx> subcurves = curve2d.clip_v(cv).vsplit_u(valid,cu); | 
					
						
							|  |  |  |              | 
					
						
							|  |  |  |             /* slabs test in u-direction */ | 
					
						
							|  |  |  |             Vec2vfx ndv = cross(subcurves.axis_v()); | 
					
						
							|  |  |  |             BBox<vfloatx> boundsv = subcurves.vxfm(ndv).bounds(); | 
					
						
							|  |  |  |             valid &= boundsv.lower <= eps; | 
					
						
							|  |  |  |             valid &= boundsv.upper >= -eps; | 
					
						
							|  |  |  |             if (none(valid)) continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             /* slabs test in v-direction */ | 
					
						
							|  |  |  |             Vec2vfx ndu = cross(subcurves.axis_u()); | 
					
						
							|  |  |  |             BBox<vfloatx> boundsu = subcurves.vxfm(ndu).bounds(); | 
					
						
							|  |  |  |             valid &= boundsu.lower <= eps; | 
					
						
							|  |  |  |             valid &= boundsu.upper >= -eps; | 
					
						
							|  |  |  |             if (none(valid)) continue; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             /* push valid segments to stack */ | 
					
						
							|  |  |  |             assert(sptr < stack_size); | 
					
						
							|  |  |  |             mask_stack [sptr] = movemask(valid); | 
					
						
							|  |  |  |             cu_stack   [sptr] = cu; | 
					
						
							|  |  |  |             cv_stack   [sptr] = cv; | 
					
						
							|  |  |  |             sptr++; | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         __forceinline bool solve_newton_raphson_main() | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           BBox1f vu(0.0f,1.0f); | 
					
						
							|  |  |  |           BBox1f vv(0.0f,1.0f); | 
					
						
							|  |  |  |           solve_newton_raphson_recursion(vu,vv); | 
					
						
							|  |  |  |           return isHit; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     template<template<typename Ty> class SourceCurve> | 
					
						
							|  |  |  |       struct OrientedCurve1Intersector1 | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |       //template<typename Ty> using Curve = SourceCurve<Ty>;
 | 
					
						
							|  |  |  |       typedef SourceCurve<Vec3ff> SourceCurve3ff; | 
					
						
							|  |  |  |       typedef SourceCurve<Vec3fa> SourceCurve3fa; | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline OrientedCurve1Intersector1() {} | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline OrientedCurve1Intersector1(const Ray& ray, const void* ptr) {} | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       template<typename Epilog> | 
					
						
							|  |  |  |       __noinline bool intersect(const CurvePrecalculations1& pre, Ray& ray, | 
					
						
							|  |  |  |                                 IntersectContext* context, | 
					
						
							|  |  |  |                                 const CurveGeometry* geom, const unsigned int primID,  | 
					
						
							|  |  |  |                                 const Vec3ff& v0i, const Vec3ff& v1i, const Vec3ff& v2i, const Vec3ff& v3i, | 
					
						
							|  |  |  |                                 const Vec3fa& n0i, const Vec3fa& n1i, const Vec3fa& n2i, const Vec3fa& n3i, | 
					
						
							|  |  |  |                                 const Epilog& epilog) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         STAT3(normal.trav_prims,1,1,1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         SourceCurve3ff ccurve(v0i,v1i,v2i,v3i); | 
					
						
							|  |  |  |         SourceCurve3fa ncurve(n0i,n1i,n2i,n3i); | 
					
						
							|  |  |  |         ccurve = enlargeRadiusToMinWidth(context,geom,ray.org,ccurve); | 
					
						
							|  |  |  |         TensorLinearCubicBezierSurface3fa curve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve); | 
					
						
							|  |  |  |         //return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_bezier_clipping();
 | 
					
						
							|  |  |  |         return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_newton_raphson_main(); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       template<typename Epilog> | 
					
						
							|  |  |  |       __noinline bool intersect(const CurvePrecalculations1& pre, Ray& ray, | 
					
						
							|  |  |  |                                 IntersectContext* context, | 
					
						
							|  |  |  |                                 const CurveGeometry* geom, const unsigned int primID, | 
					
						
							|  |  |  |                                 const TensorLinearCubicBezierSurface3fa& curve, const Epilog& epilog) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         STAT3(normal.trav_prims,1,1,1); | 
					
						
							|  |  |  |         //return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_bezier_clipping();
 | 
					
						
							|  |  |  |         return TensorLinearCubicBezierSurfaceIntersector<Ray,Epilog>(pre.ray_space,ray,curve,epilog).solve_newton_raphson_main(); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     template<template<typename Ty> class SourceCurve, int K> | 
					
						
							|  |  |  |       struct OrientedCurve1IntersectorK | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |       //template<typename Ty> using Curve = SourceCurve<Ty>;
 | 
					
						
							|  |  |  |       typedef SourceCurve<Vec3ff> SourceCurve3ff; | 
					
						
							|  |  |  |       typedef SourceCurve<Vec3fa> SourceCurve3fa; | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       struct Ray1 | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         __forceinline Ray1(RayK<K>& ray, size_t k) | 
					
						
							|  |  |  |           : org(ray.org.x[k],ray.org.y[k],ray.org.z[k]), dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]), _tnear(ray.tnear()[k]), tfar(ray.tfar[k]) {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         Vec3fa org; | 
					
						
							|  |  |  |         Vec3fa dir; | 
					
						
							|  |  |  |         float _tnear; | 
					
						
							|  |  |  |         float& tfar; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         __forceinline float& tnear() { return _tnear; } | 
					
						
							|  |  |  |         //__forceinline float& tfar()  { return _tfar; }
 | 
					
						
							|  |  |  |         __forceinline const float& tnear() const { return _tnear; } | 
					
						
							|  |  |  |         //__forceinline const float& tfar()  const { return _tfar; }
 | 
					
						
							|  |  |  |       }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       template<typename Epilog> | 
					
						
							|  |  |  |       __forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k, | 
					
						
							|  |  |  |                                    IntersectContext* context, | 
					
						
							|  |  |  |                                    const CurveGeometry* geom, const unsigned int primID, | 
					
						
							|  |  |  |                                    const Vec3ff& v0i, const Vec3ff& v1i, const Vec3ff& v2i, const Vec3ff& v3i, | 
					
						
							|  |  |  |                                    const Vec3fa& n0i, const Vec3fa& n1i, const Vec3fa& n2i, const Vec3fa& n3i, | 
					
						
							|  |  |  |                                    const Epilog& epilog) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         STAT3(normal.trav_prims,1,1,1); | 
					
						
							|  |  |  |         Ray1 ray(vray,k); | 
					
						
							|  |  |  |         SourceCurve3ff ccurve(v0i,v1i,v2i,v3i); | 
					
						
							|  |  |  |         SourceCurve3fa ncurve(n0i,n1i,n2i,n3i); | 
					
						
							|  |  |  |         ccurve = enlargeRadiusToMinWidth(context,geom,ray.org,ccurve); | 
					
						
							|  |  |  |         TensorLinearCubicBezierSurface3fa curve = TensorLinearCubicBezierSurface3fa::fromCenterAndNormalCurve(ccurve,ncurve); | 
					
						
							|  |  |  |         //return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_bezier_clipping();
 | 
					
						
							|  |  |  |         return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_newton_raphson_main(); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       template<typename Epilog> | 
					
						
							|  |  |  |       __forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k, | 
					
						
							|  |  |  |                                    IntersectContext* context, | 
					
						
							|  |  |  |                                    const CurveGeometry* geom, const unsigned int primID, | 
					
						
							|  |  |  |                                    const TensorLinearCubicBezierSurface3fa& curve, | 
					
						
							|  |  |  |                                    const Epilog& epilog) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         STAT3(normal.trav_prims,1,1,1); | 
					
						
							|  |  |  |         Ray1 ray(vray,k); | 
					
						
							|  |  |  |         //return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_bezier_clipping();
 | 
					
						
							|  |  |  |         return TensorLinearCubicBezierSurfaceIntersector<Ray1,Epilog>(pre.ray_space[k],ray,curve,epilog).solve_newton_raphson_main(); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     }; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } |