| 
									
										
										
										
											2021-05-20 12:49:33 +02:00
										 |  |  | // Copyright 2009-2021 Intel Corporation
 | 
					
						
							| 
									
										
										
										
											2021-04-20 18:38:09 +02:00
										 |  |  | // SPDX-License-Identifier: Apache-2.0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "../common/default.h"
 | 
					
						
							| 
									
										
										
										
											2021-05-20 12:49:33 +02:00
										 |  |  | //#include "../common/scene_curves.h"
 | 
					
						
							|  |  |  | #include "../common/context.h"
 | 
					
						
							| 
									
										
										
										
											2021-04-20 18:38:09 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace embree | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   class BezierBasis | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     template<typename T> | 
					
						
							|  |  |  |       static __forceinline Vec4<T> eval(const T& u)  | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |       const T t1 = u; | 
					
						
							|  |  |  |       const T t0 = 1.0f-t1; | 
					
						
							|  |  |  |       const T B0 = t0 * t0 * t0; | 
					
						
							|  |  |  |       const T B1 = 3.0f * t1 * (t0 * t0); | 
					
						
							|  |  |  |       const T B2 = 3.0f * (t1 * t1) * t0; | 
					
						
							|  |  |  |       const T B3 = t1 * t1 * t1; | 
					
						
							|  |  |  |       return Vec4<T>(B0,B1,B2,B3); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     template<typename T> | 
					
						
							|  |  |  |       static __forceinline Vec4<T>  derivative(const T& u) | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |       const T t1 = u; | 
					
						
							|  |  |  |       const T t0 = 1.0f-t1; | 
					
						
							|  |  |  |       const T B0 = -(t0*t0); | 
					
						
							|  |  |  |       const T B1 = madd(-2.0f,t0*t1,t0*t0); | 
					
						
							|  |  |  |       const T B2 = msub(+2.0f,t0*t1,t1*t1); | 
					
						
							|  |  |  |       const T B3 = +(t1*t1); | 
					
						
							|  |  |  |       return T(3.0f)*Vec4<T>(B0,B1,B2,B3); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     template<typename T> | 
					
						
							|  |  |  |       static __forceinline Vec4<T>  derivative2(const T& u) | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |       const T t1 = u; | 
					
						
							|  |  |  |       const T t0 = 1.0f-t1; | 
					
						
							|  |  |  |       const T B0 = t0; | 
					
						
							|  |  |  |       const T B1 = madd(-2.0f,t0,t1); | 
					
						
							|  |  |  |       const T B2 = madd(-2.0f,t1,t0); | 
					
						
							|  |  |  |       const T B3 = t1; | 
					
						
							|  |  |  |       return T(6.0f)*Vec4<T>(B0,B1,B2,B3); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   }; | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   struct PrecomputedBezierBasis | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |     enum { N = 16 }; | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  |     PrecomputedBezierBasis() {} | 
					
						
							|  |  |  |     PrecomputedBezierBasis(int shift); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* basis for bezier evaluation */ | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  |     float c0[N+1][N+1]; | 
					
						
							|  |  |  |     float c1[N+1][N+1]; | 
					
						
							|  |  |  |     float c2[N+1][N+1]; | 
					
						
							|  |  |  |     float c3[N+1][N+1]; | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     /* basis for bezier derivative evaluation */ | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  |     float d0[N+1][N+1]; | 
					
						
							|  |  |  |     float d1[N+1][N+1]; | 
					
						
							|  |  |  |     float d2[N+1][N+1]; | 
					
						
							|  |  |  |     float d3[N+1][N+1]; | 
					
						
							|  |  |  |   }; | 
					
						
							|  |  |  |   extern PrecomputedBezierBasis bezier_basis0; | 
					
						
							|  |  |  |   extern PrecomputedBezierBasis bezier_basis1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   template<typename V> | 
					
						
							|  |  |  |     struct LinearBezierCurve | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |       V v0,v1; | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline LinearBezierCurve () {} | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline LinearBezierCurve (const LinearBezierCurve& other) | 
					
						
							|  |  |  |         : v0(other.v0), v1(other.v1) {} | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline LinearBezierCurve& operator= (const LinearBezierCurve& other) { | 
					
						
							|  |  |  |         v0 = other.v0; v1 = other.v1; return *this; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         __forceinline LinearBezierCurve (const V& v0, const V& v1) | 
					
						
							|  |  |  |           : v0(v0), v1(v1) {} | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline V begin() const { return v0; } | 
					
						
							|  |  |  |       __forceinline V end  () const { return v1; } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       bool hasRoot() const; | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       friend embree_ostream operator<<(embree_ostream cout, const LinearBezierCurve& a) { | 
					
						
							|  |  |  |         return cout << "LinearBezierCurve (" << a.v0 << ", " << a.v1 << ")"; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     }; | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   template<> __forceinline bool LinearBezierCurve<Interval1f>::hasRoot() const { | 
					
						
							|  |  |  |     return numRoots(v0,v1); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   template<typename V> | 
					
						
							|  |  |  |     struct QuadraticBezierCurve | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |       V v0,v1,v2; | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline QuadraticBezierCurve () {} | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline QuadraticBezierCurve (const QuadraticBezierCurve& other) | 
					
						
							|  |  |  |         : v0(other.v0), v1(other.v1), v2(other.v2) {} | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline QuadraticBezierCurve& operator= (const QuadraticBezierCurve& other) { | 
					
						
							|  |  |  |         v0 = other.v0; v1 = other.v1; v2 = other.v2; return *this; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         __forceinline QuadraticBezierCurve (const V& v0, const V& v1, const V& v2) | 
					
						
							|  |  |  |           : v0(v0), v1(v1), v2(v2) {} | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline V begin() const { return v0; } | 
					
						
							|  |  |  |       __forceinline V end  () const { return v2; } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline V interval() const { | 
					
						
							|  |  |  |         return merge(v0,v1,v2); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline BBox<V> bounds() const { | 
					
						
							|  |  |  |         return merge(BBox<V>(v0),BBox<V>(v1),BBox<V>(v2)); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       friend embree_ostream operator<<(embree_ostream cout, const QuadraticBezierCurve& a) { | 
					
						
							|  |  |  |         return cout << "QuadraticBezierCurve ( (" << a.u.lower << ", " << a.u.upper << "), " << a.v0 << ", " << a.v1 << ", " << a.v2 << ")"; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     }; | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   typedef QuadraticBezierCurve<float> QuadraticBezierCurve1f; | 
					
						
							|  |  |  |   typedef QuadraticBezierCurve<Vec2fa> QuadraticBezierCurve2fa; | 
					
						
							|  |  |  |   typedef QuadraticBezierCurve<Vec3fa> QuadraticBezierCurve3fa; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   template<typename Vertex> | 
					
						
							|  |  |  |     struct CubicBezierCurve | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |       Vertex v0,v1,v2,v3; | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve() {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       template<typename T1> | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve (const CubicBezierCurve<T1>& other) | 
					
						
							|  |  |  |       : v0(other.v0), v1(other.v1), v2(other.v2), v3(other.v3) {} | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve& operator= (const CubicBezierCurve& other) { | 
					
						
							|  |  |  |         v0 = other.v0; v1 = other.v1; v2 = other.v2; v3 = other.v3; return *this; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3) | 
					
						
							|  |  |  |         : v0(v0), v1(v1), v2(v2), v3(v3) {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline Vertex begin() const { | 
					
						
							|  |  |  |         return v0; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline Vertex end() const { | 
					
						
							|  |  |  |         return v3; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline Vertex center() const { | 
					
						
							|  |  |  |         return 0.25f*(v0+v1+v2+v3); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline Vertex begin_direction() const { | 
					
						
							|  |  |  |         return v1-v0; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline Vertex end_direction() const { | 
					
						
							|  |  |  |         return v3-v2; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve<float> xfm(const Vertex& dx) const { | 
					
						
							|  |  |  |         return CubicBezierCurve<float>(dot(v0,dx),dot(v1,dx),dot(v2,dx),dot(v3,dx)); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve<vfloatx> vxfm(const Vertex& dx) const { | 
					
						
							|  |  |  |         return CubicBezierCurve<vfloatx>(dot(v0,dx),dot(v1,dx),dot(v2,dx),dot(v3,dx)); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve<float> xfm(const Vertex& dx, const Vertex& p) const { | 
					
						
							|  |  |  |         return CubicBezierCurve<float>(dot(v0-p,dx),dot(v1-p,dx),dot(v2-p,dx),dot(v3-p,dx)); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |        __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec3fa q0 = xfmVector(space,v0); | 
					
						
							|  |  |  |         const Vec3fa q1 = xfmVector(space,v1); | 
					
						
							|  |  |  |         const Vec3fa q2 = xfmVector(space,v2); | 
					
						
							|  |  |  |         const Vec3fa q3 = xfmVector(space,v3); | 
					
						
							|  |  |  |         return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec3fa q0 = xfmVector(space,v0-p); | 
					
						
							|  |  |  |         const Vec3fa q1 = xfmVector(space,v1-p); | 
					
						
							|  |  |  |         const Vec3fa q2 = xfmVector(space,v2-p); | 
					
						
							|  |  |  |         const Vec3fa q3 = xfmVector(space,v3-p); | 
					
						
							|  |  |  |         return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve<Vec3ff> xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w); | 
					
						
							|  |  |  |         const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w); | 
					
						
							|  |  |  |         const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w); | 
					
						
							|  |  |  |         const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w); | 
					
						
							|  |  |  |         return CubicBezierCurve<Vec3ff>(q0,q1,q2,q3); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve<Vec3fa> xfm(const LinearSpace3fa& space, const Vec3fa& p, const float s) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec3fa q0 = xfmVector(space,s*(v0-p)); | 
					
						
							|  |  |  |         const Vec3fa q1 = xfmVector(space,s*(v1-p)); | 
					
						
							|  |  |  |         const Vec3fa q2 = xfmVector(space,s*(v2-p)); | 
					
						
							|  |  |  |         const Vec3fa q3 = xfmVector(space,s*(v3-p)); | 
					
						
							|  |  |  |         return CubicBezierCurve<Vec3fa>(q0,q1,q2,q3); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline int maxRoots() const; | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline BBox<Vertex> bounds() const { | 
					
						
							|  |  |  |         return merge(BBox<Vertex>(v0),BBox<Vertex>(v1),BBox<Vertex>(v2),BBox<Vertex>(v3)); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline friend CubicBezierCurve operator +( const CubicBezierCurve& a, const CubicBezierCurve& b ) { | 
					
						
							|  |  |  |         return CubicBezierCurve(a.v0+b.v0,a.v1+b.v1,a.v2+b.v2,a.v3+b.v3); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline friend CubicBezierCurve operator -( const CubicBezierCurve& a, const CubicBezierCurve& b ) { | 
					
						
							|  |  |  |         return CubicBezierCurve(a.v0-b.v0,a.v1-b.v1,a.v2-b.v2,a.v3-b.v3); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline friend CubicBezierCurve operator -( const CubicBezierCurve& a, const Vertex& b ) { | 
					
						
							|  |  |  |         return CubicBezierCurve(a.v0-b,a.v1-b,a.v2-b,a.v3-b); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline friend CubicBezierCurve operator *( const Vertex& a, const CubicBezierCurve& b ) { | 
					
						
							|  |  |  |         return CubicBezierCurve(a*b.v0,a*b.v1,a*b.v2,a*b.v3); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline friend CubicBezierCurve cmadd( const Vertex& a, const CubicBezierCurve& b,  const CubicBezierCurve& c) { | 
					
						
							|  |  |  |         return CubicBezierCurve(madd(a,b.v0,c.v0),madd(a,b.v1,c.v1),madd(a,b.v2,c.v2),madd(a,b.v3,c.v3)); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline friend CubicBezierCurve clerp ( const CubicBezierCurve& a, const CubicBezierCurve& b, const Vertex& t ) { | 
					
						
							|  |  |  |         return cmadd((Vertex(1.0f)-t),a,t*b); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline friend CubicBezierCurve merge ( const CubicBezierCurve& a, const CubicBezierCurve& b ) { | 
					
						
							|  |  |  |         return CubicBezierCurve(merge(a.v0,b.v0),merge(a.v1,b.v1),merge(a.v2,b.v2),merge(a.v3,b.v3)); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline void split(CubicBezierCurve& left, CubicBezierCurve& right, const float t = 0.5f) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vertex p00 = v0; | 
					
						
							|  |  |  |         const Vertex p01 = v1; | 
					
						
							|  |  |  |         const Vertex p02 = v2; | 
					
						
							|  |  |  |         const Vertex p03 = v3; | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         const Vertex p10 = lerp(p00,p01,t); | 
					
						
							|  |  |  |         const Vertex p11 = lerp(p01,p02,t); | 
					
						
							|  |  |  |         const Vertex p12 = lerp(p02,p03,t); | 
					
						
							|  |  |  |         const Vertex p20 = lerp(p10,p11,t); | 
					
						
							|  |  |  |         const Vertex p21 = lerp(p11,p12,t); | 
					
						
							|  |  |  |         const Vertex p30 = lerp(p20,p21,t); | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         new (&left ) CubicBezierCurve(p00,p10,p20,p30); | 
					
						
							|  |  |  |         new (&right) CubicBezierCurve(p30,p21,p12,p03); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve<Vec2vfx> split() const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const float u0 = 0.0f, u1 = 1.0f; | 
					
						
							|  |  |  |         const float dscale = (u1-u0)*(1.0f/(3.0f*(VSIZEX-1))); | 
					
						
							|  |  |  |         const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(VSIZEX-1))); | 
					
						
							|  |  |  |         Vec2vfx P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vfx(dscale); | 
					
						
							|  |  |  |         const Vec2vfx P3 = shift_right_1(P0); | 
					
						
							|  |  |  |         const Vec2vfx dP3du = shift_right_1(dP0du);  | 
					
						
							|  |  |  |         const Vec2vfx P1 = P0 + dP0du;  | 
					
						
							|  |  |  |         const Vec2vfx P2 = P3 - dP3du; | 
					
						
							|  |  |  |         return CubicBezierCurve<Vec2vfx>(P0,P1,P2,P3); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve<Vec2vfx> split(const BBox1f& u) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const float u0 = u.lower, u1 = u.upper; | 
					
						
							|  |  |  |         const float dscale = (u1-u0)*(1.0f/(3.0f*(VSIZEX-1))); | 
					
						
							|  |  |  |         const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(VSIZEX-1))); | 
					
						
							|  |  |  |         Vec2vfx P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vfx(dscale); | 
					
						
							|  |  |  |         const Vec2vfx P3 = shift_right_1(P0); | 
					
						
							|  |  |  |         const Vec2vfx dP3du = shift_right_1(dP0du);  | 
					
						
							|  |  |  |         const Vec2vfx P1 = P0 + dP0du;  | 
					
						
							|  |  |  |         const Vec2vfx P2 = P3 - dP3du; | 
					
						
							|  |  |  |         return CubicBezierCurve<Vec2vfx>(P0,P1,P2,P3); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline void eval(float t, Vertex& p, Vertex& dp) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vertex p00 = v0; | 
					
						
							|  |  |  |         const Vertex p01 = v1; | 
					
						
							|  |  |  |         const Vertex p02 = v2; | 
					
						
							|  |  |  |         const Vertex p03 = v3; | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         const Vertex p10 = lerp(p00,p01,t); | 
					
						
							|  |  |  |         const Vertex p11 = lerp(p01,p02,t); | 
					
						
							|  |  |  |         const Vertex p12 = lerp(p02,p03,t); | 
					
						
							|  |  |  |         const Vertex p20 = lerp(p10,p11,t); | 
					
						
							|  |  |  |         const Vertex p21 = lerp(p11,p12,t); | 
					
						
							|  |  |  |         const Vertex p30 = lerp(p20,p21,t); | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         p = p30; | 
					
						
							|  |  |  |         dp = Vertex(3.0f)*(p21-p20); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if 0
 | 
					
						
							|  |  |  |       __forceinline Vertex eval(float t) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vertex p00 = v0; | 
					
						
							|  |  |  |         const Vertex p01 = v1; | 
					
						
							|  |  |  |         const Vertex p02 = v2; | 
					
						
							|  |  |  |         const Vertex p03 = v3; | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         const Vertex p10 = lerp(p00,p01,t); | 
					
						
							|  |  |  |         const Vertex p11 = lerp(p01,p02,t); | 
					
						
							|  |  |  |         const Vertex p12 = lerp(p02,p03,t); | 
					
						
							|  |  |  |         const Vertex p20 = lerp(p10,p11,t); | 
					
						
							|  |  |  |         const Vertex p21 = lerp(p11,p12,t); | 
					
						
							|  |  |  |         const Vertex p30 = lerp(p20,p21,t); | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         return p30; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |       __forceinline Vertex eval(const float t) const  | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec4<float> b = BezierBasis::eval(t); | 
					
						
							|  |  |  |         return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline Vertex eval_dt(float t) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vertex p00 = v1-v0; | 
					
						
							|  |  |  |         const Vertex p01 = v2-v1; | 
					
						
							|  |  |  |         const Vertex p02 = v3-v2; | 
					
						
							|  |  |  |         const Vertex p10 = lerp(p00,p01,t); | 
					
						
							|  |  |  |         const Vertex p11 = lerp(p01,p02,t); | 
					
						
							|  |  |  |         const Vertex p20 = lerp(p10,p11,t); | 
					
						
							|  |  |  |         return Vertex(3.0f)*p20; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline Vertex eval_du(const float t) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec4<float> b = BezierBasis::derivative(t); | 
					
						
							|  |  |  |         return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline Vertex eval_dudu(const float t) const  | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec4<float> b = BezierBasis::derivative2(t); | 
					
						
							|  |  |  |         return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline void evalN(const vfloatx& t, Vec2vfx& p, Vec2vfx& dp) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec2vfx p00 = v0; | 
					
						
							|  |  |  |         const Vec2vfx p01 = v1; | 
					
						
							|  |  |  |         const Vec2vfx p02 = v2; | 
					
						
							|  |  |  |         const Vec2vfx p03 = v3; | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         const Vec2vfx p10 = lerp(p00,p01,t); | 
					
						
							|  |  |  |         const Vec2vfx p11 = lerp(p01,p02,t); | 
					
						
							|  |  |  |         const Vec2vfx p12 = lerp(p02,p03,t); | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         const Vec2vfx p20 = lerp(p10,p11,t); | 
					
						
							|  |  |  |         const Vec2vfx p21 = lerp(p11,p12,t); | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         const Vec2vfx p30 = lerp(p20,p21,t); | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         p = p30; | 
					
						
							|  |  |  |         dp = vfloatx(3.0f)*(p21-p20); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vertex p00 = v0; | 
					
						
							|  |  |  |         const Vertex p01 = v1; | 
					
						
							|  |  |  |         const Vertex p02 = v2; | 
					
						
							|  |  |  |         const Vertex p03 = v3; | 
					
						
							|  |  |  |         const Vertex p10 = lerp(p00,p01,t); | 
					
						
							|  |  |  |         const Vertex p11 = lerp(p01,p02,t); | 
					
						
							|  |  |  |         const Vertex p12 = lerp(p02,p03,t); | 
					
						
							|  |  |  |         const Vertex p20 = lerp(p10,p11,t); | 
					
						
							|  |  |  |         const Vertex p21 = lerp(p11,p12,t); | 
					
						
							|  |  |  |         const Vertex p30 = lerp(p20,p21,t); | 
					
						
							|  |  |  |         p = p30; | 
					
						
							|  |  |  |         dp = 3.0f*(p21-p20); | 
					
						
							|  |  |  |         ddp = eval_dudu(t); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline CubicBezierCurve clip(const Interval1f& u1) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         Vertex f0,df0; eval(u1.lower,f0,df0); | 
					
						
							|  |  |  |         Vertex f1,df1; eval(u1.upper,f1,df1); | 
					
						
							|  |  |  |         float s = u1.upper-u1.lower; | 
					
						
							|  |  |  |         return CubicBezierCurve(f0,f0+s*(1.0f/3.0f)*df0,f1-s*(1.0f/3.0f)*df1,f1); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline QuadraticBezierCurve<Vertex> derivative() const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vertex q0 = 3.0f*(v1-v0); | 
					
						
							|  |  |  |         const Vertex q1 = 3.0f*(v2-v1); | 
					
						
							|  |  |  |         const Vertex q2 = 3.0f*(v3-v2); | 
					
						
							|  |  |  |         return QuadraticBezierCurve<Vertex>(q0,q1,q2); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       __forceinline BBox<Vertex> derivative_bounds(const Interval1f& u1) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         Vertex f0,df0; eval(u1.lower,f0,df0); | 
					
						
							|  |  |  |         Vertex f3,df3; eval(u1.upper,f3,df3); | 
					
						
							|  |  |  |         const float s = u1.upper-u1.lower; | 
					
						
							|  |  |  |         const Vertex f1 = f0+s*(1.0f/3.0f)*df0; | 
					
						
							|  |  |  |         const Vertex f2 = f3-s*(1.0f/3.0f)*df3; | 
					
						
							|  |  |  |         const Vertex q0 = s*df0; | 
					
						
							|  |  |  |         const Vertex q1 = 3.0f*(f2-f1); | 
					
						
							|  |  |  |         const Vertex q2 = s*df3; | 
					
						
							|  |  |  |         return merge(BBox<Vertex>(q0),BBox<Vertex>(q1),BBox<Vertex>(q2)); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       template<int M> | 
					
						
							|  |  |  |       __forceinline Vec4vf<M> veval(const vfloat<M>& t) const  | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec4vf<M> b = BezierBasis::eval(t); | 
					
						
							|  |  |  |         return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       template<int M> | 
					
						
							|  |  |  |       __forceinline Vec4vf<M> veval_du(const vfloat<M>& t) const  | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec4vf<M> b = BezierBasis::derivative(t); | 
					
						
							|  |  |  |         return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       template<int M> | 
					
						
							|  |  |  |       __forceinline Vec4vf<M> veval_dudu(const vfloat<M>& t) const  | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec4vf<M> b = BezierBasis::derivative2(t); | 
					
						
							|  |  |  |         return madd(b.x, Vec4vf<M>(v0), madd(b.y, Vec4vf<M>(v1), madd(b.z, Vec4vf<M>(v2), b.w * Vec4vf<M>(v3)))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       template<int M> | 
					
						
							|  |  |  |       __forceinline void veval(const vfloat<M>& t, Vec4vf<M>& p, Vec4vf<M>& dp) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const Vec4vf<M> p00 = v0; | 
					
						
							|  |  |  |         const Vec4vf<M> p01 = v1; | 
					
						
							|  |  |  |         const Vec4vf<M> p02 = v2; | 
					
						
							|  |  |  |         const Vec4vf<M> p03 = v3; | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         const Vec4vf<M> p10 = lerp(p00,p01,t); | 
					
						
							|  |  |  |         const Vec4vf<M> p11 = lerp(p01,p02,t); | 
					
						
							|  |  |  |         const Vec4vf<M> p12 = lerp(p02,p03,t); | 
					
						
							|  |  |  |         const Vec4vf<M> p20 = lerp(p10,p11,t); | 
					
						
							|  |  |  |         const Vec4vf<M> p21 = lerp(p11,p12,t); | 
					
						
							|  |  |  |         const Vec4vf<M> p30 = lerp(p20,p21,t); | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |         p = p30; | 
					
						
							|  |  |  |         dp = vfloat<M>(3.0f)*(p21-p20); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       template<int M, typename Vec = Vec4vf<M>> | 
					
						
							|  |  |  |       __forceinline Vec eval0(const int ofs, const int size) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         assert(size <= PrecomputedBezierBasis::N); | 
					
						
							|  |  |  |         assert(ofs <= size); | 
					
						
							|  |  |  |         return madd(vfloat<M>::loadu(&bezier_basis0.c0[size][ofs]), Vec(v0), | 
					
						
							|  |  |  |                     madd(vfloat<M>::loadu(&bezier_basis0.c1[size][ofs]), Vec(v1), | 
					
						
							|  |  |  |                          madd(vfloat<M>::loadu(&bezier_basis0.c2[size][ofs]), Vec(v2), | 
					
						
							|  |  |  |                               vfloat<M>::loadu(&bezier_basis0.c3[size][ofs]) * Vec(v3)))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       template<int M, typename Vec = Vec4vf<M>> | 
					
						
							|  |  |  |       __forceinline Vec eval1(const int ofs, const int size) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         assert(size <= PrecomputedBezierBasis::N); | 
					
						
							|  |  |  |         assert(ofs <= size); | 
					
						
							|  |  |  |         return madd(vfloat<M>::loadu(&bezier_basis1.c0[size][ofs]), Vec(v0),  | 
					
						
							|  |  |  |                     madd(vfloat<M>::loadu(&bezier_basis1.c1[size][ofs]), Vec(v1), | 
					
						
							|  |  |  |                          madd(vfloat<M>::loadu(&bezier_basis1.c2[size][ofs]), Vec(v2), | 
					
						
							|  |  |  |                               vfloat<M>::loadu(&bezier_basis1.c3[size][ofs]) * Vec(v3)))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       template<int M, typename Vec = Vec4vf<M>> | 
					
						
							|  |  |  |       __forceinline Vec derivative0(const int ofs, const int size) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         assert(size <= PrecomputedBezierBasis::N); | 
					
						
							|  |  |  |         assert(ofs <= size); | 
					
						
							|  |  |  |         return madd(vfloat<M>::loadu(&bezier_basis0.d0[size][ofs]), Vec(v0), | 
					
						
							|  |  |  |                     madd(vfloat<M>::loadu(&bezier_basis0.d1[size][ofs]), Vec(v1), | 
					
						
							|  |  |  |                          madd(vfloat<M>::loadu(&bezier_basis0.d2[size][ofs]), Vec(v2), | 
					
						
							|  |  |  |                               vfloat<M>::loadu(&bezier_basis0.d3[size][ofs]) * Vec(v3)))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       template<int M, typename Vec = Vec4vf<M>> | 
					
						
							|  |  |  |       __forceinline Vec derivative1(const int ofs, const int size) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         assert(size <= PrecomputedBezierBasis::N); | 
					
						
							|  |  |  |         assert(ofs <= size); | 
					
						
							|  |  |  |         return madd(vfloat<M>::loadu(&bezier_basis1.d0[size][ofs]), Vec(v0), | 
					
						
							|  |  |  |                     madd(vfloat<M>::loadu(&bezier_basis1.d1[size][ofs]), Vec(v1), | 
					
						
							|  |  |  |                          madd(vfloat<M>::loadu(&bezier_basis1.d2[size][ofs]), Vec(v2), | 
					
						
							|  |  |  |                               vfloat<M>::loadu(&bezier_basis1.d3[size][ofs]) * Vec(v3)))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       /* calculates bounds of bezier curve geometry */ | 
					
						
							|  |  |  |       __forceinline BBox3fa accurateBounds() const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const int N = 7; | 
					
						
							|  |  |  |         const float scale = 1.0f/(3.0f*(N-1)); | 
					
						
							|  |  |  |         Vec3vfx pl(pos_inf), pu(neg_inf); | 
					
						
							|  |  |  |         for (int i=0; i<=N; i+=VSIZEX) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           vintx vi = vintx(i)+vintx(step); | 
					
						
							|  |  |  |           vboolx valid = vi <= vintx(N); | 
					
						
							|  |  |  |           const Vec3vfx p  = eval0<VSIZEX,Vec3vf<VSIZEX>>(i,N); | 
					
						
							|  |  |  |           const Vec3vfx dp = derivative0<VSIZEX,Vec3vf<VSIZEX>>(i,N); | 
					
						
							|  |  |  |           const Vec3vfx pm = p-Vec3vfx(scale)*select(vi!=vintx(0),dp,Vec3vfx(zero)); | 
					
						
							|  |  |  |           const Vec3vfx pp = p+Vec3vfx(scale)*select(vi!=vintx(N),dp,Vec3vfx(zero)); | 
					
						
							|  |  |  |           pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
 | 
					
						
							|  |  |  |           pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
 | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); | 
					
						
							|  |  |  |         const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); | 
					
						
							|  |  |  |         return BBox3fa(lower,upper); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       /* calculates bounds of bezier curve geometry */ | 
					
						
							|  |  |  |       __forceinline BBox3fa accurateRoundBounds() const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         const int N = 7; | 
					
						
							|  |  |  |         const float scale = 1.0f/(3.0f*(N-1)); | 
					
						
							|  |  |  |         Vec4vfx pl(pos_inf), pu(neg_inf); | 
					
						
							|  |  |  |         for (int i=0; i<=N; i+=VSIZEX) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           vintx vi = vintx(i)+vintx(step); | 
					
						
							|  |  |  |           vboolx valid = vi <= vintx(N); | 
					
						
							|  |  |  |           const Vec4vfx p  = eval0<VSIZEX>(i,N); | 
					
						
							|  |  |  |           const Vec4vfx dp = derivative0<VSIZEX>(i,N); | 
					
						
							|  |  |  |           const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero)); | 
					
						
							|  |  |  |           const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero)); | 
					
						
							|  |  |  |           pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min
 | 
					
						
							|  |  |  |           pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min
 | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); | 
					
						
							|  |  |  |         const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); | 
					
						
							|  |  |  |         const float r_min = reduce_min(pl.w); | 
					
						
							|  |  |  |         const float r_max = reduce_max(pu.w); | 
					
						
							|  |  |  |         const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max))); | 
					
						
							|  |  |  |         return enlarge(BBox3fa(lower,upper),upper_r); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       /* calculates bounds when tessellated into N line segments */ | 
					
						
							|  |  |  |       __forceinline BBox3fa accurateFlatBounds(int N) const | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |         if (likely(N == 4)) | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           const Vec4vf4 pi = eval0<4>(0,4); | 
					
						
							|  |  |  |           const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z)); | 
					
						
							|  |  |  |           const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z)); | 
					
						
							|  |  |  |           const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w))); | 
					
						
							|  |  |  |           return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w)))); | 
					
						
							|  |  |  |         }  | 
					
						
							|  |  |  |         else | 
					
						
							|  |  |  |         { | 
					
						
							|  |  |  |           Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f); | 
					
						
							|  |  |  |           for (int i=0; i<N; i+=VSIZEX) | 
					
						
							|  |  |  |           { | 
					
						
							|  |  |  |             vboolx valid = vintx(i)+vintx(step) < vintx(N); | 
					
						
							|  |  |  |             const Vec4vfx pi = eval0<VSIZEX>(i,N); | 
					
						
							|  |  |  |              | 
					
						
							|  |  |  |             pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min
 | 
					
						
							|  |  |  |             pl.y = select(valid,min(pl.y,pi.y),pl.y);  | 
					
						
							|  |  |  |             pl.z = select(valid,min(pl.z,pi.z),pl.z);  | 
					
						
							|  |  |  |              | 
					
						
							|  |  |  |             pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min
 | 
					
						
							|  |  |  |             pu.y = select(valid,max(pu.y,pi.y),pu.y);  | 
					
						
							|  |  |  |             pu.z = select(valid,max(pu.z,pi.z),pu.z);  | 
					
						
							|  |  |  |              | 
					
						
							|  |  |  |             ru   = select(valid,max(ru,abs(pi.w)),ru); | 
					
						
							|  |  |  |           } | 
					
						
							|  |  |  |           const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); | 
					
						
							|  |  |  |           const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); | 
					
						
							|  |  |  |           const Vec3fa upper_r(reduce_max(ru)); | 
					
						
							|  |  |  |           return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w)))); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |        | 
					
						
							|  |  |  |       friend __forceinline embree_ostream operator<<(embree_ostream cout, const CubicBezierCurve& curve) { | 
					
						
							|  |  |  |         return cout << "CubicBezierCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }"; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |     }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if defined(__AVX__)
 | 
					
						
							|  |  |  |   template<> | 
					
						
							|  |  |  |     __forceinline CubicBezierCurve<vfloat4> CubicBezierCurve<vfloat4>::clip(const Interval1f& u1) const | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |     const vfloat8 p00 = vfloat8(v0); | 
					
						
							|  |  |  |     const vfloat8 p01 = vfloat8(v1); | 
					
						
							|  |  |  |     const vfloat8 p02 = vfloat8(v2); | 
					
						
							|  |  |  |     const vfloat8 p03 = vfloat8(v3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     const vfloat8 t(vfloat4(u1.lower),vfloat4(u1.upper)); | 
					
						
							|  |  |  |     const vfloat8 p10 = lerp(p00,p01,t); | 
					
						
							|  |  |  |     const vfloat8 p11 = lerp(p01,p02,t); | 
					
						
							|  |  |  |     const vfloat8 p12 = lerp(p02,p03,t); | 
					
						
							|  |  |  |     const vfloat8 p20 = lerp(p10,p11,t); | 
					
						
							|  |  |  |     const vfloat8 p21 = lerp(p11,p12,t); | 
					
						
							|  |  |  |     const vfloat8 p30 = lerp(p20,p21,t); | 
					
						
							|  |  |  |      | 
					
						
							|  |  |  |     const vfloat8 f01  = p30; | 
					
						
							|  |  |  |     const vfloat8 df01 = vfloat8(3.0f)*(p21-p20); | 
					
						
							|  |  |  |          | 
					
						
							|  |  |  |     const vfloat4 f0  = extract4<0>(f01),  f1  = extract4<1>(f01); | 
					
						
							|  |  |  |     const vfloat4 df0 = extract4<0>(df01), df1 = extract4<1>(df01); | 
					
						
							|  |  |  |     const float s = u1.upper-u1.lower; | 
					
						
							|  |  |  |     return CubicBezierCurve(f0,f0+s*(1.0f/3.0f)*df0,f1-s*(1.0f/3.0f)*df1,f1); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   template<typename Vertex> using BezierCurveT = CubicBezierCurve<Vertex>; | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   typedef CubicBezierCurve<float> CubicBezierCurve1f; | 
					
						
							|  |  |  |   typedef CubicBezierCurve<Vec2fa> CubicBezierCurve2fa; | 
					
						
							|  |  |  |   typedef CubicBezierCurve<Vec3fa> CubicBezierCurve3fa; | 
					
						
							|  |  |  |   typedef CubicBezierCurve<Vec3fa> BezierCurve3fa; | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   template<> __forceinline int CubicBezierCurve<float>::maxRoots() const | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |     float eps = 1E-4f; | 
					
						
							|  |  |  |     bool neg0 = v0 <= 0.0f; bool zero0 = fabs(v0) < eps; | 
					
						
							|  |  |  |     bool neg1 = v1 <= 0.0f; bool zero1 = fabs(v1) < eps; | 
					
						
							|  |  |  |     bool neg2 = v2 <= 0.0f; bool zero2 = fabs(v2) < eps; | 
					
						
							|  |  |  |     bool neg3 = v3 <= 0.0f; bool zero3 = fabs(v3) < eps; | 
					
						
							|  |  |  |     return (neg0 != neg1 || zero0) + (neg1 != neg2 || zero1) + (neg2 != neg3 || zero2 || zero3); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |    | 
					
						
							|  |  |  |   template<> __forceinline int CubicBezierCurve<Interval1f>::maxRoots() const { | 
					
						
							|  |  |  |     return numRoots(v0,v1) + numRoots(v1,v2) + numRoots(v2,v3); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-05-20 12:49:33 +02:00
										 |  |  |   template<typename CurveGeometry> | 
					
						
							| 
									
										
										
										
											2021-04-20 18:38:09 +02:00
										 |  |  |   __forceinline CubicBezierCurve<Vec3ff> enlargeRadiusToMinWidth(const IntersectContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const CubicBezierCurve<Vec3ff>& curve) | 
					
						
							|  |  |  |   { | 
					
						
							|  |  |  |     return CubicBezierCurve<Vec3ff>(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0), | 
					
						
							|  |  |  |                                     enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1), | 
					
						
							|  |  |  |                                     enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2), | 
					
						
							|  |  |  |                                     enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3)); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } |