mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
	
	
		
			505 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			505 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|   | 
 | ||
|  | #include "edge-segments.h"
 | ||
|  | 
 | ||
|  | #include "arithmetics.hpp"
 | ||
|  | #include "equation-solver.h"
 | ||
|  | 
 | ||
|  | namespace msdfgen { | ||
|  | 
 | ||
|  | void EdgeSegment::distanceToPseudoDistance(SignedDistance &distance, Point2 origin, double param) const { | ||
|  |     if (param < 0) { | ||
|  |         Vector2 dir = direction(0).normalize(); | ||
|  |         Vector2 aq = origin-point(0); | ||
|  |         double ts = dotProduct(aq, dir); | ||
|  |         if (ts < 0) { | ||
|  |             double pseudoDistance = crossProduct(aq, dir); | ||
|  |             if (fabs(pseudoDistance) <= fabs(distance.distance)) { | ||
|  |                 distance.distance = pseudoDistance; | ||
|  |                 distance.dot = 0; | ||
|  |             } | ||
|  |         } | ||
|  |     } else if (param > 1) { | ||
|  |         Vector2 dir = direction(1).normalize(); | ||
|  |         Vector2 bq = origin-point(1); | ||
|  |         double ts = dotProduct(bq, dir); | ||
|  |         if (ts > 0) { | ||
|  |             double pseudoDistance = crossProduct(bq, dir); | ||
|  |             if (fabs(pseudoDistance) <= fabs(distance.distance)) { | ||
|  |                 distance.distance = pseudoDistance; | ||
|  |                 distance.dot = 0; | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | LinearSegment::LinearSegment(Point2 p0, Point2 p1, EdgeColor edgeColor) : EdgeSegment(edgeColor) { | ||
|  |     p[0] = p0; | ||
|  |     p[1] = p1; | ||
|  | } | ||
|  | 
 | ||
|  | QuadraticSegment::QuadraticSegment(Point2 p0, Point2 p1, Point2 p2, EdgeColor edgeColor) : EdgeSegment(edgeColor) { | ||
|  |     if (p1 == p0 || p1 == p2) | ||
|  |         p1 = 0.5*(p0+p2); | ||
|  |     p[0] = p0; | ||
|  |     p[1] = p1; | ||
|  |     p[2] = p2; | ||
|  | } | ||
|  | 
 | ||
|  | CubicSegment::CubicSegment(Point2 p0, Point2 p1, Point2 p2, Point2 p3, EdgeColor edgeColor) : EdgeSegment(edgeColor) { | ||
|  |     if ((p1 == p0 || p1 == p3) && (p2 == p0 || p2 == p3)) { | ||
|  |         p1 = mix(p0, p3, 1/3.); | ||
|  |         p2 = mix(p0, p3, 2/3.); | ||
|  |     } | ||
|  |     p[0] = p0; | ||
|  |     p[1] = p1; | ||
|  |     p[2] = p2; | ||
|  |     p[3] = p3; | ||
|  | } | ||
|  | 
 | ||
|  | LinearSegment * LinearSegment::clone() const { | ||
|  |     return new LinearSegment(p[0], p[1], color); | ||
|  | } | ||
|  | 
 | ||
|  | QuadraticSegment * QuadraticSegment::clone() const { | ||
|  |     return new QuadraticSegment(p[0], p[1], p[2], color); | ||
|  | } | ||
|  | 
 | ||
|  | CubicSegment * CubicSegment::clone() const { | ||
|  |     return new CubicSegment(p[0], p[1], p[2], p[3], color); | ||
|  | } | ||
|  | 
 | ||
|  | Point2 LinearSegment::point(double param) const { | ||
|  |     return mix(p[0], p[1], param); | ||
|  | } | ||
|  | 
 | ||
|  | Point2 QuadraticSegment::point(double param) const { | ||
|  |     return mix(mix(p[0], p[1], param), mix(p[1], p[2], param), param); | ||
|  | } | ||
|  | 
 | ||
|  | Point2 CubicSegment::point(double param) const { | ||
|  |     Vector2 p12 = mix(p[1], p[2], param); | ||
|  |     return mix(mix(mix(p[0], p[1], param), p12, param), mix(p12, mix(p[2], p[3], param), param), param); | ||
|  | } | ||
|  | 
 | ||
|  | Vector2 LinearSegment::direction(double param) const { | ||
|  |     return p[1]-p[0]; | ||
|  | } | ||
|  | 
 | ||
|  | Vector2 QuadraticSegment::direction(double param) const { | ||
|  |     Vector2 tangent = mix(p[1]-p[0], p[2]-p[1], param); | ||
|  |     if (!tangent) | ||
|  |         return p[2]-p[0]; | ||
|  |     return tangent; | ||
|  | } | ||
|  | 
 | ||
|  | Vector2 CubicSegment::direction(double param) const { | ||
|  |     Vector2 tangent = mix(mix(p[1]-p[0], p[2]-p[1], param), mix(p[2]-p[1], p[3]-p[2], param), param); | ||
|  |     if (!tangent) { | ||
|  |         if (param == 0) return p[2]-p[0]; | ||
|  |         if (param == 1) return p[3]-p[1]; | ||
|  |     } | ||
|  |     return tangent; | ||
|  | } | ||
|  | 
 | ||
|  | Vector2 LinearSegment::directionChange(double param) const { | ||
|  |     return Vector2(); | ||
|  | } | ||
|  | 
 | ||
|  | Vector2 QuadraticSegment::directionChange(double param) const { | ||
|  |     return (p[2]-p[1])-(p[1]-p[0]); | ||
|  | } | ||
|  | 
 | ||
|  | Vector2 CubicSegment::directionChange(double param) const { | ||
|  |     return mix((p[2]-p[1])-(p[1]-p[0]), (p[3]-p[2])-(p[2]-p[1]), param); | ||
|  | } | ||
|  | 
 | ||
|  | double LinearSegment::length() const { | ||
|  |     return (p[1]-p[0]).length(); | ||
|  | } | ||
|  | 
 | ||
|  | double QuadraticSegment::length() const { | ||
|  |     Vector2 ab = p[1]-p[0]; | ||
|  |     Vector2 br = p[2]-p[1]-ab; | ||
|  |     double abab = dotProduct(ab, ab); | ||
|  |     double abbr = dotProduct(ab, br); | ||
|  |     double brbr = dotProduct(br, br); | ||
|  |     double abLen = sqrt(abab); | ||
|  |     double brLen = sqrt(brbr); | ||
|  |     double crs = crossProduct(ab, br); | ||
|  |     double h = sqrt(abab+abbr+abbr+brbr); | ||
|  |     return ( | ||
|  |         brLen*((abbr+brbr)*h-abbr*abLen)+ | ||
|  |         crs*crs*log((brLen*h+abbr+brbr)/(brLen*abLen+abbr)) | ||
|  |     )/(brbr*brLen); | ||
|  | } | ||
|  | 
 | ||
|  | SignedDistance LinearSegment::signedDistance(Point2 origin, double ¶m) const { | ||
|  |     Vector2 aq = origin-p[0]; | ||
|  |     Vector2 ab = p[1]-p[0]; | ||
|  |     param = dotProduct(aq, ab)/dotProduct(ab, ab); | ||
|  |     Vector2 eq = p[param > .5]-origin; | ||
|  |     double endpointDistance = eq.length(); | ||
|  |     if (param > 0 && param < 1) { | ||
|  |         double orthoDistance = dotProduct(ab.getOrthonormal(false), aq); | ||
|  |         if (fabs(orthoDistance) < endpointDistance) | ||
|  |             return SignedDistance(orthoDistance, 0); | ||
|  |     } | ||
|  |     return SignedDistance(nonZeroSign(crossProduct(aq, ab))*endpointDistance, fabs(dotProduct(ab.normalize(), eq.normalize()))); | ||
|  | } | ||
|  | 
 | ||
|  | SignedDistance QuadraticSegment::signedDistance(Point2 origin, double ¶m) const { | ||
|  |     Vector2 qa = p[0]-origin; | ||
|  |     Vector2 ab = p[1]-p[0]; | ||
|  |     Vector2 br = p[2]-p[1]-ab; | ||
|  |     double a = dotProduct(br, br); | ||
|  |     double b = 3*dotProduct(ab, br); | ||
|  |     double c = 2*dotProduct(ab, ab)+dotProduct(qa, br); | ||
|  |     double d = dotProduct(qa, ab); | ||
|  |     double t[3]; | ||
|  |     int solutions = solveCubic(t, a, b, c, d); | ||
|  | 
 | ||
|  |     Vector2 epDir = direction(0); | ||
|  |     double minDistance = nonZeroSign(crossProduct(epDir, qa))*qa.length(); // distance from A
 | ||
|  |     param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir); | ||
|  |     { | ||
|  |         epDir = direction(1); | ||
|  |         double distance = (p[2]-origin).length(); // distance from B
 | ||
|  |         if (distance < fabs(minDistance)) { | ||
|  |             minDistance = nonZeroSign(crossProduct(epDir, p[2]-origin))*distance; | ||
|  |             param = dotProduct(origin-p[1], epDir)/dotProduct(epDir, epDir); | ||
|  |         } | ||
|  |     } | ||
|  |     for (int i = 0; i < solutions; ++i) { | ||
|  |         if (t[i] > 0 && t[i] < 1) { | ||
|  |             Point2 qe = qa+2*t[i]*ab+t[i]*t[i]*br; | ||
|  |             double distance = qe.length(); | ||
|  |             if (distance <= fabs(minDistance)) { | ||
|  |                 minDistance = nonZeroSign(crossProduct(ab+t[i]*br, qe))*distance; | ||
|  |                 param = t[i]; | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     if (param >= 0 && param <= 1) | ||
|  |         return SignedDistance(minDistance, 0); | ||
|  |     if (param < .5) | ||
|  |         return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize()))); | ||
|  |     else | ||
|  |         return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[2]-origin).normalize()))); | ||
|  | } | ||
|  | 
 | ||
|  | SignedDistance CubicSegment::signedDistance(Point2 origin, double ¶m) const { | ||
|  |     Vector2 qa = p[0]-origin; | ||
|  |     Vector2 ab = p[1]-p[0]; | ||
|  |     Vector2 br = p[2]-p[1]-ab; | ||
|  |     Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br; | ||
|  | 
 | ||
|  |     Vector2 epDir = direction(0); | ||
|  |     double minDistance = nonZeroSign(crossProduct(epDir, qa))*qa.length(); // distance from A
 | ||
|  |     param = -dotProduct(qa, epDir)/dotProduct(epDir, epDir); | ||
|  |     { | ||
|  |         epDir = direction(1); | ||
|  |         double distance = (p[3]-origin).length(); // distance from B
 | ||
|  |         if (distance < fabs(minDistance)) { | ||
|  |             minDistance = nonZeroSign(crossProduct(epDir, p[3]-origin))*distance; | ||
|  |             param = dotProduct(epDir-(p[3]-origin), epDir)/dotProduct(epDir, epDir); | ||
|  |         } | ||
|  |     } | ||
|  |     // Iterative minimum distance search
 | ||
|  |     for (int i = 0; i <= MSDFGEN_CUBIC_SEARCH_STARTS; ++i) { | ||
|  |         double t = (double) i/MSDFGEN_CUBIC_SEARCH_STARTS; | ||
|  |         Vector2 qe = qa+3*t*ab+3*t*t*br+t*t*t*as; | ||
|  |         for (int step = 0; step < MSDFGEN_CUBIC_SEARCH_STEPS; ++step) { | ||
|  |             // Improve t
 | ||
|  |             Vector2 d1 = 3*ab+6*t*br+3*t*t*as; | ||
|  |             Vector2 d2 = 6*br+6*t*as; | ||
|  |             t -= dotProduct(qe, d1)/(dotProduct(d1, d1)+dotProduct(qe, d2)); | ||
|  |             if (t <= 0 || t >= 1) | ||
|  |                 break; | ||
|  |             qe = qa+3*t*ab+3*t*t*br+t*t*t*as; | ||
|  |             double distance = qe.length(); | ||
|  |             if (distance < fabs(minDistance)) { | ||
|  |                 minDistance = nonZeroSign(crossProduct(d1, qe))*distance; | ||
|  |                 param = t; | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     if (param >= 0 && param <= 1) | ||
|  |         return SignedDistance(minDistance, 0); | ||
|  |     if (param < .5) | ||
|  |         return SignedDistance(minDistance, fabs(dotProduct(direction(0).normalize(), qa.normalize()))); | ||
|  |     else | ||
|  |         return SignedDistance(minDistance, fabs(dotProduct(direction(1).normalize(), (p[3]-origin).normalize()))); | ||
|  | } | ||
|  | 
 | ||
|  | int LinearSegment::scanlineIntersections(double x[3], int dy[3], double y) const { | ||
|  |     if ((y >= p[0].y && y < p[1].y) || (y >= p[1].y && y < p[0].y)) { | ||
|  |         double param = (y-p[0].y)/(p[1].y-p[0].y); | ||
|  |         x[0] = mix(p[0].x, p[1].x, param); | ||
|  |         dy[0] = sign(p[1].y-p[0].y); | ||
|  |         return 1; | ||
|  |     } | ||
|  |     return 0; | ||
|  | } | ||
|  | 
 | ||
|  | int QuadraticSegment::scanlineIntersections(double x[3], int dy[3], double y) const { | ||
|  |     int total = 0; | ||
|  |     int nextDY = y > p[0].y ? 1 : -1; | ||
|  |     x[total] = p[0].x; | ||
|  |     if (p[0].y == y) { | ||
|  |         if (p[0].y < p[1].y || (p[0].y == p[1].y && p[0].y < p[2].y)) | ||
|  |             dy[total++] = 1; | ||
|  |         else | ||
|  |             nextDY = 1; | ||
|  |     } | ||
|  |     { | ||
|  |         Vector2 ab = p[1]-p[0]; | ||
|  |         Vector2 br = p[2]-p[1]-ab; | ||
|  |         double t[2]; | ||
|  |         int solutions = solveQuadratic(t, br.y, 2*ab.y, p[0].y-y); | ||
|  |         // Sort solutions
 | ||
|  |         double tmp; | ||
|  |         if (solutions >= 2 && t[0] > t[1]) | ||
|  |             tmp = t[0], t[0] = t[1], t[1] = tmp; | ||
|  |         for (int i = 0; i < solutions && total < 2; ++i) { | ||
|  |             if (t[i] >= 0 && t[i] <= 1) { | ||
|  |                 x[total] = p[0].x+2*t[i]*ab.x+t[i]*t[i]*br.x; | ||
|  |                 if (nextDY*(ab.y+t[i]*br.y) >= 0) { | ||
|  |                     dy[total++] = nextDY; | ||
|  |                     nextDY = -nextDY; | ||
|  |                 } | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  |     if (p[2].y == y) { | ||
|  |         if (nextDY > 0 && total > 0) { | ||
|  |             --total; | ||
|  |             nextDY = -1; | ||
|  |         } | ||
|  |         if ((p[2].y < p[1].y || (p[2].y == p[1].y && p[2].y < p[0].y)) && total < 2) { | ||
|  |             x[total] = p[2].x; | ||
|  |             if (nextDY < 0) { | ||
|  |                 dy[total++] = -1; | ||
|  |                 nextDY = 1; | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  |     if (nextDY != (y >= p[2].y ? 1 : -1)) { | ||
|  |         if (total > 0) | ||
|  |             --total; | ||
|  |         else { | ||
|  |             if (fabs(p[2].y-y) < fabs(p[0].y-y)) | ||
|  |                 x[total] = p[2].x; | ||
|  |             dy[total++] = nextDY; | ||
|  |         } | ||
|  |     } | ||
|  |     return total; | ||
|  | } | ||
|  | 
 | ||
|  | int CubicSegment::scanlineIntersections(double x[3], int dy[3], double y) const { | ||
|  |     int total = 0; | ||
|  |     int nextDY = y > p[0].y ? 1 : -1; | ||
|  |     x[total] = p[0].x; | ||
|  |     if (p[0].y == y) { | ||
|  |         if (p[0].y < p[1].y || (p[0].y == p[1].y && (p[0].y < p[2].y || (p[0].y == p[2].y && p[0].y < p[3].y)))) | ||
|  |             dy[total++] = 1; | ||
|  |         else | ||
|  |             nextDY = 1; | ||
|  |     } | ||
|  |     { | ||
|  |         Vector2 ab = p[1]-p[0]; | ||
|  |         Vector2 br = p[2]-p[1]-ab; | ||
|  |         Vector2 as = (p[3]-p[2])-(p[2]-p[1])-br; | ||
|  |         double t[3]; | ||
|  |         int solutions = solveCubic(t, as.y, 3*br.y, 3*ab.y, p[0].y-y); | ||
|  |         // Sort solutions
 | ||
|  |         double tmp; | ||
|  |         if (solutions >= 2) { | ||
|  |             if (t[0] > t[1]) | ||
|  |                 tmp = t[0], t[0] = t[1], t[1] = tmp; | ||
|  |             if (solutions >= 3 && t[1] > t[2]) { | ||
|  |                 tmp = t[1], t[1] = t[2], t[2] = tmp; | ||
|  |                 if (t[0] > t[1]) | ||
|  |                     tmp = t[0], t[0] = t[1], t[1] = tmp; | ||
|  |             } | ||
|  |         } | ||
|  |         for (int i = 0; i < solutions && total < 3; ++i) { | ||
|  |             if (t[i] >= 0 && t[i] <= 1) { | ||
|  |                 x[total] = p[0].x+3*t[i]*ab.x+3*t[i]*t[i]*br.x+t[i]*t[i]*t[i]*as.x; | ||
|  |                 if (nextDY*(ab.y+2*t[i]*br.y+t[i]*t[i]*as.y) >= 0) { | ||
|  |                     dy[total++] = nextDY; | ||
|  |                     nextDY = -nextDY; | ||
|  |                 } | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  |     if (p[3].y == y) { | ||
|  |         if (nextDY > 0 && total > 0) { | ||
|  |             --total; | ||
|  |             nextDY = -1; | ||
|  |         } | ||
|  |         if ((p[3].y < p[2].y || (p[3].y == p[2].y && (p[3].y < p[1].y || (p[3].y == p[1].y && p[3].y < p[0].y)))) && total < 3) { | ||
|  |             x[total] = p[3].x; | ||
|  |             if (nextDY < 0) { | ||
|  |                 dy[total++] = -1; | ||
|  |                 nextDY = 1; | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  |     if (nextDY != (y >= p[3].y ? 1 : -1)) { | ||
|  |         if (total > 0) | ||
|  |             --total; | ||
|  |         else { | ||
|  |             if (fabs(p[3].y-y) < fabs(p[0].y-y)) | ||
|  |                 x[total] = p[3].x; | ||
|  |             dy[total++] = nextDY; | ||
|  |         } | ||
|  |     } | ||
|  |     return total; | ||
|  | } | ||
|  | 
 | ||
|  | static void pointBounds(Point2 p, double &l, double &b, double &r, double &t) { | ||
|  |     if (p.x < l) l = p.x; | ||
|  |     if (p.y < b) b = p.y; | ||
|  |     if (p.x > r) r = p.x; | ||
|  |     if (p.y > t) t = p.y; | ||
|  | } | ||
|  | 
 | ||
|  | void LinearSegment::bound(double &l, double &b, double &r, double &t) const { | ||
|  |     pointBounds(p[0], l, b, r, t); | ||
|  |     pointBounds(p[1], l, b, r, t); | ||
|  | } | ||
|  | 
 | ||
|  | void QuadraticSegment::bound(double &l, double &b, double &r, double &t) const { | ||
|  |     pointBounds(p[0], l, b, r, t); | ||
|  |     pointBounds(p[2], l, b, r, t); | ||
|  |     Vector2 bot = (p[1]-p[0])-(p[2]-p[1]); | ||
|  |     if (bot.x) { | ||
|  |         double param = (p[1].x-p[0].x)/bot.x; | ||
|  |         if (param > 0 && param < 1) | ||
|  |             pointBounds(point(param), l, b, r, t); | ||
|  |     } | ||
|  |     if (bot.y) { | ||
|  |         double param = (p[1].y-p[0].y)/bot.y; | ||
|  |         if (param > 0 && param < 1) | ||
|  |             pointBounds(point(param), l, b, r, t); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | void CubicSegment::bound(double &l, double &b, double &r, double &t) const { | ||
|  |     pointBounds(p[0], l, b, r, t); | ||
|  |     pointBounds(p[3], l, b, r, t); | ||
|  |     Vector2 a0 = p[1]-p[0]; | ||
|  |     Vector2 a1 = 2*(p[2]-p[1]-a0); | ||
|  |     Vector2 a2 = p[3]-3*p[2]+3*p[1]-p[0]; | ||
|  |     double params[2]; | ||
|  |     int solutions; | ||
|  |     solutions = solveQuadratic(params, a2.x, a1.x, a0.x); | ||
|  |     for (int i = 0; i < solutions; ++i) | ||
|  |         if (params[i] > 0 && params[i] < 1) | ||
|  |             pointBounds(point(params[i]), l, b, r, t); | ||
|  |     solutions = solveQuadratic(params, a2.y, a1.y, a0.y); | ||
|  |     for (int i = 0; i < solutions; ++i) | ||
|  |         if (params[i] > 0 && params[i] < 1) | ||
|  |             pointBounds(point(params[i]), l, b, r, t); | ||
|  | } | ||
|  | 
 | ||
|  | void LinearSegment::reverse() { | ||
|  |     Point2 tmp = p[0]; | ||
|  |     p[0] = p[1]; | ||
|  |     p[1] = tmp; | ||
|  | } | ||
|  | 
 | ||
|  | void QuadraticSegment::reverse() { | ||
|  |     Point2 tmp = p[0]; | ||
|  |     p[0] = p[2]; | ||
|  |     p[2] = tmp; | ||
|  | } | ||
|  | 
 | ||
|  | void CubicSegment::reverse() { | ||
|  |     Point2 tmp = p[0]; | ||
|  |     p[0] = p[3]; | ||
|  |     p[3] = tmp; | ||
|  |     tmp = p[1]; | ||
|  |     p[1] = p[2]; | ||
|  |     p[2] = tmp; | ||
|  | } | ||
|  | 
 | ||
|  | void LinearSegment::moveStartPoint(Point2 to) { | ||
|  |     p[0] = to; | ||
|  | } | ||
|  | 
 | ||
|  | void QuadraticSegment::moveStartPoint(Point2 to) { | ||
|  |     Vector2 origSDir = p[0]-p[1]; | ||
|  |     Point2 origP1 = p[1]; | ||
|  |     p[1] += crossProduct(p[0]-p[1], to-p[0])/crossProduct(p[0]-p[1], p[2]-p[1])*(p[2]-p[1]); | ||
|  |     p[0] = to; | ||
|  |     if (dotProduct(origSDir, p[0]-p[1]) < 0) | ||
|  |         p[1] = origP1; | ||
|  | } | ||
|  | 
 | ||
|  | void CubicSegment::moveStartPoint(Point2 to) { | ||
|  |     p[1] += to-p[0]; | ||
|  |     p[0] = to; | ||
|  | } | ||
|  | 
 | ||
|  | void LinearSegment::moveEndPoint(Point2 to) { | ||
|  |     p[1] = to; | ||
|  | } | ||
|  | 
 | ||
|  | void QuadraticSegment::moveEndPoint(Point2 to) { | ||
|  |     Vector2 origEDir = p[2]-p[1]; | ||
|  |     Point2 origP1 = p[1]; | ||
|  |     p[1] += crossProduct(p[2]-p[1], to-p[2])/crossProduct(p[2]-p[1], p[0]-p[1])*(p[0]-p[1]); | ||
|  |     p[2] = to; | ||
|  |     if (dotProduct(origEDir, p[2]-p[1]) < 0) | ||
|  |         p[1] = origP1; | ||
|  | } | ||
|  | 
 | ||
|  | void CubicSegment::moveEndPoint(Point2 to) { | ||
|  |     p[2] += to-p[3]; | ||
|  |     p[3] = to; | ||
|  | } | ||
|  | 
 | ||
|  | void LinearSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const { | ||
|  |     part1 = new LinearSegment(p[0], point(1/3.), color); | ||
|  |     part2 = new LinearSegment(point(1/3.), point(2/3.), color); | ||
|  |     part3 = new LinearSegment(point(2/3.), p[1], color); | ||
|  | } | ||
|  | 
 | ||
|  | void QuadraticSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const { | ||
|  |     part1 = new QuadraticSegment(p[0], mix(p[0], p[1], 1/3.), point(1/3.), color); | ||
|  |     part2 = new QuadraticSegment(point(1/3.), mix(mix(p[0], p[1], 5/9.), mix(p[1], p[2], 4/9.), .5), point(2/3.), color); | ||
|  |     part3 = new QuadraticSegment(point(2/3.), mix(p[1], p[2], 2/3.), p[2], color); | ||
|  | } | ||
|  | 
 | ||
|  | void CubicSegment::splitInThirds(EdgeSegment *&part1, EdgeSegment *&part2, EdgeSegment *&part3) const { | ||
|  |     part1 = new CubicSegment(p[0], p[0] == p[1] ? p[0] : mix(p[0], p[1], 1/3.), mix(mix(p[0], p[1], 1/3.), mix(p[1], p[2], 1/3.), 1/3.), point(1/3.), color); | ||
|  |     part2 = new CubicSegment(point(1/3.), | ||
|  |         mix(mix(mix(p[0], p[1], 1/3.), mix(p[1], p[2], 1/3.), 1/3.), mix(mix(p[1], p[2], 1/3.), mix(p[2], p[3], 1/3.), 1/3.), 2/3.), | ||
|  |         mix(mix(mix(p[0], p[1], 2/3.), mix(p[1], p[2], 2/3.), 2/3.), mix(mix(p[1], p[2], 2/3.), mix(p[2], p[3], 2/3.), 2/3.), 1/3.), | ||
|  |         point(2/3.), color); | ||
|  |     part3 = new CubicSegment(point(2/3.), mix(mix(p[1], p[2], 2/3.), mix(p[2], p[3], 2/3.), 2/3.), p[2] == p[3] ? p[3] : mix(p[2], p[3], 2/3.), p[3], color); | ||
|  | } | ||
|  | 
 | ||
|  | EdgeSegment * QuadraticSegment::convertToCubic() const { | ||
|  |     return new CubicSegment(p[0], mix(p[0], p[1], 2/3.), mix(p[1], p[2], 1/3.), p[2], color); | ||
|  | } | ||
|  | 
 | ||
|  | void CubicSegment::deconverge(int param, double amount) { | ||
|  |     Vector2 dir = direction(param); | ||
|  |     Vector2 normal = dir.getOrthonormal(); | ||
|  |     double h = dotProduct(directionChange(param)-dir, normal); | ||
|  |     switch (param) { | ||
|  |         case 0: | ||
|  |             p[1] += amount*(dir+sign(h)*sqrt(fabs(h))*normal); | ||
|  |             break; | ||
|  |         case 1: | ||
|  |             p[2] -= amount*(dir-sign(h)*sqrt(fabs(h))*normal); | ||
|  |             break; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | } |