| 
									
										
										
										
											2015-10-02 14:20:50 -03:00
										 |  |  | /* Copyright (c) 2002-2008 Jean-Marc Valin
 | 
					
						
							|  |  |  |    Copyright (c) 2007-2008 CSIRO | 
					
						
							|  |  |  |    Copyright (c) 2007-2009 Xiph.Org Foundation | 
					
						
							|  |  |  |    Written by Jean-Marc Valin */ | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |    @file mathops.h | 
					
						
							|  |  |  |    @brief Various math functions | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |    Redistribution and use in source and binary forms, with or without | 
					
						
							|  |  |  |    modification, are permitted provided that the following conditions | 
					
						
							|  |  |  |    are met: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    - Redistributions of source code must retain the above copyright | 
					
						
							|  |  |  |    notice, this list of conditions and the following disclaimer. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    - Redistributions in binary form must reproduce the above copyright | 
					
						
							|  |  |  |    notice, this list of conditions and the following disclaimer in the | 
					
						
							|  |  |  |    documentation and/or other materials provided with the distribution. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
					
						
							|  |  |  |    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
					
						
							|  |  |  |    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
					
						
							|  |  |  |    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER | 
					
						
							|  |  |  |    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
					
						
							|  |  |  |    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
					
						
							|  |  |  |    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
					
						
							|  |  |  |    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
					
						
							|  |  |  |    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
					
						
							|  |  |  |    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
					
						
							|  |  |  |    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef MATHOPS_H
 | 
					
						
							|  |  |  | #define MATHOPS_H
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-11-27 19:29:48 -02:00
										 |  |  | #include "opus/celt/arch.h"
 | 
					
						
							|  |  |  | #include "opus/celt/entcode.h"
 | 
					
						
							|  |  |  | #include "opus/celt/os_support.h"
 | 
					
						
							| 
									
										
										
										
											2015-10-02 14:20:50 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ | 
					
						
							|  |  |  | #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | unsigned isqrt32(opus_uint32 _val); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef OVERRIDE_CELT_MAXABS16
 | 
					
						
							|  |  |  | static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i; | 
					
						
							|  |  |  |    opus_val16 maxval = 0; | 
					
						
							|  |  |  |    opus_val16 minval = 0; | 
					
						
							|  |  |  |    for (i=0;i<len;i++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       maxval = MAX16(maxval, x[i]); | 
					
						
							|  |  |  |       minval = MIN16(minval, x[i]); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    return MAX32(EXTEND32(maxval),-EXTEND32(minval)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef OVERRIDE_CELT_MAXABS32
 | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  | static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i; | 
					
						
							|  |  |  |    opus_val32 maxval = 0; | 
					
						
							|  |  |  |    opus_val32 minval = 0; | 
					
						
							|  |  |  |    for (i=0;i<len;i++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       maxval = MAX32(maxval, x[i]); | 
					
						
							|  |  |  |       minval = MIN32(minval, x[i]); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    return MAX32(maxval, -minval); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | #define celt_maxabs32(x,len) celt_maxabs16(x,len)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define PI 3.141592653f
 | 
					
						
							|  |  |  | #define celt_sqrt(x) ((float)sqrt(x))
 | 
					
						
							|  |  |  | #define celt_rsqrt(x) (1.f/celt_sqrt(x))
 | 
					
						
							|  |  |  | #define celt_rsqrt_norm(x) (celt_rsqrt(x))
 | 
					
						
							|  |  |  | #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
 | 
					
						
							|  |  |  | #define celt_rcp(x) (1.f/(x))
 | 
					
						
							|  |  |  | #define celt_div(a,b) ((a)/(b))
 | 
					
						
							|  |  |  | #define frac_div32(a,b) ((float)(a)/(b))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef FLOAT_APPROX
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
 | 
					
						
							|  |  |  |          denorm, +/- inf and NaN are *not* handled */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /** Base-2 log approximation (log2(x)). */ | 
					
						
							|  |  |  | static OPUS_INLINE float celt_log2(float x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int integer; | 
					
						
							|  |  |  |    float frac; | 
					
						
							|  |  |  |    union { | 
					
						
							|  |  |  |       float f; | 
					
						
							|  |  |  |       opus_uint32 i; | 
					
						
							|  |  |  |    } in; | 
					
						
							|  |  |  |    in.f = x; | 
					
						
							|  |  |  |    integer = (in.i>>23)-127; | 
					
						
							|  |  |  |    in.i -= integer<<23; | 
					
						
							|  |  |  |    frac = in.f - 1.5f; | 
					
						
							|  |  |  |    frac = -0.41445418f + frac*(0.95909232f | 
					
						
							|  |  |  |           + frac*(-0.33951290f + frac*0.16541097f)); | 
					
						
							|  |  |  |    return 1+integer+frac; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /** Base-2 exponential approximation (2^x). */ | 
					
						
							|  |  |  | static OPUS_INLINE float celt_exp2(float x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int integer; | 
					
						
							|  |  |  |    float frac; | 
					
						
							|  |  |  |    union { | 
					
						
							|  |  |  |       float f; | 
					
						
							|  |  |  |       opus_uint32 i; | 
					
						
							|  |  |  |    } res; | 
					
						
							|  |  |  |    integer = floor(x); | 
					
						
							|  |  |  |    if (integer < -50) | 
					
						
							|  |  |  |       return 0; | 
					
						
							|  |  |  |    frac = x-integer; | 
					
						
							|  |  |  |    /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ | 
					
						
							|  |  |  |    res.f = 0.99992522f + frac * (0.69583354f | 
					
						
							|  |  |  |            + frac * (0.22606716f + 0.078024523f*frac)); | 
					
						
							|  |  |  |    res.i = (res.i + (integer<<23)) & 0x7fffffff; | 
					
						
							|  |  |  |    return res.f; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | #define celt_log2(x) ((float)(1.442695040888963387*log(x)))
 | 
					
						
							|  |  |  | #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-11-27 19:29:48 -02:00
										 |  |  | #include "opus/celt/os_support.h"
 | 
					
						
							| 
									
										
										
										
											2015-10-02 14:20:50 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | #ifndef OVERRIDE_CELT_ILOG2
 | 
					
						
							|  |  |  | /** Integer log in base2. Undefined for zero and negative numbers */ | 
					
						
							|  |  |  | static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers"); | 
					
						
							|  |  |  |    return EC_ILOG(x)-1; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /** Integer log in base2. Defined for zero, but not for negative numbers */ | 
					
						
							|  |  |  | static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    return x <= 0 ? 0 : celt_ilog2(x); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | opus_val16 celt_rsqrt_norm(opus_val32 x); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | opus_val32 celt_sqrt(opus_val32 x); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | opus_val16 celt_cos_norm(opus_val32 x); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ | 
					
						
							|  |  |  | static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i; | 
					
						
							|  |  |  |    opus_val16 n, frac; | 
					
						
							|  |  |  |    /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
 | 
					
						
							|  |  |  |        0.15530808010959576, -0.08556153059057618 */ | 
					
						
							|  |  |  |    static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; | 
					
						
							|  |  |  |    if (x==0) | 
					
						
							|  |  |  |       return -32767; | 
					
						
							|  |  |  |    i = celt_ilog2(x); | 
					
						
							|  |  |  |    n = VSHR32(x,i-15)-32768-16384; | 
					
						
							|  |  |  |    frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); | 
					
						
							|  |  |  |    return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |  K0 = 1 | 
					
						
							|  |  |  |  K1 = log(2) | 
					
						
							|  |  |  |  K2 = 3-4*log(2) | 
					
						
							|  |  |  |  K3 = 3*log(2) - 2 | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | #define D0 16383
 | 
					
						
							|  |  |  | #define D1 22804
 | 
					
						
							|  |  |  | #define D2 14819
 | 
					
						
							|  |  |  | #define D3 10204
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    opus_val16 frac; | 
					
						
							|  |  |  |    frac = SHL16(x, 4); | 
					
						
							|  |  |  |    return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ | 
					
						
							|  |  |  | static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int integer; | 
					
						
							|  |  |  |    opus_val16 frac; | 
					
						
							|  |  |  |    integer = SHR16(x,10); | 
					
						
							|  |  |  |    if (integer>14) | 
					
						
							|  |  |  |       return 0x7f000000; | 
					
						
							|  |  |  |    else if (integer < -15) | 
					
						
							|  |  |  |       return 0; | 
					
						
							|  |  |  |    frac = celt_exp2_frac(x-SHL16(integer,10)); | 
					
						
							|  |  |  |    return VSHR32(EXTEND32(frac), -integer-2); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | opus_val32 celt_rcp(opus_val32 x); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | opus_val32 frac_div32(opus_val32 a, opus_val32 b); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define M1 32767
 | 
					
						
							|  |  |  | #define M2 -21
 | 
					
						
							|  |  |  | #define M3 -11943
 | 
					
						
							|  |  |  | #define M4 4936
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Atan approximation using a 4th order polynomial. Input is in Q15 format
 | 
					
						
							|  |  |  |    and normalized by pi/4. Output is in Q15 format */ | 
					
						
							|  |  |  | static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #undef M1
 | 
					
						
							|  |  |  | #undef M2
 | 
					
						
							|  |  |  | #undef M3
 | 
					
						
							|  |  |  | #undef M4
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* atan2() approximation valid for positive input values */ | 
					
						
							|  |  |  | static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    if (y < x) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_val32 arg; | 
					
						
							|  |  |  |       arg = celt_div(SHL32(EXTEND32(y),15),x); | 
					
						
							|  |  |  |       if (arg >= 32767) | 
					
						
							|  |  |  |          arg = 32767; | 
					
						
							|  |  |  |       return SHR16(celt_atan01(EXTRACT16(arg)),1); | 
					
						
							|  |  |  |    } else { | 
					
						
							|  |  |  |       opus_val32 arg; | 
					
						
							|  |  |  |       arg = celt_div(SHL32(EXTEND32(x),15),y); | 
					
						
							|  |  |  |       if (arg >= 32767) | 
					
						
							|  |  |  |          arg = 32767; | 
					
						
							|  |  |  |       return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-05-01 12:48:46 -03:00
										 |  |  | #endif /* FIXED_POINT */
 | 
					
						
							| 
									
										
										
										
											2015-10-02 14:20:50 -03:00
										 |  |  | #endif /* MATHOPS_H */
 |