| 
									
										
										
										
											2014-02-09 22:10:30 -03:00
										 |  |  | /*************************************************************************/ | 
					
						
							|  |  |  | /*  quat.cpp                                                             */ | 
					
						
							|  |  |  | /*************************************************************************/ | 
					
						
							|  |  |  | /*                       This file is part of:                           */ | 
					
						
							|  |  |  | /*                           GODOT ENGINE                                */ | 
					
						
							|  |  |  | /*                    http://www.godotengine.org                         */ | 
					
						
							|  |  |  | /*************************************************************************/ | 
					
						
							| 
									
										
										
										
											2017-01-01 22:01:57 +01:00
										 |  |  | /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur.                 */ | 
					
						
							| 
									
										
										
										
											2014-02-09 22:10:30 -03:00
										 |  |  | /*                                                                       */ | 
					
						
							|  |  |  | /* Permission is hereby granted, free of charge, to any person obtaining */ | 
					
						
							|  |  |  | /* a copy of this software and associated documentation files (the       */ | 
					
						
							|  |  |  | /* "Software"), to deal in the Software without restriction, including   */ | 
					
						
							|  |  |  | /* without limitation the rights to use, copy, modify, merge, publish,   */ | 
					
						
							|  |  |  | /* distribute, sublicense, and/or sell copies of the Software, and to    */ | 
					
						
							|  |  |  | /* permit persons to whom the Software is furnished to do so, subject to */ | 
					
						
							|  |  |  | /* the following conditions:                                             */ | 
					
						
							|  |  |  | /*                                                                       */ | 
					
						
							|  |  |  | /* The above copyright notice and this permission notice shall be        */ | 
					
						
							|  |  |  | /* included in all copies or substantial portions of the Software.       */ | 
					
						
							|  |  |  | /*                                                                       */ | 
					
						
							|  |  |  | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */ | 
					
						
							|  |  |  | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */ | 
					
						
							|  |  |  | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ | 
					
						
							|  |  |  | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */ | 
					
						
							|  |  |  | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */ | 
					
						
							|  |  |  | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */ | 
					
						
							|  |  |  | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */ | 
					
						
							|  |  |  | /*************************************************************************/ | 
					
						
							|  |  |  | #include "quat.h"
 | 
					
						
							|  |  |  | #include "print_string.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Quat::set_euler(const Vector3& p_euler) { | 
					
						
							| 
									
										
										
										
											2016-03-09 00:00:52 +01:00
										 |  |  | 	real_t half_yaw = p_euler.x * 0.5; | 
					
						
							|  |  |  | 	real_t half_pitch = p_euler.y * 0.5; | 
					
						
							|  |  |  | 	real_t half_roll = p_euler.z * 0.5; | 
					
						
							| 
									
										
										
										
											2014-02-09 22:10:30 -03:00
										 |  |  | 	real_t cos_yaw = Math::cos(half_yaw); | 
					
						
							|  |  |  | 	real_t sin_yaw = Math::sin(half_yaw); | 
					
						
							|  |  |  | 	real_t cos_pitch = Math::cos(half_pitch); | 
					
						
							|  |  |  | 	real_t sin_pitch = Math::sin(half_pitch); | 
					
						
							|  |  |  | 	real_t cos_roll = Math::cos(half_roll); | 
					
						
							|  |  |  | 	real_t sin_roll = Math::sin(half_roll); | 
					
						
							|  |  |  | 	set(cos_roll * sin_pitch * cos_yaw+sin_roll * cos_pitch * sin_yaw, | 
					
						
							|  |  |  | 		cos_roll * cos_pitch * sin_yaw - sin_roll * sin_pitch * cos_yaw, | 
					
						
							|  |  |  | 		sin_roll * cos_pitch * cos_yaw - cos_roll * sin_pitch * sin_yaw, | 
					
						
							|  |  |  | 		cos_roll * cos_pitch * cos_yaw+sin_roll * sin_pitch * sin_yaw); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Quat::operator*=(const Quat& q) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	set(w * q.x+x * q.w+y * q.z - z * q.y, | 
					
						
							|  |  |  | 		w * q.y+y * q.w+z * q.x - x * q.z, | 
					
						
							|  |  |  | 		w * q.z+z * q.w+x * q.y - y * q.x, | 
					
						
							|  |  |  | 		w * q.w - x * q.x - y * q.y - z * q.z); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Quat Quat::operator*(const Quat& q) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Quat r=*this; | 
					
						
							|  |  |  | 	r*=q; | 
					
						
							|  |  |  | 	return r; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | real_t Quat::length() const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return Math::sqrt(length_squared()); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void Quat::normalize() { | 
					
						
							|  |  |  | 	*this /= length(); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Quat Quat::normalized() const { | 
					
						
							|  |  |  | 	return *this / length(); | 
					
						
							| 
									
										
										
										
											2016-03-09 00:00:52 +01:00
										 |  |  | } | 
					
						
							| 
									
										
										
										
											2014-02-09 22:10:30 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | Quat Quat::inverse() const { | 
					
						
							|  |  |  | 	return Quat( -x, -y, -z, w ); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Quat Quat::slerp(const Quat& q, const real_t& t) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if 0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	Quat dst=q; | 
					
						
							|  |  |  | 	Quat src=*this; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	src.normalize(); | 
					
						
							|  |  |  | 	dst.normalize(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	real_t cosine = dst.dot(src); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (cosine < 0 && true) { | 
					
						
							|  |  |  | 		cosine = -cosine; | 
					
						
							|  |  |  | 		dst = -dst; | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		dst = dst; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (Math::abs(cosine) < 1 - CMP_EPSILON) { | 
					
						
							|  |  |  | 		// Standard case (slerp)
 | 
					
						
							|  |  |  | 		real_t sine = Math::sqrt(1 - cosine*cosine); | 
					
						
							|  |  |  | 		real_t angle = Math::atan2(sine, cosine); | 
					
						
							|  |  |  | 		real_t inv_sine = 1.0f / sine; | 
					
						
							|  |  |  | 		real_t coeff_0 = Math::sin((1.0f - t) * angle) * inv_sine; | 
					
						
							|  |  |  | 		real_t coeff_1 = Math::sin(t * angle) * inv_sine; | 
					
						
							|  |  |  | 		Quat ret=  src * coeff_0 + dst * coeff_1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		return ret; | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		// There are two situations:
 | 
					
						
							|  |  |  | 		// 1. "rkP" and "q" are very close (cosine ~= +1), so we can do a linear
 | 
					
						
							|  |  |  | 		//    interpolation safely.
 | 
					
						
							|  |  |  | 		// 2. "rkP" and "q" are almost invedste of each other (cosine ~= -1), there
 | 
					
						
							|  |  |  | 		//    are an infinite number of possibilities interpolation. but we haven't
 | 
					
						
							|  |  |  | 		//    have method to fix this case, so just use linear interpolation here.
 | 
					
						
							|  |  |  | 		Quat ret =  src * (1.0f - t) + dst *t; | 
					
						
							|  |  |  | 		// taking the complement requires renormalisation
 | 
					
						
							|  |  |  | 		ret.normalize(); | 
					
						
							|  |  |  | 		return ret; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	real_t         to1[4]; | 
					
						
							|  |  |  | 	real_t        omega, cosom, sinom, scale0, scale1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// calc cosine
 | 
					
						
							|  |  |  | 	cosom = x * q.x + y * q.y + z * q.z | 
					
						
							|  |  |  | 			+ w * q.w; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// adjust signs (if necessary)
 | 
					
						
							|  |  |  | 	if ( cosom <0.0 ) { | 
					
						
							|  |  |  | 		cosom = -cosom; to1[0] = - q.x; | 
					
						
							|  |  |  | 		to1[1] = - q.y; | 
					
						
							|  |  |  | 		to1[2] = - q.z; | 
					
						
							|  |  |  | 		to1[3] = - q.w; | 
					
						
							|  |  |  | 	} else  { | 
					
						
							|  |  |  | 		to1[0] = q.x; | 
					
						
							|  |  |  | 		to1[1] = q.y; | 
					
						
							|  |  |  | 		to1[2] = q.z; | 
					
						
							|  |  |  | 		to1[3] = q.w; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// calculate coefficients
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if ( (1.0 - cosom) > CMP_EPSILON ) { | 
					
						
							|  |  |  | 		// standard case (slerp)
 | 
					
						
							|  |  |  | 		omega = Math::acos(cosom); | 
					
						
							|  |  |  | 		sinom = Math::sin(omega); | 
					
						
							|  |  |  | 		scale0 = Math::sin((1.0 - t) * omega) / sinom; | 
					
						
							|  |  |  | 		scale1 = Math::sin(t * omega) / sinom; | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		// "from" and "to" quaternions are very close
 | 
					
						
							|  |  |  | 		//  ... so we can do a linear interpolation
 | 
					
						
							|  |  |  | 		scale0 = 1.0 - t; | 
					
						
							|  |  |  | 		scale1 = t; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	// calculate final values
 | 
					
						
							|  |  |  | 	return Quat( | 
					
						
							|  |  |  | 		scale0 * x + scale1 * to1[0], | 
					
						
							|  |  |  | 		scale0 * y + scale1 * to1[1], | 
					
						
							|  |  |  | 		scale0 * z + scale1 * to1[2], | 
					
						
							|  |  |  | 		scale0 * w + scale1 * to1[3] | 
					
						
							|  |  |  | 	); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Quat Quat::slerpni(const Quat& q, const real_t& t) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	const Quat &from = *this; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	float dot = from.dot(q); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if (Math::absf(dot) > 0.9999f) return from; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	float	theta		= Math::acos(dot), | 
					
						
							|  |  |  | 		sinT		= 1.0f / Math::sin(theta), | 
					
						
							|  |  |  | 		newFactor	= Math::sin(t * theta) * sinT, | 
					
						
							|  |  |  | 		invFactor	= Math::sin((1.0f - t) * theta) * sinT; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	return Quat( invFactor * from.x + newFactor * q.x, | 
					
						
							|  |  |  | 			   invFactor * from.y + newFactor * q.y, | 
					
						
							|  |  |  | 			   invFactor * from.z + newFactor * q.z, | 
					
						
							|  |  |  | 			   invFactor * from.w + newFactor * q.w ); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if 0
 | 
					
						
							|  |  |  | 	real_t         to1[4]; | 
					
						
							|  |  |  | 	real_t        omega, cosom, sinom, scale0, scale1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// calc cosine
 | 
					
						
							|  |  |  | 	cosom = x * q.x + y * q.y + z * q.z | 
					
						
							|  |  |  | 			+ w * q.w; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// adjust signs (if necessary)
 | 
					
						
							|  |  |  | 	if ( cosom <0.0 && false) { | 
					
						
							|  |  |  | 		cosom = -cosom; to1[0] = - q.x; | 
					
						
							|  |  |  | 		to1[1] = - q.y; | 
					
						
							|  |  |  | 		to1[2] = - q.z; | 
					
						
							|  |  |  | 		to1[3] = - q.w; | 
					
						
							|  |  |  | 	} else  { | 
					
						
							|  |  |  | 		to1[0] = q.x; | 
					
						
							|  |  |  | 		to1[1] = q.y; | 
					
						
							|  |  |  | 		to1[2] = q.z; | 
					
						
							|  |  |  | 		to1[3] = q.w; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// calculate coefficients
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	if ( (1.0 - cosom) > CMP_EPSILON ) { | 
					
						
							|  |  |  | 		// standard case (slerp)
 | 
					
						
							|  |  |  | 		omega = Math::acos(cosom); | 
					
						
							|  |  |  | 		sinom = Math::sin(omega); | 
					
						
							|  |  |  | 		scale0 = Math::sin((1.0 - t) * omega) / sinom; | 
					
						
							|  |  |  | 		scale1 = Math::sin(t * omega) / sinom; | 
					
						
							|  |  |  | 	} else { | 
					
						
							|  |  |  | 		// "from" and "to" quaternions are very close
 | 
					
						
							|  |  |  | 		//  ... so we can do a linear interpolation
 | 
					
						
							|  |  |  | 		scale0 = 1.0 - t; | 
					
						
							|  |  |  | 		scale1 = t; | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | 	// calculate final values
 | 
					
						
							|  |  |  | 	return Quat( | 
					
						
							|  |  |  | 		scale0 * x + scale1 * to1[0], | 
					
						
							|  |  |  | 		scale0 * y + scale1 * to1[1], | 
					
						
							|  |  |  | 		scale0 * z + scale1 * to1[2], | 
					
						
							|  |  |  | 		scale0 * w + scale1 * to1[3] | 
					
						
							|  |  |  | 	); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Quat Quat::cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	//the only way to do slerp :|
 | 
					
						
							|  |  |  | 	float t2 = (1.0-t)*t*2; | 
					
						
							|  |  |  | 	Quat sp = this->slerp(q,t); | 
					
						
							|  |  |  | 	Quat sq = prep.slerpni(postq,t); | 
					
						
							|  |  |  | 	return sp.slerpni(sq,t2); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Quat::operator String() const { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-07-28 14:41:15 +02:00
										 |  |  | 	return String::num(x)+", "+String::num(y)+", "+ String::num(z)+", "+ String::num(w); | 
					
						
							| 
									
										
										
										
											2014-02-09 22:10:30 -03:00
										 |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | Quat::Quat(const Vector3& axis, const real_t& angle) { | 
					
						
							|  |  |  | 	real_t d = axis.length(); | 
					
						
							|  |  |  | 	if (d==0) | 
					
						
							|  |  |  | 		set(0,0,0,0); | 
					
						
							|  |  |  | 	else { | 
					
						
							|  |  |  | 		real_t s = Math::sin(-angle * 0.5) / d; | 
					
						
							| 
									
										
										
										
											2016-03-09 00:00:52 +01:00
										 |  |  | 		set(axis.x * s, axis.y * s, axis.z * s, | 
					
						
							| 
									
										
										
										
											2014-02-09 22:10:30 -03:00
										 |  |  | 			Math::cos(-angle * 0.5)); | 
					
						
							|  |  |  | 	} | 
					
						
							|  |  |  | } |