| 
									
										
										
										
											2015-10-02 14:20:50 -03:00
										 |  |  | /* Copyright (c) 2007-2008 CSIRO
 | 
					
						
							|  |  |  |    Copyright (c) 2007-2010 Xiph.Org Foundation | 
					
						
							|  |  |  |    Copyright (c) 2008 Gregory Maxwell | 
					
						
							|  |  |  |    Written by Jean-Marc Valin and Gregory Maxwell */ | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  |    Redistribution and use in source and binary forms, with or without | 
					
						
							|  |  |  |    modification, are permitted provided that the following conditions | 
					
						
							|  |  |  |    are met: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    - Redistributions of source code must retain the above copyright | 
					
						
							|  |  |  |    notice, this list of conditions and the following disclaimer. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    - Redistributions in binary form must reproduce the above copyright | 
					
						
							|  |  |  |    notice, this list of conditions and the following disclaimer in the | 
					
						
							|  |  |  |    documentation and/or other materials provided with the distribution. | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
					
						
							|  |  |  |    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
					
						
							|  |  |  |    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
					
						
							|  |  |  |    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER | 
					
						
							|  |  |  |    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
					
						
							|  |  |  |    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
					
						
							|  |  |  |    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
					
						
							|  |  |  |    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
					
						
							|  |  |  |    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
					
						
							|  |  |  |    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
					
						
							|  |  |  |    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef OPUS_HAVE_CONFIG_H
 | 
					
						
							| 
									
										
										
										
											2015-11-27 19:29:48 -02:00
										 |  |  | #include "opus/opus_config.h"
 | 
					
						
							| 
									
										
										
										
											2015-10-02 14:20:50 -03:00
										 |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #define CELT_ENCODER_C
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-11-27 19:29:48 -02:00
										 |  |  | #include "opus/celt/cpu_support.h"
 | 
					
						
							|  |  |  | #include "opus/celt/os_support.h"
 | 
					
						
							|  |  |  | #include "opus/celt/mdct.h"
 | 
					
						
							| 
									
										
										
										
											2015-10-02 14:20:50 -03:00
										 |  |  | #include <math.h>
 | 
					
						
							| 
									
										
										
										
											2015-11-27 19:29:48 -02:00
										 |  |  | #include "opus/celt/celt.h"
 | 
					
						
							|  |  |  | #include "opus/celt/pitch.h"
 | 
					
						
							|  |  |  | #include "opus/celt/bands.h"
 | 
					
						
							|  |  |  | #include "opus/celt/opus_modes.h"
 | 
					
						
							|  |  |  | #include "opus/celt/entcode.h"
 | 
					
						
							|  |  |  | #include "opus/celt/quant_bands.h"
 | 
					
						
							|  |  |  | #include "opus/celt/rate.h"
 | 
					
						
							|  |  |  | #include "opus/celt/stack_alloc.h"
 | 
					
						
							|  |  |  | #include "opus/celt/mathops.h"
 | 
					
						
							|  |  |  | #include "opus/celt/float_cast.h"
 | 
					
						
							| 
									
										
										
										
											2015-10-02 14:20:50 -03:00
										 |  |  | #include <stdarg.h>
 | 
					
						
							| 
									
										
										
										
											2015-11-27 19:29:48 -02:00
										 |  |  | #include "opus/celt/celt_lpc.h"
 | 
					
						
							|  |  |  | #include "opus/celt/vq.h"
 | 
					
						
							| 
									
										
										
										
											2015-10-02 14:20:50 -03:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /** Encoder state
 | 
					
						
							|  |  |  |  @brief Encoder state | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | struct OpusCustomEncoder { | 
					
						
							|  |  |  |    const OpusCustomMode *mode;     /**< Mode used by the encoder */ | 
					
						
							|  |  |  |    int overlap; | 
					
						
							|  |  |  |    int channels; | 
					
						
							|  |  |  |    int stream_channels; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    int force_intra; | 
					
						
							|  |  |  |    int clip; | 
					
						
							|  |  |  |    int disable_pf; | 
					
						
							|  |  |  |    int complexity; | 
					
						
							|  |  |  |    int upsample; | 
					
						
							|  |  |  |    int start, end; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    opus_int32 bitrate; | 
					
						
							|  |  |  |    int vbr; | 
					
						
							|  |  |  |    int signalling; | 
					
						
							|  |  |  |    int constrained_vbr;      /* If zero, VBR can do whatever it likes with the rate */ | 
					
						
							|  |  |  |    int loss_rate; | 
					
						
							|  |  |  |    int lsb_depth; | 
					
						
							|  |  |  |    int variable_duration; | 
					
						
							|  |  |  |    int lfe; | 
					
						
							|  |  |  |    int arch; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Everything beyond this point gets cleared on a reset */ | 
					
						
							|  |  |  | #define ENCODER_RESET_START rng
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    opus_uint32 rng; | 
					
						
							|  |  |  |    int spread_decision; | 
					
						
							|  |  |  |    opus_val32 delayedIntra; | 
					
						
							|  |  |  |    int tonal_average; | 
					
						
							|  |  |  |    int lastCodedBands; | 
					
						
							|  |  |  |    int hf_average; | 
					
						
							|  |  |  |    int tapset_decision; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    int prefilter_period; | 
					
						
							|  |  |  |    opus_val16 prefilter_gain; | 
					
						
							|  |  |  |    int prefilter_tapset; | 
					
						
							|  |  |  | #ifdef RESYNTH
 | 
					
						
							|  |  |  |    int prefilter_period_old; | 
					
						
							|  |  |  |    opus_val16 prefilter_gain_old; | 
					
						
							|  |  |  |    int prefilter_tapset_old; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    int consec_transient; | 
					
						
							|  |  |  |    AnalysisInfo analysis; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    opus_val32 preemph_memE[2]; | 
					
						
							|  |  |  |    opus_val32 preemph_memD[2]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* VBR-related parameters */ | 
					
						
							|  |  |  |    opus_int32 vbr_reservoir; | 
					
						
							|  |  |  |    opus_int32 vbr_drift; | 
					
						
							|  |  |  |    opus_int32 vbr_offset; | 
					
						
							|  |  |  |    opus_int32 vbr_count; | 
					
						
							|  |  |  |    opus_val32 overlap_max; | 
					
						
							|  |  |  |    opus_val16 stereo_saving; | 
					
						
							|  |  |  |    int intensity; | 
					
						
							|  |  |  |    opus_val16 *energy_mask; | 
					
						
							|  |  |  |    opus_val16 spec_avg; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef RESYNTH
 | 
					
						
							|  |  |  |    /* +MAX_PERIOD/2 to make space for overlap */ | 
					
						
							|  |  |  |    celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2]; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    celt_sig in_mem[1]; /* Size = channels*mode->overlap */ | 
					
						
							|  |  |  |    /* celt_sig prefilter_mem[],  Size = channels*COMBFILTER_MAXPERIOD */ | 
					
						
							|  |  |  |    /* opus_val16 oldBandE[],     Size = channels*mode->nbEBands */ | 
					
						
							|  |  |  |    /* opus_val16 oldLogE[],      Size = channels*mode->nbEBands */ | 
					
						
							|  |  |  |    /* opus_val16 oldLogE2[],     Size = channels*mode->nbEBands */ | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int celt_encoder_get_size(int channels) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); | 
					
						
							|  |  |  |    return opus_custom_encoder_get_size(mode, channels); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int size = sizeof(struct CELTEncoder) | 
					
						
							|  |  |  |          + (channels*mode->overlap-1)*sizeof(celt_sig)    /* celt_sig in_mem[channels*mode->overlap]; */ | 
					
						
							|  |  |  |          + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */ | 
					
						
							|  |  |  |          + 3*channels*mode->nbEBands*sizeof(opus_val16);  /* opus_val16 oldBandE[channels*mode->nbEBands]; */ | 
					
						
							|  |  |  |                                                           /* opus_val16 oldLogE[channels*mode->nbEBands]; */ | 
					
						
							|  |  |  |                                                           /* opus_val16 oldLogE2[channels*mode->nbEBands]; */ | 
					
						
							|  |  |  |    return size; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef CUSTOM_MODES
 | 
					
						
							|  |  |  | CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int ret; | 
					
						
							|  |  |  |    CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels)); | 
					
						
							|  |  |  |    /* init will handle the NULL case */ | 
					
						
							|  |  |  |    ret = opus_custom_encoder_init(st, mode, channels); | 
					
						
							|  |  |  |    if (ret != OPUS_OK) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_custom_encoder_destroy(st); | 
					
						
							|  |  |  |       st = NULL; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    if (error) | 
					
						
							|  |  |  |       *error = ret; | 
					
						
							|  |  |  |    return st; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif /* CUSTOM_MODES */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int opus_custom_encoder_init_arch(CELTEncoder *st, const CELTMode *mode, | 
					
						
							|  |  |  |                                          int channels, int arch) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    if (channels < 0 || channels > 2) | 
					
						
							|  |  |  |       return OPUS_BAD_ARG; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (st==NULL || mode==NULL) | 
					
						
							|  |  |  |       return OPUS_ALLOC_FAIL; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    st->mode = mode; | 
					
						
							|  |  |  |    st->overlap = mode->overlap; | 
					
						
							|  |  |  |    st->stream_channels = st->channels = channels; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    st->upsample = 1; | 
					
						
							|  |  |  |    st->start = 0; | 
					
						
							|  |  |  |    st->end = st->mode->effEBands; | 
					
						
							|  |  |  |    st->signalling = 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    st->arch = arch; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    st->constrained_vbr = 1; | 
					
						
							|  |  |  |    st->clip = 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    st->bitrate = OPUS_BITRATE_MAX; | 
					
						
							|  |  |  |    st->vbr = 0; | 
					
						
							|  |  |  |    st->force_intra  = 0; | 
					
						
							|  |  |  |    st->complexity = 5; | 
					
						
							|  |  |  |    st->lsb_depth=24; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    opus_custom_encoder_ctl(st, OPUS_RESET_STATE); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    return OPUS_OK; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef CUSTOM_MODES
 | 
					
						
							|  |  |  | int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    return opus_custom_encoder_init_arch(st, mode, channels, opus_select_arch()); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels, | 
					
						
							|  |  |  |                       int arch) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int ret; | 
					
						
							|  |  |  |    ret = opus_custom_encoder_init_arch(st, | 
					
						
							|  |  |  |            opus_custom_mode_create(48000, 960, NULL), channels, arch); | 
					
						
							|  |  |  |    if (ret != OPUS_OK) | 
					
						
							|  |  |  |       return ret; | 
					
						
							|  |  |  |    st->upsample = resampling_factor(sampling_rate); | 
					
						
							|  |  |  |    return OPUS_OK; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef CUSTOM_MODES
 | 
					
						
							|  |  |  | void opus_custom_encoder_destroy(CELTEncoder *st) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    opus_free(st); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif /* CUSTOM_MODES */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C, | 
					
						
							|  |  |  |                               opus_val16 *tf_estimate, int *tf_chan) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i; | 
					
						
							|  |  |  |    VARDECL(opus_val16, tmp); | 
					
						
							|  |  |  |    opus_val32 mem0,mem1; | 
					
						
							|  |  |  |    int is_transient = 0; | 
					
						
							|  |  |  |    opus_int32 mask_metric = 0; | 
					
						
							|  |  |  |    int c; | 
					
						
							|  |  |  |    opus_val16 tf_max; | 
					
						
							|  |  |  |    int len2; | 
					
						
							|  |  |  |    /* Table of 6*64/x, trained on real data to minimize the average error */ | 
					
						
							|  |  |  |    static const unsigned char inv_table[128] = { | 
					
						
							|  |  |  |          255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25, | 
					
						
							|  |  |  |           23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12, | 
					
						
							|  |  |  |           12, 12, 11, 11, 11, 10, 10, 10,  9,  9,  9,  9,  9,  9,  8,  8, | 
					
						
							|  |  |  |            8,  8,  8,  7,  7,  7,  7,  7,  7,  6,  6,  6,  6,  6,  6,  6, | 
					
						
							|  |  |  |            6,  6,  6,  6,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  5,  5, | 
					
						
							|  |  |  |            5,  5,  5,  5,  5,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4, | 
					
						
							|  |  |  |            4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  3,  3, | 
					
						
							|  |  |  |            3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  2, | 
					
						
							|  |  |  |    }; | 
					
						
							|  |  |  |    SAVE_STACK; | 
					
						
							|  |  |  |    ALLOC(tmp, len, opus_val16); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    len2=len/2; | 
					
						
							|  |  |  |    for (c=0;c<C;c++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_val32 mean; | 
					
						
							|  |  |  |       opus_int32 unmask=0; | 
					
						
							|  |  |  |       opus_val32 norm; | 
					
						
							|  |  |  |       opus_val16 maxE; | 
					
						
							|  |  |  |       mem0=0; | 
					
						
							|  |  |  |       mem1=0; | 
					
						
							|  |  |  |       /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */ | 
					
						
							|  |  |  |       for (i=0;i<len;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_val32 x,y; | 
					
						
							|  |  |  |          x = SHR32(in[i+c*len],SIG_SHIFT); | 
					
						
							|  |  |  |          y = ADD32(mem0, x); | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |          mem0 = mem1 + y - SHL32(x,1); | 
					
						
							|  |  |  |          mem1 = x - SHR32(y,1); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |          mem0 = mem1 + y - 2*x; | 
					
						
							|  |  |  |          mem1 = x - .5f*y; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |          tmp[i] = EXTRACT16(SHR32(y,2)); | 
					
						
							|  |  |  |          /*printf("%f ", tmp[i]);*/ | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       /*printf("\n");*/ | 
					
						
							|  |  |  |       /* First few samples are bad because we don't propagate the memory */ | 
					
						
							|  |  |  |       for (i=0;i<12;i++) | 
					
						
							|  |  |  |          tmp[i] = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |       /* Normalize tmp to max range */ | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int shift=0; | 
					
						
							|  |  |  |          shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len)); | 
					
						
							|  |  |  |          if (shift!=0) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             for (i=0;i<len;i++) | 
					
						
							|  |  |  |                tmp[i] = SHL16(tmp[i], shift); | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       mean=0; | 
					
						
							|  |  |  |       mem0=0; | 
					
						
							|  |  |  |       /* Grouping by two to reduce complexity */ | 
					
						
							|  |  |  |       /* Forward pass to compute the post-echo threshold*/ | 
					
						
							|  |  |  |       for (i=0;i<len2;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16); | 
					
						
							|  |  |  |          mean += x2; | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |          /* FIXME: Use PSHR16() instead */ | 
					
						
							|  |  |  |          tmp[i] = mem0 + PSHR32(x2-mem0,4); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |          tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |          mem0 = tmp[i]; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       mem0=0; | 
					
						
							|  |  |  |       maxE=0; | 
					
						
							|  |  |  |       /* Backward pass to compute the pre-echo threshold */ | 
					
						
							|  |  |  |       for (i=len2-1;i>=0;i--) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |          /* FIXME: Use PSHR16() instead */ | 
					
						
							|  |  |  |          tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |          tmp[i] = mem0 + MULT16_16_P15(QCONST16(0.125f,15),tmp[i]-mem0); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |          mem0 = tmp[i]; | 
					
						
							|  |  |  |          maxE = MAX16(maxE, mem0); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       /*for (i=0;i<len2;i++)printf("%f ", tmp[i]/mean);printf("\n");*/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       /* Compute the ratio of the "frame energy" over the harmonic mean of the energy.
 | 
					
						
							|  |  |  |          This essentially corresponds to a bitrate-normalized temporal noise-to-mask | 
					
						
							|  |  |  |          ratio */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       /* As a compromise with the old transient detector, frame energy is the
 | 
					
						
							|  |  |  |          geometric mean of the energy and half the max */ | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |       /* Costs two sqrt() to avoid overflows */ | 
					
						
							|  |  |  |       mean = MULT16_16(celt_sqrt(mean), celt_sqrt(MULT16_16(maxE,len2>>1))); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |       mean = celt_sqrt(mean * maxE*.5*len2); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |       /* Inverse of the mean energy in Q15+6 */ | 
					
						
							|  |  |  |       norm = SHL32(EXTEND32(len2),6+14)/ADD32(EPSILON,SHR32(mean,1)); | 
					
						
							|  |  |  |       /* Compute harmonic mean discarding the unreliable boundaries
 | 
					
						
							|  |  |  |          The data is smooth, so we only take 1/4th of the samples */ | 
					
						
							|  |  |  |       unmask=0; | 
					
						
							|  |  |  |       for (i=12;i<len2-5;i+=4) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int id; | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |          id = IMAX(0,IMIN(127,MULT16_32_Q15(tmp[i],norm))); /* Do not round to nearest */ | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |          id = IMAX(0,IMIN(127,(int)floor(64*norm*tmp[i]))); /* Do not round to nearest */ | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |          unmask += inv_table[id]; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       /*printf("%d\n", unmask);*/ | 
					
						
							|  |  |  |       /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */ | 
					
						
							|  |  |  |       unmask = 64*unmask*4/(6*(len2-17)); | 
					
						
							|  |  |  |       if (unmask>mask_metric) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          *tf_chan = c; | 
					
						
							|  |  |  |          mask_metric = unmask; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    is_transient = mask_metric>200; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Arbitrary metric for VBR boost */ | 
					
						
							|  |  |  |    tf_max = MAX16(0,celt_sqrt(27*mask_metric)-42); | 
					
						
							|  |  |  |    /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */ | 
					
						
							|  |  |  |    *tf_estimate = celt_sqrt(MAX16(0, SHL32(MULT16_16(QCONST16(0.0069,14),MIN16(163,tf_max)),14)-QCONST32(0.139,28))); | 
					
						
							|  |  |  |    /*printf("%d %f\n", tf_max, mask_metric);*/ | 
					
						
							|  |  |  |    RESTORE_STACK; | 
					
						
							|  |  |  | #ifdef FUZZING
 | 
					
						
							|  |  |  |    is_transient = rand()&0x1; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/ | 
					
						
							|  |  |  |    return is_transient; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Looks for sudden increases of energy to decide whether we need to patch
 | 
					
						
							|  |  |  |    the transient decision */ | 
					
						
							|  |  |  | int patch_transient_decision(opus_val16 *newE, opus_val16 *oldE, int nbEBands, | 
					
						
							|  |  |  |       int end, int C) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i, c; | 
					
						
							|  |  |  |    opus_val32 mean_diff=0; | 
					
						
							|  |  |  |    opus_val16 spread_old[26]; | 
					
						
							|  |  |  |    /* Apply an aggressive (-6 dB/Bark) spreading function to the old frame to
 | 
					
						
							|  |  |  |       avoid false detection caused by irrelevant bands */ | 
					
						
							|  |  |  |    if (C==1) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       spread_old[0] = oldE[0]; | 
					
						
							|  |  |  |       for (i=1;i<end;i++) | 
					
						
							|  |  |  |          spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), oldE[i]); | 
					
						
							|  |  |  |    } else { | 
					
						
							|  |  |  |       spread_old[0] = MAX16(oldE[0],oldE[nbEBands]); | 
					
						
							|  |  |  |       for (i=1;i<end;i++) | 
					
						
							|  |  |  |          spread_old[i] = MAX16(spread_old[i-1]-QCONST16(1.0f, DB_SHIFT), | 
					
						
							|  |  |  |                                MAX16(oldE[i],oldE[i+nbEBands])); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    for (i=end-2;i>=0;i--) | 
					
						
							|  |  |  |       spread_old[i] = MAX16(spread_old[i], spread_old[i+1]-QCONST16(1.0f, DB_SHIFT)); | 
					
						
							|  |  |  |    /* Compute mean increase */ | 
					
						
							|  |  |  |    c=0; do { | 
					
						
							|  |  |  |       for (i=2;i<end-1;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_val16 x1, x2; | 
					
						
							|  |  |  |          x1 = MAX16(0, newE[i]); | 
					
						
							|  |  |  |          x2 = MAX16(0, spread_old[i]); | 
					
						
							|  |  |  |          mean_diff = ADD32(mean_diff, EXTEND32(MAX16(0, SUB16(x1, x2)))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } while (++c<C); | 
					
						
							|  |  |  |    mean_diff = DIV32(mean_diff, C*(end-3)); | 
					
						
							|  |  |  |    /*printf("%f %f %d\n", mean_diff, max_diff, count);*/ | 
					
						
							|  |  |  |    return mean_diff > QCONST16(1.f, DB_SHIFT); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /** Apply window and compute the MDCT for all sub-frames and
 | 
					
						
							|  |  |  |     all channels in a frame */ | 
					
						
							|  |  |  | static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, | 
					
						
							|  |  |  |                           celt_sig * OPUS_RESTRICT out, int C, int CC, int LM, int upsample) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    const int overlap = OVERLAP(mode); | 
					
						
							|  |  |  |    int N; | 
					
						
							|  |  |  |    int B; | 
					
						
							|  |  |  |    int shift; | 
					
						
							|  |  |  |    int i, b, c; | 
					
						
							|  |  |  |    if (shortBlocks) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       B = shortBlocks; | 
					
						
							|  |  |  |       N = mode->shortMdctSize; | 
					
						
							|  |  |  |       shift = mode->maxLM; | 
					
						
							|  |  |  |    } else { | 
					
						
							|  |  |  |       B = 1; | 
					
						
							|  |  |  |       N = mode->shortMdctSize<<LM; | 
					
						
							|  |  |  |       shift = mode->maxLM-LM; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    c=0; do { | 
					
						
							|  |  |  |       for (b=0;b<B;b++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          /* Interleaving the sub-frames while doing the MDCTs */ | 
					
						
							|  |  |  |          clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shift, B); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } while (++c<CC); | 
					
						
							|  |  |  |    if (CC==2&&C==1) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       for (i=0;i<B*N;i++) | 
					
						
							|  |  |  |          out[i] = ADD32(HALF32(out[i]), HALF32(out[B*N+i])); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    if (upsample != 1) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       c=0; do | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int bound = B*N/upsample; | 
					
						
							|  |  |  |          for (i=0;i<bound;i++) | 
					
						
							|  |  |  |             out[c*B*N+i] *= upsample; | 
					
						
							|  |  |  |          for (;i<B*N;i++) | 
					
						
							|  |  |  |             out[c*B*N+i] = 0; | 
					
						
							|  |  |  |       } while (++c<C); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | void celt_preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp, | 
					
						
							|  |  |  |                         int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i; | 
					
						
							|  |  |  |    opus_val16 coef0; | 
					
						
							|  |  |  |    celt_sig m; | 
					
						
							|  |  |  |    int Nu; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    coef0 = coef[0]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    Nu = N/upsample; | 
					
						
							|  |  |  |    if (upsample!=1) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       for (i=0;i<N;i++) | 
					
						
							|  |  |  |          inp[i] = 0; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    for (i=0;i<Nu;i++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       celt_sig x; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       x = SCALEIN(pcmp[CC*i]); | 
					
						
							|  |  |  | #ifndef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |       /* Replace NaNs with zeros */ | 
					
						
							|  |  |  |       if (!(x==x)) | 
					
						
							|  |  |  |          x = 0; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |       inp[i*upsample] = x; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |    if (clip) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       /* Clip input to avoid encoding non-portable files */ | 
					
						
							|  |  |  |       for (i=0;i<Nu;i++) | 
					
						
							|  |  |  |          inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample])); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |    (void)clip; /* Avoids a warning about clip being unused. */ | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    m = *mem; | 
					
						
							|  |  |  | #ifdef CUSTOM_MODES
 | 
					
						
							|  |  |  |    if (coef[1] != 0) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_val16 coef1 = coef[1]; | 
					
						
							|  |  |  |       opus_val16 coef2 = coef[2]; | 
					
						
							|  |  |  |       for (i=0;i<N;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          celt_sig x, tmp; | 
					
						
							|  |  |  |          x = inp[i]; | 
					
						
							|  |  |  |          /* Apply pre-emphasis */ | 
					
						
							|  |  |  |          tmp = MULT16_16(coef2, x); | 
					
						
							|  |  |  |          inp[i] = tmp + m; | 
					
						
							|  |  |  |          m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } else | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       for (i=0;i<N;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          celt_sig x; | 
					
						
							|  |  |  |          x = SHL32(inp[i], SIG_SHIFT); | 
					
						
							|  |  |  |          /* Apply pre-emphasis */ | 
					
						
							|  |  |  |          inp[i] = x + m; | 
					
						
							|  |  |  |          m = - MULT16_32_Q15(coef0, x); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    *mem = m; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i; | 
					
						
							|  |  |  |    opus_val32 L1; | 
					
						
							|  |  |  |    L1 = 0; | 
					
						
							|  |  |  |    for (i=0;i<N;i++) | 
					
						
							|  |  |  |       L1 += EXTEND32(ABS16(tmp[i])); | 
					
						
							|  |  |  |    /* When in doubt, prefer good freq resolution */ | 
					
						
							|  |  |  |    L1 = MAC16_32_Q15(L1, LM*bias, L1); | 
					
						
							|  |  |  |    return L1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int tf_analysis(const CELTMode *m, int len, int isTransient, | 
					
						
							|  |  |  |       int *tf_res, int lambda, celt_norm *X, int N0, int LM, | 
					
						
							|  |  |  |       int *tf_sum, opus_val16 tf_estimate, int tf_chan) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i; | 
					
						
							|  |  |  |    VARDECL(int, metric); | 
					
						
							|  |  |  |    int cost0; | 
					
						
							|  |  |  |    int cost1; | 
					
						
							|  |  |  |    VARDECL(int, path0); | 
					
						
							|  |  |  |    VARDECL(int, path1); | 
					
						
							|  |  |  |    VARDECL(celt_norm, tmp); | 
					
						
							|  |  |  |    VARDECL(celt_norm, tmp_1); | 
					
						
							|  |  |  |    int sel; | 
					
						
							|  |  |  |    int selcost[2]; | 
					
						
							|  |  |  |    int tf_select=0; | 
					
						
							|  |  |  |    opus_val16 bias; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    SAVE_STACK; | 
					
						
							|  |  |  |    bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(.5f,14)-tf_estimate)); | 
					
						
							|  |  |  |    /*printf("%f ", bias);*/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    ALLOC(metric, len, int); | 
					
						
							|  |  |  |    ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); | 
					
						
							|  |  |  |    ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); | 
					
						
							|  |  |  |    ALLOC(path0, len, int); | 
					
						
							|  |  |  |    ALLOC(path1, len, int); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    *tf_sum = 0; | 
					
						
							|  |  |  |    for (i=0;i<len;i++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int j, k, N; | 
					
						
							|  |  |  |       int narrow; | 
					
						
							|  |  |  |       opus_val32 L1, best_L1; | 
					
						
							|  |  |  |       int best_level=0; | 
					
						
							|  |  |  |       N = (m->eBands[i+1]-m->eBands[i])<<LM; | 
					
						
							|  |  |  |       /* band is too narrow to be split down to LM=-1 */ | 
					
						
							|  |  |  |       narrow = (m->eBands[i+1]-m->eBands[i])==1; | 
					
						
							|  |  |  |       for (j=0;j<N;j++) | 
					
						
							|  |  |  |          tmp[j] = X[tf_chan*N0 + j+(m->eBands[i]<<LM)]; | 
					
						
							|  |  |  |       /* Just add the right channel if we're in stereo */ | 
					
						
							|  |  |  |       /*if (C==2)
 | 
					
						
							|  |  |  |          for (j=0;j<N;j++) | 
					
						
							|  |  |  |             tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/ | 
					
						
							|  |  |  |       L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias); | 
					
						
							|  |  |  |       best_L1 = L1; | 
					
						
							|  |  |  |       /* Check the -1 case for transients */ | 
					
						
							|  |  |  |       if (isTransient && !narrow) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          for (j=0;j<N;j++) | 
					
						
							|  |  |  |             tmp_1[j] = tmp[j]; | 
					
						
							|  |  |  |          haar1(tmp_1, N>>LM, 1<<LM); | 
					
						
							|  |  |  |          L1 = l1_metric(tmp_1, N, LM+1, bias); | 
					
						
							|  |  |  |          if (L1<best_L1) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             best_L1 = L1; | 
					
						
							|  |  |  |             best_level = -1; | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       /*printf ("%f ", L1);*/ | 
					
						
							|  |  |  |       for (k=0;k<LM+!(isTransient||narrow);k++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int B; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |          if (isTransient) | 
					
						
							|  |  |  |             B = (LM-k-1); | 
					
						
							|  |  |  |          else | 
					
						
							|  |  |  |             B = k+1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |          haar1(tmp, N>>k, 1<<k); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |          L1 = l1_metric(tmp, N, B, bias); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |          if (L1 < best_L1) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             best_L1 = L1; | 
					
						
							|  |  |  |             best_level = k+1; | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       /*printf ("%d ", isTransient ? LM-best_level : best_level);*/ | 
					
						
							|  |  |  |       /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */ | 
					
						
							|  |  |  |       if (isTransient) | 
					
						
							|  |  |  |          metric[i] = 2*best_level; | 
					
						
							|  |  |  |       else | 
					
						
							|  |  |  |          metric[i] = -2*best_level; | 
					
						
							|  |  |  |       *tf_sum += (isTransient ? LM : 0) - metric[i]/2; | 
					
						
							|  |  |  |       /* For bands that can't be split to -1, set the metric to the half-way point to avoid
 | 
					
						
							|  |  |  |          biasing the decision */ | 
					
						
							|  |  |  |       if (narrow && (metric[i]==0 || metric[i]==-2*LM)) | 
					
						
							|  |  |  |          metric[i]-=1; | 
					
						
							|  |  |  |       /*printf("%d ", metric[i]);*/ | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    /*printf("\n");*/ | 
					
						
							|  |  |  |    /* Search for the optimal tf resolution, including tf_select */ | 
					
						
							|  |  |  |    tf_select = 0; | 
					
						
							|  |  |  |    for (sel=0;sel<2;sel++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       cost0 = 0; | 
					
						
							|  |  |  |       cost1 = isTransient ? 0 : lambda; | 
					
						
							|  |  |  |       for (i=1;i<len;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int curr0, curr1; | 
					
						
							|  |  |  |          curr0 = IMIN(cost0, cost1 + lambda); | 
					
						
							|  |  |  |          curr1 = IMIN(cost0 + lambda, cost1); | 
					
						
							|  |  |  |          cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]); | 
					
						
							|  |  |  |          cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       cost0 = IMIN(cost0, cost1); | 
					
						
							|  |  |  |       selcost[sel]=cost0; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    /* For now, we're conservative and only allow tf_select=1 for transients.
 | 
					
						
							|  |  |  |     * If tests confirm it's useful for non-transients, we could allow it. */ | 
					
						
							|  |  |  |    if (selcost[1]<selcost[0] && isTransient) | 
					
						
							|  |  |  |       tf_select=1; | 
					
						
							|  |  |  |    cost0 = 0; | 
					
						
							|  |  |  |    cost1 = isTransient ? 0 : lambda; | 
					
						
							|  |  |  |    /* Viterbi forward pass */ | 
					
						
							|  |  |  |    for (i=1;i<len;i++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int curr0, curr1; | 
					
						
							|  |  |  |       int from0, from1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       from0 = cost0; | 
					
						
							|  |  |  |       from1 = cost1 + lambda; | 
					
						
							|  |  |  |       if (from0 < from1) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          curr0 = from0; | 
					
						
							|  |  |  |          path0[i]= 0; | 
					
						
							|  |  |  |       } else { | 
					
						
							|  |  |  |          curr0 = from1; | 
					
						
							|  |  |  |          path0[i]= 1; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       from0 = cost0 + lambda; | 
					
						
							|  |  |  |       from1 = cost1; | 
					
						
							|  |  |  |       if (from0 < from1) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          curr1 = from0; | 
					
						
							|  |  |  |          path1[i]= 0; | 
					
						
							|  |  |  |       } else { | 
					
						
							|  |  |  |          curr1 = from1; | 
					
						
							|  |  |  |          path1[i]= 1; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); | 
					
						
							|  |  |  |       cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    tf_res[len-1] = cost0 < cost1 ? 0 : 1; | 
					
						
							|  |  |  |    /* Viterbi backward pass to check the decisions */ | 
					
						
							|  |  |  |    for (i=len-2;i>=0;i--) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       if (tf_res[i+1] == 1) | 
					
						
							|  |  |  |          tf_res[i] = path1[i+1]; | 
					
						
							|  |  |  |       else | 
					
						
							|  |  |  |          tf_res[i] = path0[i+1]; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    /*printf("%d %f\n", *tf_sum, tf_estimate);*/ | 
					
						
							|  |  |  |    RESTORE_STACK; | 
					
						
							|  |  |  | #ifdef FUZZING
 | 
					
						
							|  |  |  |    tf_select = rand()&0x1; | 
					
						
							|  |  |  |    tf_res[0] = rand()&0x1; | 
					
						
							|  |  |  |    for (i=1;i<len;i++) | 
					
						
							|  |  |  |       tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    return tf_select; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int curr, i; | 
					
						
							|  |  |  |    int tf_select_rsv; | 
					
						
							|  |  |  |    int tf_changed; | 
					
						
							|  |  |  |    int logp; | 
					
						
							|  |  |  |    opus_uint32 budget; | 
					
						
							|  |  |  |    opus_uint32 tell; | 
					
						
							|  |  |  |    budget = enc->storage*8; | 
					
						
							|  |  |  |    tell = ec_tell(enc); | 
					
						
							|  |  |  |    logp = isTransient ? 2 : 4; | 
					
						
							|  |  |  |    /* Reserve space to code the tf_select decision. */ | 
					
						
							|  |  |  |    tf_select_rsv = LM>0 && tell+logp+1 <= budget; | 
					
						
							|  |  |  |    budget -= tf_select_rsv; | 
					
						
							|  |  |  |    curr = tf_changed = 0; | 
					
						
							|  |  |  |    for (i=start;i<end;i++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       if (tell+logp<=budget) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp); | 
					
						
							|  |  |  |          tell = ec_tell(enc); | 
					
						
							|  |  |  |          curr = tf_res[i]; | 
					
						
							|  |  |  |          tf_changed |= curr; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       else | 
					
						
							|  |  |  |          tf_res[i] = curr; | 
					
						
							|  |  |  |       logp = isTransient ? 4 : 5; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    /* Only code tf_select if it would actually make a difference. */ | 
					
						
							|  |  |  |    if (tf_select_rsv && | 
					
						
							|  |  |  |          tf_select_table[LM][4*isTransient+0+tf_changed]!= | 
					
						
							|  |  |  |          tf_select_table[LM][4*isTransient+2+tf_changed]) | 
					
						
							|  |  |  |       ec_enc_bit_logp(enc, tf_select, 1); | 
					
						
							|  |  |  |    else | 
					
						
							|  |  |  |       tf_select = 0; | 
					
						
							|  |  |  |    for (i=start;i<end;i++) | 
					
						
							|  |  |  |       tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; | 
					
						
							|  |  |  |    /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/ | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X, | 
					
						
							|  |  |  |       const opus_val16 *bandLogE, int end, int LM, int C, int N0, | 
					
						
							|  |  |  |       AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate, | 
					
						
							|  |  |  |       int intensity, opus_val16 surround_trim) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i; | 
					
						
							|  |  |  |    opus_val32 diff=0; | 
					
						
							|  |  |  |    int c; | 
					
						
							|  |  |  |    int trim_index = 5; | 
					
						
							|  |  |  |    opus_val16 trim = QCONST16(5.f, 8); | 
					
						
							|  |  |  |    opus_val16 logXC, logXC2; | 
					
						
							|  |  |  |    if (C==2) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_val16 sum = 0; /* Q10 */ | 
					
						
							|  |  |  |       opus_val16 minXC; /* Q10 */ | 
					
						
							|  |  |  |       /* Compute inter-channel correlation for low frequencies */ | 
					
						
							|  |  |  |       for (i=0;i<8;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int j; | 
					
						
							|  |  |  |          opus_val32 partial = 0; | 
					
						
							|  |  |  |          for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) | 
					
						
							|  |  |  |             partial = MAC16_16(partial, X[j], X[N0+j]); | 
					
						
							|  |  |  |          sum = ADD16(sum, EXTRACT16(SHR32(partial, 18))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum); | 
					
						
							|  |  |  |       sum = MIN16(QCONST16(1.f, 10), ABS16(sum)); | 
					
						
							|  |  |  |       minXC = sum; | 
					
						
							|  |  |  |       for (i=8;i<intensity;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int j; | 
					
						
							|  |  |  |          opus_val32 partial = 0; | 
					
						
							|  |  |  |          for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) | 
					
						
							|  |  |  |             partial = MAC16_16(partial, X[j], X[N0+j]); | 
					
						
							|  |  |  |          minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18)))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC)); | 
					
						
							|  |  |  |       /*printf ("%f\n", sum);*/ | 
					
						
							|  |  |  |       if (sum > QCONST16(.995f,10)) | 
					
						
							|  |  |  |          trim_index-=4; | 
					
						
							|  |  |  |       else if (sum > QCONST16(.92f,10)) | 
					
						
							|  |  |  |          trim_index-=3; | 
					
						
							|  |  |  |       else if (sum > QCONST16(.85f,10)) | 
					
						
							|  |  |  |          trim_index-=2; | 
					
						
							|  |  |  |       else if (sum > QCONST16(.8f,10)) | 
					
						
							|  |  |  |          trim_index-=1; | 
					
						
							|  |  |  |       /* mid-side savings estimations based on the LF average*/ | 
					
						
							|  |  |  |       logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum)); | 
					
						
							|  |  |  |       /* mid-side savings estimations based on min correlation */ | 
					
						
							|  |  |  |       logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC))); | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |       /* Compensate for Q20 vs Q14 input and convert output to Q8 */ | 
					
						
							|  |  |  |       logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); | 
					
						
							|  |  |  |       logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC)); | 
					
						
							|  |  |  |       *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2)); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Estimate spectral tilt */ | 
					
						
							|  |  |  |    c=0; do { | 
					
						
							|  |  |  |       for (i=0;i<end-1;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } while (++c<C); | 
					
						
							|  |  |  |    diff /= C*(end-1); | 
					
						
							|  |  |  |    /*printf("%f\n", diff);*/ | 
					
						
							|  |  |  |    if (diff > QCONST16(2.f, DB_SHIFT)) | 
					
						
							|  |  |  |       trim_index--; | 
					
						
							|  |  |  |    if (diff > QCONST16(8.f, DB_SHIFT)) | 
					
						
							|  |  |  |       trim_index--; | 
					
						
							|  |  |  |    if (diff < -QCONST16(4.f, DB_SHIFT)) | 
					
						
							|  |  |  |       trim_index++; | 
					
						
							|  |  |  |    if (diff < -QCONST16(10.f, DB_SHIFT)) | 
					
						
							|  |  |  |       trim_index++; | 
					
						
							|  |  |  |    trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 )); | 
					
						
							|  |  |  |    trim -= SHR16(surround_trim, DB_SHIFT-8); | 
					
						
							|  |  |  |    trim -= 2*SHR16(tf_estimate, 14-8); | 
					
						
							|  |  |  | #ifndef DISABLE_FLOAT_API
 | 
					
						
							|  |  |  |    if (analysis->valid) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), | 
					
						
							|  |  |  |             (opus_val16)(QCONST16(2.f, 8)*(analysis->tonality_slope+.05f)))); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |    trim_index = PSHR32(trim, 8); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |    trim_index = (int)floor(.5f+trim); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    if (trim_index<0) | 
					
						
							|  |  |  |       trim_index = 0; | 
					
						
							|  |  |  |    if (trim_index>10) | 
					
						
							|  |  |  |       trim_index = 10; | 
					
						
							|  |  |  |    /*printf("%d\n", trim_index);*/ | 
					
						
							|  |  |  | #ifdef FUZZING
 | 
					
						
							|  |  |  |    trim_index = rand()%11; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    return trim_index; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int stereo_analysis(const CELTMode *m, const celt_norm *X, | 
					
						
							|  |  |  |       int LM, int N0) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i; | 
					
						
							|  |  |  |    int thetas; | 
					
						
							|  |  |  |    opus_val32 sumLR = EPSILON, sumMS = EPSILON; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */ | 
					
						
							|  |  |  |    for (i=0;i<13;i++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int j; | 
					
						
							|  |  |  |       for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_val32 L, R, M, S; | 
					
						
							|  |  |  |          /* We cast to 32-bit first because of the -32768 case */ | 
					
						
							|  |  |  |          L = EXTEND32(X[j]); | 
					
						
							|  |  |  |          R = EXTEND32(X[N0+j]); | 
					
						
							|  |  |  |          M = ADD32(L, R); | 
					
						
							|  |  |  |          S = SUB32(L, R); | 
					
						
							|  |  |  |          sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R))); | 
					
						
							|  |  |  |          sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S))); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS); | 
					
						
							|  |  |  |    thetas = 13; | 
					
						
							|  |  |  |    /* We don't need thetas for lower bands with LM<=1 */ | 
					
						
							|  |  |  |    if (LM<=1) | 
					
						
							|  |  |  |       thetas -= 8; | 
					
						
							|  |  |  |    return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS) | 
					
						
							|  |  |  |          > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 *bandLogE2, | 
					
						
							|  |  |  |       int nbEBands, int start, int end, int C, int *offsets, int lsb_depth, const opus_int16 *logN, | 
					
						
							|  |  |  |       int isTransient, int vbr, int constrained_vbr, const opus_int16 *eBands, int LM, | 
					
						
							|  |  |  |       int effectiveBytes, opus_int32 *tot_boost_, int lfe, opus_val16 *surround_dynalloc) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i, c; | 
					
						
							|  |  |  |    opus_int32 tot_boost=0; | 
					
						
							|  |  |  |    opus_val16 maxDepth; | 
					
						
							|  |  |  |    VARDECL(opus_val16, follower); | 
					
						
							|  |  |  |    VARDECL(opus_val16, noise_floor); | 
					
						
							|  |  |  |    SAVE_STACK; | 
					
						
							|  |  |  |    ALLOC(follower, C*nbEBands, opus_val16); | 
					
						
							|  |  |  |    ALLOC(noise_floor, C*nbEBands, opus_val16); | 
					
						
							|  |  |  |    for (i=0;i<nbEBands;i++) | 
					
						
							|  |  |  |       offsets[i] = 0; | 
					
						
							|  |  |  |    /* Dynamic allocation code */ | 
					
						
							|  |  |  |    maxDepth=-QCONST16(31.9f, DB_SHIFT); | 
					
						
							|  |  |  |    for (i=0;i<end;i++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       /* Noise floor must take into account eMeans, the depth, the width of the bands
 | 
					
						
							|  |  |  |          and the preemphasis filter (approx. square of bark band ID) */ | 
					
						
							|  |  |  |       noise_floor[i] = MULT16_16(QCONST16(0.0625f, DB_SHIFT),logN[i]) | 
					
						
							|  |  |  |             +QCONST16(.5f,DB_SHIFT)+SHL16(9-lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6) | 
					
						
							|  |  |  |             +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5)); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    c=0;do | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       for (i=0;i<end;i++) | 
					
						
							|  |  |  |          maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor[i]); | 
					
						
							|  |  |  |    } while (++c<C); | 
					
						
							|  |  |  |    /* Make sure that dynamic allocation can't make us bust the budget */ | 
					
						
							|  |  |  |    if (effectiveBytes > 50 && LM>=1 && !lfe) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int last=0; | 
					
						
							|  |  |  |       c=0;do | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          follower[c*nbEBands] = bandLogE2[c*nbEBands]; | 
					
						
							|  |  |  |          for (i=1;i<end;i++) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             /* The last band to be at least 3 dB higher than the previous one
 | 
					
						
							|  |  |  |                is the last we'll consider. Otherwise, we run into problems on | 
					
						
							|  |  |  |                bandlimited signals. */ | 
					
						
							|  |  |  |             if (bandLogE2[c*nbEBands+i] > bandLogE2[c*nbEBands+i-1]+QCONST16(.5f,DB_SHIFT)) | 
					
						
							|  |  |  |                last=i; | 
					
						
							|  |  |  |             follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE2[c*nbEBands+i]); | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |          for (i=last-1;i>=0;i--) | 
					
						
							|  |  |  |             follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i], MIN16(follower[c*nbEBands+i+1]+QCONST16(2.f,DB_SHIFT), bandLogE2[c*nbEBands+i])); | 
					
						
							|  |  |  |          for (i=0;i<end;i++) | 
					
						
							|  |  |  |             follower[c*nbEBands+i] = MAX16(follower[c*nbEBands+i], noise_floor[i]); | 
					
						
							|  |  |  |       } while (++c<C); | 
					
						
							|  |  |  |       if (C==2) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          for (i=start;i<end;i++) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             /* Consider 24 dB "cross-talk" */ | 
					
						
							|  |  |  |             follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[         i]-QCONST16(4.f,DB_SHIFT)); | 
					
						
							|  |  |  |             follower[         i] = MAX16(follower[         i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT)); | 
					
						
							|  |  |  |             follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i])); | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |       } else { | 
					
						
							|  |  |  |          for (i=start;i<end;i++) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             follower[i] = MAX16(0, bandLogE[i]-follower[i]); | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       for (i=start;i<end;i++) | 
					
						
							|  |  |  |          follower[i] = MAX16(follower[i], surround_dynalloc[i]); | 
					
						
							|  |  |  |       /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */ | 
					
						
							|  |  |  |       if ((!vbr || constrained_vbr)&&!isTransient) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          for (i=start;i<end;i++) | 
					
						
							|  |  |  |             follower[i] = HALF16(follower[i]); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       for (i=start;i<end;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int width; | 
					
						
							|  |  |  |          int boost; | 
					
						
							|  |  |  |          int boost_bits; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |          if (i<8) | 
					
						
							|  |  |  |             follower[i] *= 2; | 
					
						
							|  |  |  |          if (i>=12) | 
					
						
							|  |  |  |             follower[i] = HALF16(follower[i]); | 
					
						
							|  |  |  |          follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |          width = C*(eBands[i+1]-eBands[i])<<LM; | 
					
						
							|  |  |  |          if (width<6) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             boost = (int)SHR32(EXTEND32(follower[i]),DB_SHIFT); | 
					
						
							|  |  |  |             boost_bits = boost*width<<BITRES; | 
					
						
							|  |  |  |          } else if (width > 48) { | 
					
						
							|  |  |  |             boost = (int)SHR32(EXTEND32(follower[i])*8,DB_SHIFT); | 
					
						
							|  |  |  |             boost_bits = (boost*width<<BITRES)/8; | 
					
						
							|  |  |  |          } else { | 
					
						
							|  |  |  |             boost = (int)SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT); | 
					
						
							|  |  |  |             boost_bits = boost*6<<BITRES; | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |          /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */ | 
					
						
							|  |  |  |          if ((!vbr || (constrained_vbr&&!isTransient)) | 
					
						
							|  |  |  |                && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             opus_int32 cap = ((effectiveBytes/4)<<BITRES<<3); | 
					
						
							|  |  |  |             offsets[i] = cap-tot_boost; | 
					
						
							|  |  |  |             tot_boost = cap; | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  |          } else { | 
					
						
							|  |  |  |             offsets[i] = boost; | 
					
						
							|  |  |  |             tot_boost += boost_bits; | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    *tot_boost_ = tot_boost; | 
					
						
							|  |  |  |    RESTORE_STACK; | 
					
						
							|  |  |  |    return maxDepth; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N, | 
					
						
							|  |  |  |       int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int c; | 
					
						
							|  |  |  |    VARDECL(celt_sig, _pre); | 
					
						
							|  |  |  |    celt_sig *pre[2]; | 
					
						
							|  |  |  |    const CELTMode *mode; | 
					
						
							|  |  |  |    int pitch_index; | 
					
						
							|  |  |  |    opus_val16 gain1; | 
					
						
							|  |  |  |    opus_val16 pf_threshold; | 
					
						
							|  |  |  |    int pf_on; | 
					
						
							|  |  |  |    int qg; | 
					
						
							|  |  |  |    SAVE_STACK; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    mode = st->mode; | 
					
						
							|  |  |  |    ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    pre[0] = _pre; | 
					
						
							|  |  |  |    pre[1] = _pre + (N+COMBFILTER_MAXPERIOD); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    c=0; do { | 
					
						
							|  |  |  |       OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD); | 
					
						
							|  |  |  |       OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N); | 
					
						
							|  |  |  |    } while (++c<CC); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (enabled) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       VARDECL(opus_val16, pitch_buf); | 
					
						
							|  |  |  |       ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC, st->arch); | 
					
						
							|  |  |  |       /* Don't search for the fir last 1.5 octave of the range because
 | 
					
						
							|  |  |  |          there's too many false-positives due to short-term correlation */ | 
					
						
							|  |  |  |       pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N, | 
					
						
							|  |  |  |             COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index, | 
					
						
							|  |  |  |             st->arch); | 
					
						
							|  |  |  |       pitch_index = COMBFILTER_MAXPERIOD-pitch_index; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD, | 
					
						
							|  |  |  |             N, &pitch_index, st->prefilter_period, st->prefilter_gain); | 
					
						
							|  |  |  |       if (pitch_index > COMBFILTER_MAXPERIOD-2) | 
					
						
							|  |  |  |          pitch_index = COMBFILTER_MAXPERIOD-2; | 
					
						
							|  |  |  |       gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1); | 
					
						
							|  |  |  |       /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/ | 
					
						
							|  |  |  |       if (st->loss_rate>2) | 
					
						
							|  |  |  |          gain1 = HALF32(gain1); | 
					
						
							|  |  |  |       if (st->loss_rate>4) | 
					
						
							|  |  |  |          gain1 = HALF32(gain1); | 
					
						
							|  |  |  |       if (st->loss_rate>8) | 
					
						
							|  |  |  |          gain1 = 0; | 
					
						
							|  |  |  |    } else { | 
					
						
							|  |  |  |       gain1 = 0; | 
					
						
							|  |  |  |       pitch_index = COMBFILTER_MINPERIOD; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Gain threshold for enabling the prefilter/postfilter */ | 
					
						
							|  |  |  |    pf_threshold = QCONST16(.2f,15); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Adjusting the threshold based on rate and continuity */ | 
					
						
							|  |  |  |    if (abs(pitch_index-st->prefilter_period)*10>pitch_index) | 
					
						
							|  |  |  |       pf_threshold += QCONST16(.2f,15); | 
					
						
							|  |  |  |    if (nbAvailableBytes<25) | 
					
						
							|  |  |  |       pf_threshold += QCONST16(.1f,15); | 
					
						
							|  |  |  |    if (nbAvailableBytes<35) | 
					
						
							|  |  |  |       pf_threshold += QCONST16(.1f,15); | 
					
						
							|  |  |  |    if (st->prefilter_gain > QCONST16(.4f,15)) | 
					
						
							|  |  |  |       pf_threshold -= QCONST16(.1f,15); | 
					
						
							|  |  |  |    if (st->prefilter_gain > QCONST16(.55f,15)) | 
					
						
							|  |  |  |       pf_threshold -= QCONST16(.1f,15); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Hard threshold at 0.2 */ | 
					
						
							|  |  |  |    pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15)); | 
					
						
							|  |  |  |    if (gain1<pf_threshold) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       gain1 = 0; | 
					
						
							|  |  |  |       pf_on = 0; | 
					
						
							|  |  |  |       qg = 0; | 
					
						
							|  |  |  |    } else { | 
					
						
							|  |  |  |       /*This block is not gated by a total bits check only because
 | 
					
						
							|  |  |  |         of the nbAvailableBytes check above.*/ | 
					
						
							|  |  |  |       if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15)) | 
					
						
							|  |  |  |          gain1=st->prefilter_gain; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |       qg = ((gain1+1536)>>10)/3-1; | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |       qg = (int)floor(.5f+gain1*32/3)-1; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |       qg = IMAX(0, IMIN(7, qg)); | 
					
						
							|  |  |  |       gain1 = QCONST16(0.09375f,15)*(qg+1); | 
					
						
							|  |  |  |       pf_on = 1; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    /*printf("%d %f\n", pitch_index, gain1);*/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    c=0; do { | 
					
						
							|  |  |  |       int offset = mode->shortMdctSize-st->overlap; | 
					
						
							|  |  |  |       st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); | 
					
						
							|  |  |  |       OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap); | 
					
						
							|  |  |  |       if (offset) | 
					
						
							|  |  |  |          comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD, | 
					
						
							|  |  |  |                st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain, | 
					
						
							|  |  |  |                st->prefilter_tapset, st->prefilter_tapset, NULL, 0); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset, | 
					
						
							|  |  |  |             st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1, | 
					
						
							|  |  |  |             st->prefilter_tapset, prefilter_tapset, mode->window, st->overlap); | 
					
						
							|  |  |  |       OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (N>COMBFILTER_MAXPERIOD) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD); | 
					
						
							|  |  |  |       } else { | 
					
						
							|  |  |  |          OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N); | 
					
						
							|  |  |  |          OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } while (++c<CC); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    RESTORE_STACK; | 
					
						
							|  |  |  |    *gain = gain1; | 
					
						
							|  |  |  |    *pitch = pitch_index; | 
					
						
							|  |  |  |    *qgain = qg; | 
					
						
							|  |  |  |    return pf_on; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static int compute_vbr(const CELTMode *mode, AnalysisInfo *analysis, opus_int32 base_target, | 
					
						
							|  |  |  |       int LM, opus_int32 bitrate, int lastCodedBands, int C, int intensity, | 
					
						
							|  |  |  |       int constrained_vbr, opus_val16 stereo_saving, int tot_boost, | 
					
						
							|  |  |  |       opus_val16 tf_estimate, int pitch_change, opus_val16 maxDepth, | 
					
						
							|  |  |  |       int variable_duration, int lfe, int has_surround_mask, opus_val16 surround_masking, | 
					
						
							|  |  |  |       opus_val16 temporal_vbr) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    /* The target rate in 8th bits per frame */ | 
					
						
							|  |  |  |    opus_int32 target; | 
					
						
							|  |  |  |    int coded_bins; | 
					
						
							|  |  |  |    int coded_bands; | 
					
						
							|  |  |  |    opus_val16 tf_calibration; | 
					
						
							|  |  |  |    int nbEBands; | 
					
						
							|  |  |  |    const opus_int16 *eBands; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    nbEBands = mode->nbEBands; | 
					
						
							|  |  |  |    eBands = mode->eBands; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    coded_bands = lastCodedBands ? lastCodedBands : nbEBands; | 
					
						
							|  |  |  |    coded_bins = eBands[coded_bands]<<LM; | 
					
						
							|  |  |  |    if (C==2) | 
					
						
							|  |  |  |       coded_bins += eBands[IMIN(intensity, coded_bands)]<<LM; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    target = base_target; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/ | 
					
						
							|  |  |  | #ifndef DISABLE_FLOAT_API
 | 
					
						
							|  |  |  |    if (analysis->valid && analysis->activity<.4) | 
					
						
							|  |  |  |       target -= (opus_int32)((coded_bins<<BITRES)*(.4f-analysis->activity)); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    /* Stereo savings */ | 
					
						
							|  |  |  |    if (C==2) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int coded_stereo_bands; | 
					
						
							|  |  |  |       int coded_stereo_dof; | 
					
						
							|  |  |  |       opus_val16 max_frac; | 
					
						
							|  |  |  |       coded_stereo_bands = IMIN(intensity, coded_bands); | 
					
						
							|  |  |  |       coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands; | 
					
						
							|  |  |  |       /* Maximum fraction of the bits we can save if the signal is mono. */ | 
					
						
							|  |  |  |       max_frac = DIV32_16(MULT16_16(QCONST16(0.8f, 15), coded_stereo_dof), coded_bins); | 
					
						
							|  |  |  |       stereo_saving = MIN16(stereo_saving, QCONST16(1.f, 8)); | 
					
						
							|  |  |  |       /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/ | 
					
						
							|  |  |  |       target -= (opus_int32)MIN32(MULT16_32_Q15(max_frac,target), | 
					
						
							|  |  |  |                       SHR32(MULT16_16(stereo_saving-QCONST16(0.1f,8),(coded_stereo_dof<<BITRES)),8)); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    /* Boost the rate according to dynalloc (minus the dynalloc average for calibration). */ | 
					
						
							|  |  |  |    target += tot_boost-(16<<LM); | 
					
						
							|  |  |  |    /* Apply transient boost, compensating for average boost. */ | 
					
						
							|  |  |  |    tf_calibration = variable_duration==OPUS_FRAMESIZE_VARIABLE ? | 
					
						
							|  |  |  |                     QCONST16(0.02f,14) : QCONST16(0.04f,14); | 
					
						
							|  |  |  |    target += (opus_int32)SHL32(MULT16_32_Q15(tf_estimate-tf_calibration, target),1); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef DISABLE_FLOAT_API
 | 
					
						
							|  |  |  |    /* Apply tonality boost */ | 
					
						
							|  |  |  |    if (analysis->valid && !lfe) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_int32 tonal_target; | 
					
						
							|  |  |  |       float tonal; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       /* Tonality boost (compensating for the average). */ | 
					
						
							|  |  |  |       tonal = MAX16(0.f,analysis->tonality-.15f)-0.09f; | 
					
						
							|  |  |  |       tonal_target = target + (opus_int32)((coded_bins<<BITRES)*1.2f*tonal); | 
					
						
							|  |  |  |       if (pitch_change) | 
					
						
							|  |  |  |          tonal_target +=  (opus_int32)((coded_bins<<BITRES)*.8f); | 
					
						
							|  |  |  |       /*printf("%f %f ", analysis->tonality, tonal);*/ | 
					
						
							|  |  |  |       target = tonal_target; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (has_surround_mask&&!lfe) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_int32 surround_target = target + (opus_int32)SHR32(MULT16_16(surround_masking,coded_bins<<BITRES), DB_SHIFT); | 
					
						
							|  |  |  |       /*printf("%f %d %d %d %d %d %d ", surround_masking, coded_bins, st->end, st->intensity, surround_target, target, st->bitrate);*/ | 
					
						
							|  |  |  |       target = IMAX(target/4, surround_target); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_int32 floor_depth; | 
					
						
							|  |  |  |       int bins; | 
					
						
							|  |  |  |       bins = eBands[nbEBands-2]<<LM; | 
					
						
							|  |  |  |       /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/ | 
					
						
							|  |  |  |       floor_depth = (opus_int32)SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT); | 
					
						
							|  |  |  |       floor_depth = IMAX(floor_depth, target>>2); | 
					
						
							|  |  |  |       target = IMIN(target, floor_depth); | 
					
						
							|  |  |  |       /*printf("%f %d\n", maxDepth, floor_depth);*/ | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if ((!has_surround_mask||lfe) && (constrained_vbr || bitrate<64000)) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_val16 rate_factor; | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |       rate_factor = MAX16(0,(bitrate-32000)); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |       rate_factor = MAX16(0,(1.f/32768)*(bitrate-32000)); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |       if (constrained_vbr) | 
					
						
							|  |  |  |          rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15)); | 
					
						
							|  |  |  |       target = base_target + (opus_int32)MULT16_32_Q15(rate_factor, target-base_target); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (!has_surround_mask && tf_estimate < QCONST16(.2f, 14)) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_val16 amount; | 
					
						
							|  |  |  |       opus_val16 tvbr_factor; | 
					
						
							|  |  |  |       amount = MULT16_16_Q15(QCONST16(.0000031f, 30), IMAX(0, IMIN(32000, 96000-bitrate))); | 
					
						
							|  |  |  |       tvbr_factor = SHR32(MULT16_16(temporal_vbr, amount), DB_SHIFT); | 
					
						
							|  |  |  |       target += (opus_int32)MULT16_32_Q15(tvbr_factor, target); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Don't allow more than doubling the rate */ | 
					
						
							|  |  |  |    target = IMIN(2*base_target, target); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    return target; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int i, c, N; | 
					
						
							|  |  |  |    opus_int32 bits; | 
					
						
							|  |  |  |    ec_enc _enc; | 
					
						
							|  |  |  |    VARDECL(celt_sig, in); | 
					
						
							|  |  |  |    VARDECL(celt_sig, freq); | 
					
						
							|  |  |  |    VARDECL(celt_norm, X); | 
					
						
							|  |  |  |    VARDECL(celt_ener, bandE); | 
					
						
							|  |  |  |    VARDECL(opus_val16, bandLogE); | 
					
						
							|  |  |  |    VARDECL(opus_val16, bandLogE2); | 
					
						
							|  |  |  |    VARDECL(int, fine_quant); | 
					
						
							|  |  |  |    VARDECL(opus_val16, error); | 
					
						
							|  |  |  |    VARDECL(int, pulses); | 
					
						
							|  |  |  |    VARDECL(int, cap); | 
					
						
							|  |  |  |    VARDECL(int, offsets); | 
					
						
							|  |  |  |    VARDECL(int, fine_priority); | 
					
						
							|  |  |  |    VARDECL(int, tf_res); | 
					
						
							|  |  |  |    VARDECL(unsigned char, collapse_masks); | 
					
						
							|  |  |  |    celt_sig *prefilter_mem; | 
					
						
							|  |  |  |    opus_val16 *oldBandE, *oldLogE, *oldLogE2; | 
					
						
							|  |  |  |    int shortBlocks=0; | 
					
						
							|  |  |  |    int isTransient=0; | 
					
						
							|  |  |  |    const int CC = st->channels; | 
					
						
							|  |  |  |    const int C = st->stream_channels; | 
					
						
							|  |  |  |    int LM, M; | 
					
						
							|  |  |  |    int tf_select; | 
					
						
							|  |  |  |    int nbFilledBytes, nbAvailableBytes; | 
					
						
							|  |  |  |    int effEnd; | 
					
						
							|  |  |  |    int codedBands; | 
					
						
							|  |  |  |    int tf_sum; | 
					
						
							|  |  |  |    int alloc_trim; | 
					
						
							|  |  |  |    int pitch_index=COMBFILTER_MINPERIOD; | 
					
						
							|  |  |  |    opus_val16 gain1 = 0; | 
					
						
							|  |  |  |    int dual_stereo=0; | 
					
						
							|  |  |  |    int effectiveBytes; | 
					
						
							|  |  |  |    int dynalloc_logp; | 
					
						
							|  |  |  |    opus_int32 vbr_rate; | 
					
						
							|  |  |  |    opus_int32 total_bits; | 
					
						
							|  |  |  |    opus_int32 total_boost; | 
					
						
							|  |  |  |    opus_int32 balance; | 
					
						
							|  |  |  |    opus_int32 tell; | 
					
						
							|  |  |  |    int prefilter_tapset=0; | 
					
						
							|  |  |  |    int pf_on; | 
					
						
							|  |  |  |    int anti_collapse_rsv; | 
					
						
							|  |  |  |    int anti_collapse_on=0; | 
					
						
							|  |  |  |    int silence=0; | 
					
						
							|  |  |  |    int tf_chan = 0; | 
					
						
							|  |  |  |    opus_val16 tf_estimate; | 
					
						
							|  |  |  |    int pitch_change=0; | 
					
						
							|  |  |  |    opus_int32 tot_boost; | 
					
						
							|  |  |  |    opus_val32 sample_max; | 
					
						
							|  |  |  |    opus_val16 maxDepth; | 
					
						
							|  |  |  |    const OpusCustomMode *mode; | 
					
						
							|  |  |  |    int nbEBands; | 
					
						
							|  |  |  |    int overlap; | 
					
						
							|  |  |  |    const opus_int16 *eBands; | 
					
						
							|  |  |  |    int secondMdct; | 
					
						
							|  |  |  |    int signalBandwidth; | 
					
						
							|  |  |  |    int transient_got_disabled=0; | 
					
						
							|  |  |  |    opus_val16 surround_masking=0; | 
					
						
							|  |  |  |    opus_val16 temporal_vbr=0; | 
					
						
							|  |  |  |    opus_val16 surround_trim = 0; | 
					
						
							|  |  |  |    opus_int32 equiv_rate = 510000; | 
					
						
							|  |  |  |    VARDECL(opus_val16, surround_dynalloc); | 
					
						
							|  |  |  |    ALLOC_STACK; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    mode = st->mode; | 
					
						
							|  |  |  |    nbEBands = mode->nbEBands; | 
					
						
							|  |  |  |    overlap = mode->overlap; | 
					
						
							|  |  |  |    eBands = mode->eBands; | 
					
						
							|  |  |  |    tf_estimate = 0; | 
					
						
							|  |  |  |    if (nbCompressedBytes<2 || pcm==NULL) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       RESTORE_STACK; | 
					
						
							|  |  |  |       return OPUS_BAD_ARG; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    frame_size *= st->upsample; | 
					
						
							|  |  |  |    for (LM=0;LM<=mode->maxLM;LM++) | 
					
						
							|  |  |  |       if (mode->shortMdctSize<<LM==frame_size) | 
					
						
							|  |  |  |          break; | 
					
						
							|  |  |  |    if (LM>mode->maxLM) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       RESTORE_STACK; | 
					
						
							|  |  |  |       return OPUS_BAD_ARG; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    M=1<<LM; | 
					
						
							|  |  |  |    N = M*mode->shortMdctSize; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    prefilter_mem = st->in_mem+CC*(st->overlap); | 
					
						
							|  |  |  |    oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD)); | 
					
						
							|  |  |  |    oldLogE = oldBandE + CC*nbEBands; | 
					
						
							|  |  |  |    oldLogE2 = oldLogE + CC*nbEBands; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (enc==NULL) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       tell=1; | 
					
						
							|  |  |  |       nbFilledBytes=0; | 
					
						
							|  |  |  |    } else { | 
					
						
							|  |  |  |       tell=ec_tell(enc); | 
					
						
							|  |  |  |       nbFilledBytes=(tell+4)>>3; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef CUSTOM_MODES
 | 
					
						
							|  |  |  |    if (st->signalling && enc==NULL) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int tmp = (mode->effEBands-st->end)>>1; | 
					
						
							|  |  |  |       st->end = IMAX(1, mode->effEBands-tmp); | 
					
						
							|  |  |  |       compressed[0] = tmp<<5; | 
					
						
							|  |  |  |       compressed[0] |= LM<<3; | 
					
						
							|  |  |  |       compressed[0] |= (C==2)<<2; | 
					
						
							|  |  |  |       /* Convert "standard mode" to Opus header */ | 
					
						
							|  |  |  |       if (mode->Fs==48000 && mode->shortMdctSize==120) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int c0 = toOpus(compressed[0]); | 
					
						
							|  |  |  |          if (c0<0) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             RESTORE_STACK; | 
					
						
							|  |  |  |             return OPUS_BAD_ARG; | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |          compressed[0] = c0; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       compressed++; | 
					
						
							|  |  |  |       nbCompressedBytes--; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |    celt_assert(st->signalling==0); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Can't produce more than 1275 output bytes */ | 
					
						
							|  |  |  |    nbCompressedBytes = IMIN(nbCompressedBytes,1275); | 
					
						
							|  |  |  |    nbAvailableBytes = nbCompressedBytes - nbFilledBytes; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_int32 den=mode->Fs>>BITRES; | 
					
						
							|  |  |  |       vbr_rate=(st->bitrate*frame_size+(den>>1))/den; | 
					
						
							|  |  |  | #ifdef CUSTOM_MODES
 | 
					
						
							|  |  |  |       if (st->signalling) | 
					
						
							|  |  |  |          vbr_rate -= 8<<BITRES; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |       effectiveBytes = vbr_rate>>(3+BITRES); | 
					
						
							|  |  |  |    } else { | 
					
						
							|  |  |  |       opus_int32 tmp; | 
					
						
							|  |  |  |       vbr_rate = 0; | 
					
						
							|  |  |  |       tmp = st->bitrate*frame_size; | 
					
						
							|  |  |  |       if (tell>1) | 
					
						
							|  |  |  |          tmp += tell; | 
					
						
							|  |  |  |       if (st->bitrate!=OPUS_BITRATE_MAX) | 
					
						
							|  |  |  |          nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes, | 
					
						
							|  |  |  |                (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling)); | 
					
						
							|  |  |  |       effectiveBytes = nbCompressedBytes; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    if (st->bitrate != OPUS_BITRATE_MAX) | 
					
						
							|  |  |  |       equiv_rate = st->bitrate - (40*C+20)*((400>>LM) - 50); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (enc==NULL) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       ec_enc_init(&_enc, compressed, nbCompressedBytes); | 
					
						
							|  |  |  |       enc = &_enc; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (vbr_rate>0) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       /* Computes the max bit-rate allowed in VBR mode to avoid violating the
 | 
					
						
							|  |  |  |           target rate and buffering. | 
					
						
							|  |  |  |          We must do this up front so that bust-prevention logic triggers | 
					
						
							|  |  |  |           correctly if we don't have enough bits. */ | 
					
						
							|  |  |  |       if (st->constrained_vbr) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_int32 vbr_bound; | 
					
						
							|  |  |  |          opus_int32 max_allowed; | 
					
						
							|  |  |  |          /* We could use any multiple of vbr_rate as bound (depending on the
 | 
					
						
							|  |  |  |              delay). | 
					
						
							|  |  |  |             This is clamped to ensure we use at least two bytes if the encoder | 
					
						
							|  |  |  |              was entirely empty, but to allow 0 in hybrid mode. */ | 
					
						
							|  |  |  |          vbr_bound = vbr_rate; | 
					
						
							|  |  |  |          max_allowed = IMIN(IMAX(tell==1?2:0, | 
					
						
							|  |  |  |                (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)), | 
					
						
							|  |  |  |                nbAvailableBytes); | 
					
						
							|  |  |  |          if(max_allowed < nbAvailableBytes) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             nbCompressedBytes = nbFilledBytes+max_allowed; | 
					
						
							|  |  |  |             nbAvailableBytes = max_allowed; | 
					
						
							|  |  |  |             ec_enc_shrink(enc, nbCompressedBytes); | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    total_bits = nbCompressedBytes*8; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    effEnd = st->end; | 
					
						
							|  |  |  |    if (effEnd > mode->effEBands) | 
					
						
							|  |  |  |       effEnd = mode->effEBands; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    ALLOC(in, CC*(N+st->overlap), celt_sig); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    sample_max=MAX32(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample)); | 
					
						
							|  |  |  |    st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample); | 
					
						
							|  |  |  |    sample_max=MAX32(sample_max, st->overlap_max); | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  |    silence = (sample_max==0); | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |    silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth)); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | #ifdef FUZZING
 | 
					
						
							|  |  |  |    if ((rand()&0x3F)==0) | 
					
						
							|  |  |  |       silence = 1; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    if (tell==1) | 
					
						
							|  |  |  |       ec_enc_bit_logp(enc, silence, 15); | 
					
						
							|  |  |  |    else | 
					
						
							|  |  |  |       silence=0; | 
					
						
							|  |  |  |    if (silence) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       /*In VBR mode there is no need to send more than the minimum. */ | 
					
						
							|  |  |  |       if (vbr_rate>0) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2); | 
					
						
							|  |  |  |          total_bits=nbCompressedBytes*8; | 
					
						
							|  |  |  |          nbAvailableBytes=2; | 
					
						
							|  |  |  |          ec_enc_shrink(enc, nbCompressedBytes); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       /* Pretend we've filled all the remaining bits with zeros
 | 
					
						
							|  |  |  |             (that's what the initialiser did anyway) */ | 
					
						
							|  |  |  |       tell = nbCompressedBytes*8; | 
					
						
							|  |  |  |       enc->nbits_total+=tell-ec_tell(enc); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    c=0; do { | 
					
						
							|  |  |  |       celt_preemphasis(pcm+c, in+c*(N+st->overlap)+st->overlap, N, CC, st->upsample, | 
					
						
							|  |  |  |                   mode->preemph, st->preemph_memE+c, st->clip); | 
					
						
							|  |  |  |    } while (++c<CC); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Find pitch period and gain */ | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int enabled; | 
					
						
							|  |  |  |       int qg; | 
					
						
							|  |  |  |       enabled = ((st->lfe&&nbAvailableBytes>3) || nbAvailableBytes>12*C) && st->start==0 && !silence && !st->disable_pf | 
					
						
							|  |  |  |             && st->complexity >= 5 && !(st->consec_transient && LM!=3 && st->variable_duration==OPUS_FRAMESIZE_VARIABLE); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       prefilter_tapset = st->tapset_decision; | 
					
						
							|  |  |  |       pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes); | 
					
						
							|  |  |  |       if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && (!st->analysis.valid || st->analysis.tonality > .3) | 
					
						
							|  |  |  |             && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period)) | 
					
						
							|  |  |  |          pitch_change = 1; | 
					
						
							|  |  |  |       if (pf_on==0) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          if(st->start==0 && tell+16<=total_bits) | 
					
						
							|  |  |  |             ec_enc_bit_logp(enc, 0, 1); | 
					
						
							|  |  |  |       } else { | 
					
						
							|  |  |  |          /*This block is not gated by a total bits check only because
 | 
					
						
							|  |  |  |            of the nbAvailableBytes check above.*/ | 
					
						
							|  |  |  |          int octave; | 
					
						
							|  |  |  |          ec_enc_bit_logp(enc, 1, 1); | 
					
						
							|  |  |  |          pitch_index += 1; | 
					
						
							|  |  |  |          octave = EC_ILOG(pitch_index)-5; | 
					
						
							|  |  |  |          ec_enc_uint(enc, octave, 6); | 
					
						
							|  |  |  |          ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave); | 
					
						
							|  |  |  |          pitch_index -= 1; | 
					
						
							|  |  |  |          ec_enc_bits(enc, qg, 3); | 
					
						
							|  |  |  |          ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    isTransient = 0; | 
					
						
							|  |  |  |    shortBlocks = 0; | 
					
						
							|  |  |  |    if (st->complexity >= 1 && !st->lfe) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       isTransient = transient_analysis(in, N+st->overlap, CC, | 
					
						
							|  |  |  |             &tf_estimate, &tf_chan); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    if (LM>0 && ec_tell(enc)+3<=total_bits) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       if (isTransient) | 
					
						
							|  |  |  |          shortBlocks = M; | 
					
						
							|  |  |  |    } else { | 
					
						
							|  |  |  |       isTransient = 0; | 
					
						
							|  |  |  |       transient_got_disabled=1; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */ | 
					
						
							|  |  |  |    ALLOC(bandE,nbEBands*CC, celt_ener); | 
					
						
							|  |  |  |    ALLOC(bandLogE,nbEBands*CC, opus_val16); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    secondMdct = shortBlocks && st->complexity>=8; | 
					
						
							|  |  |  |    ALLOC(bandLogE2, C*nbEBands, opus_val16); | 
					
						
							|  |  |  |    if (secondMdct) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       compute_mdcts(mode, 0, in, freq, C, CC, LM, st->upsample); | 
					
						
							|  |  |  |       compute_band_energies(mode, freq, bandE, effEnd, C, M); | 
					
						
							|  |  |  |       amp2Log2(mode, effEnd, st->end, bandE, bandLogE2, C); | 
					
						
							|  |  |  |       for (i=0;i<C*nbEBands;i++) | 
					
						
							|  |  |  |          bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample); | 
					
						
							|  |  |  |    if (CC==2&&C==1) | 
					
						
							|  |  |  |       tf_chan = 0; | 
					
						
							|  |  |  |    compute_band_energies(mode, freq, bandE, effEnd, C, M); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (st->lfe) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       for (i=2;i<st->end;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          bandE[i] = IMIN(bandE[i], MULT16_32_Q15(QCONST16(1e-4f,15),bandE[0])); | 
					
						
							|  |  |  |          bandE[i] = MAX32(bandE[i], EPSILON); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    ALLOC(surround_dynalloc, C*nbEBands, opus_val16); | 
					
						
							|  |  |  |    for(i=0;i<st->end;i++) | 
					
						
							|  |  |  |       surround_dynalloc[i] = 0; | 
					
						
							|  |  |  |    /* This computes how much masking takes place between surround channels */ | 
					
						
							|  |  |  |    if (st->start==0&&st->energy_mask&&!st->lfe) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int mask_end; | 
					
						
							|  |  |  |       int midband; | 
					
						
							|  |  |  |       int count_dynalloc; | 
					
						
							|  |  |  |       opus_val32 mask_avg=0; | 
					
						
							|  |  |  |       opus_val32 diff=0; | 
					
						
							|  |  |  |       int count=0; | 
					
						
							|  |  |  |       mask_end = IMAX(2,st->lastCodedBands); | 
					
						
							|  |  |  |       for (c=0;c<C;c++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          for(i=0;i<mask_end;i++) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             opus_val16 mask; | 
					
						
							|  |  |  |             mask = MAX16(MIN16(st->energy_mask[nbEBands*c+i], | 
					
						
							|  |  |  |                    QCONST16(.25f, DB_SHIFT)), -QCONST16(2.0f, DB_SHIFT)); | 
					
						
							|  |  |  |             if (mask > 0) | 
					
						
							|  |  |  |                mask = HALF16(mask); | 
					
						
							|  |  |  |             mask_avg += MULT16_16(mask, eBands[i+1]-eBands[i]); | 
					
						
							|  |  |  |             count += eBands[i+1]-eBands[i]; | 
					
						
							|  |  |  |             diff += MULT16_16(mask, 1+2*i-mask_end); | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       mask_avg = DIV32_16(mask_avg,count); | 
					
						
							|  |  |  |       mask_avg += QCONST16(.2f, DB_SHIFT); | 
					
						
							|  |  |  |       diff = diff*6/(C*(mask_end-1)*(mask_end+1)*mask_end); | 
					
						
							|  |  |  |       /* Again, being conservative */ | 
					
						
							|  |  |  |       diff = HALF32(diff); | 
					
						
							|  |  |  |       diff = MAX32(MIN32(diff, QCONST32(.031f, DB_SHIFT)), -QCONST32(.031f, DB_SHIFT)); | 
					
						
							|  |  |  |       /* Find the band that's in the middle of the coded spectrum */ | 
					
						
							|  |  |  |       for (midband=0;eBands[midband+1] < eBands[mask_end]/2;midband++); | 
					
						
							|  |  |  |       count_dynalloc=0; | 
					
						
							|  |  |  |       for(i=0;i<mask_end;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_val32 lin; | 
					
						
							|  |  |  |          opus_val16 unmask; | 
					
						
							|  |  |  |          lin = mask_avg + diff*(i-midband); | 
					
						
							|  |  |  |          if (C==2) | 
					
						
							|  |  |  |             unmask = MAX16(st->energy_mask[i], st->energy_mask[nbEBands+i]); | 
					
						
							|  |  |  |          else | 
					
						
							|  |  |  |             unmask = st->energy_mask[i]; | 
					
						
							|  |  |  |          unmask = MIN16(unmask, QCONST16(.0f, DB_SHIFT)); | 
					
						
							|  |  |  |          unmask -= lin; | 
					
						
							|  |  |  |          if (unmask > QCONST16(.25f, DB_SHIFT)) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             surround_dynalloc[i] = unmask - QCONST16(.25f, DB_SHIFT); | 
					
						
							|  |  |  |             count_dynalloc++; | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       if (count_dynalloc>=3) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          /* If we need dynalloc in many bands, it's probably because our
 | 
					
						
							|  |  |  |             initial masking rate was too low. */ | 
					
						
							|  |  |  |          mask_avg += QCONST16(.25f, DB_SHIFT); | 
					
						
							|  |  |  |          if (mask_avg>0) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             /* Something went really wrong in the original calculations,
 | 
					
						
							|  |  |  |                disabling masking. */ | 
					
						
							|  |  |  |             mask_avg = 0; | 
					
						
							|  |  |  |             diff = 0; | 
					
						
							|  |  |  |             for(i=0;i<mask_end;i++) | 
					
						
							|  |  |  |                surround_dynalloc[i] = 0; | 
					
						
							|  |  |  |          } else { | 
					
						
							|  |  |  |             for(i=0;i<mask_end;i++) | 
					
						
							|  |  |  |                surround_dynalloc[i] = MAX16(0, surround_dynalloc[i]-QCONST16(.25f, DB_SHIFT)); | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       mask_avg += QCONST16(.2f, DB_SHIFT); | 
					
						
							|  |  |  |       /* Convert to 1/64th units used for the trim */ | 
					
						
							|  |  |  |       surround_trim = 64*diff; | 
					
						
							|  |  |  |       /*printf("%d %d ", mask_avg, surround_trim);*/ | 
					
						
							|  |  |  |       surround_masking = mask_avg; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    /* Temporal VBR (but not for LFE) */ | 
					
						
							|  |  |  |    if (!st->lfe) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       opus_val16 follow=-QCONST16(10.0f,DB_SHIFT); | 
					
						
							|  |  |  |       opus_val32 frame_avg=0; | 
					
						
							|  |  |  |       opus_val16 offset = shortBlocks?HALF16(SHL16(LM, DB_SHIFT)):0; | 
					
						
							|  |  |  |       for(i=st->start;i<st->end;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          follow = MAX16(follow-QCONST16(1.f, DB_SHIFT), bandLogE[i]-offset); | 
					
						
							|  |  |  |          if (C==2) | 
					
						
							|  |  |  |             follow = MAX16(follow, bandLogE[i+nbEBands]-offset); | 
					
						
							|  |  |  |          frame_avg += follow; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       frame_avg /= (st->end-st->start); | 
					
						
							|  |  |  |       temporal_vbr = SUB16(frame_avg,st->spec_avg); | 
					
						
							|  |  |  |       temporal_vbr = MIN16(QCONST16(3.f, DB_SHIFT), MAX16(-QCONST16(1.5f, DB_SHIFT), temporal_vbr)); | 
					
						
							|  |  |  |       st->spec_avg += MULT16_16_Q15(QCONST16(.02f, 15), temporal_vbr); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    /*for (i=0;i<21;i++)
 | 
					
						
							|  |  |  |       printf("%f ", bandLogE[i]); | 
					
						
							|  |  |  |    printf("\n");*/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (!secondMdct) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       for (i=0;i<C*nbEBands;i++) | 
					
						
							|  |  |  |          bandLogE2[i] = bandLogE[i]; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Last chance to catch any transient we might have missed in the
 | 
					
						
							|  |  |  |       time-domain analysis */ | 
					
						
							|  |  |  |    if (LM>0 && ec_tell(enc)+3<=total_bits && !isTransient && st->complexity>=5 && !st->lfe) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       if (patch_transient_decision(bandLogE, oldBandE, nbEBands, st->end, C)) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          isTransient = 1; | 
					
						
							|  |  |  |          shortBlocks = M; | 
					
						
							|  |  |  |          compute_mdcts(mode, shortBlocks, in, freq, C, CC, LM, st->upsample); | 
					
						
							|  |  |  |          compute_band_energies(mode, freq, bandE, effEnd, C, M); | 
					
						
							|  |  |  |          amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); | 
					
						
							|  |  |  |          /* Compensate for the scaling of short vs long mdcts */ | 
					
						
							|  |  |  |          for (i=0;i<C*nbEBands;i++) | 
					
						
							|  |  |  |             bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); | 
					
						
							|  |  |  |          tf_estimate = QCONST16(.2f,14); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (LM>0 && ec_tell(enc)+3<=total_bits) | 
					
						
							|  |  |  |       ec_enc_bit_logp(enc, isTransient, 3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    ALLOC(X, C*N, celt_norm);         /**< Interleaved normalised MDCTs */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Band normalisation */ | 
					
						
							|  |  |  |    normalise_bands(mode, freq, X, bandE, effEnd, C, M); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    ALLOC(tf_res, nbEBands, int); | 
					
						
							|  |  |  |    /* Disable variable tf resolution for hybrid and at very low bitrate */ | 
					
						
							|  |  |  |    if (effectiveBytes>=15*C && st->start==0 && st->complexity>=2 && !st->lfe) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int lambda; | 
					
						
							|  |  |  |       if (effectiveBytes<40) | 
					
						
							|  |  |  |          lambda = 12; | 
					
						
							|  |  |  |       else if (effectiveBytes<60) | 
					
						
							|  |  |  |          lambda = 6; | 
					
						
							|  |  |  |       else if (effectiveBytes<100) | 
					
						
							|  |  |  |          lambda = 4; | 
					
						
							|  |  |  |       else | 
					
						
							|  |  |  |          lambda = 3; | 
					
						
							|  |  |  |       lambda*=2; | 
					
						
							|  |  |  |       tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, &tf_sum, tf_estimate, tf_chan); | 
					
						
							|  |  |  |       for (i=effEnd;i<st->end;i++) | 
					
						
							|  |  |  |          tf_res[i] = tf_res[effEnd-1]; | 
					
						
							|  |  |  |    } else { | 
					
						
							|  |  |  |       tf_sum = 0; | 
					
						
							|  |  |  |       for (i=0;i<st->end;i++) | 
					
						
							|  |  |  |          tf_res[i] = isTransient; | 
					
						
							|  |  |  |       tf_select=0; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    ALLOC(error, C*nbEBands, opus_val16); | 
					
						
							|  |  |  |    quant_coarse_energy(mode, st->start, st->end, effEnd, bandLogE, | 
					
						
							|  |  |  |          oldBandE, total_bits, error, enc, | 
					
						
							|  |  |  |          C, LM, nbAvailableBytes, st->force_intra, | 
					
						
							|  |  |  |          &st->delayedIntra, st->complexity >= 4, st->loss_rate, st->lfe); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (ec_tell(enc)+4<=total_bits) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       if (st->lfe) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          st->tapset_decision = 0; | 
					
						
							|  |  |  |          st->spread_decision = SPREAD_NORMAL; | 
					
						
							|  |  |  |       } else if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C || st->start != 0) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          if (st->complexity == 0) | 
					
						
							|  |  |  |             st->spread_decision = SPREAD_NONE; | 
					
						
							|  |  |  |          else | 
					
						
							|  |  |  |             st->spread_decision = SPREAD_NORMAL; | 
					
						
							|  |  |  |       } else { | 
					
						
							|  |  |  |          /* Disable new spreading+tapset estimator until we can show it works
 | 
					
						
							|  |  |  |             better than the old one. So far it seems like spreading_decision() | 
					
						
							|  |  |  |             works best. */ | 
					
						
							|  |  |  | #if 0
 | 
					
						
							|  |  |  |          if (st->analysis.valid) | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)}; | 
					
						
							|  |  |  |             static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)}; | 
					
						
							|  |  |  |             static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)}; | 
					
						
							|  |  |  |             static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)}; | 
					
						
							|  |  |  |             st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision); | 
					
						
							|  |  |  |             st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision); | 
					
						
							|  |  |  |          } else | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |          { | 
					
						
							|  |  |  |             st->spread_decision = spreading_decision(mode, X, | 
					
						
							|  |  |  |                   &st->tonal_average, st->spread_decision, &st->hf_average, | 
					
						
							|  |  |  |                   &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M); | 
					
						
							|  |  |  |          } | 
					
						
							|  |  |  |          /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/ | 
					
						
							|  |  |  |          /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/ | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    ALLOC(offsets, nbEBands, int); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    maxDepth = dynalloc_analysis(bandLogE, bandLogE2, nbEBands, st->start, st->end, C, offsets, | 
					
						
							|  |  |  |          st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr, | 
					
						
							|  |  |  |          eBands, LM, effectiveBytes, &tot_boost, st->lfe, surround_dynalloc); | 
					
						
							|  |  |  |    /* For LFE, everything interesting is in the first band */ | 
					
						
							|  |  |  |    if (st->lfe) | 
					
						
							|  |  |  |       offsets[0] = IMIN(8, effectiveBytes/3); | 
					
						
							|  |  |  |    ALLOC(cap, nbEBands, int); | 
					
						
							|  |  |  |    init_caps(mode,cap,LM,C); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    dynalloc_logp = 6; | 
					
						
							|  |  |  |    total_bits<<=BITRES; | 
					
						
							|  |  |  |    total_boost = 0; | 
					
						
							|  |  |  |    tell = ec_tell_frac(enc); | 
					
						
							|  |  |  |    for (i=st->start;i<st->end;i++) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int width, quanta; | 
					
						
							|  |  |  |       int dynalloc_loop_logp; | 
					
						
							|  |  |  |       int boost; | 
					
						
							|  |  |  |       int j; | 
					
						
							|  |  |  |       width = C*(eBands[i+1]-eBands[i])<<LM; | 
					
						
							|  |  |  |       /* quanta is 6 bits, but no more than 1 bit/sample
 | 
					
						
							|  |  |  |          and no less than 1/8 bit/sample */ | 
					
						
							|  |  |  |       quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); | 
					
						
							|  |  |  |       dynalloc_loop_logp = dynalloc_logp; | 
					
						
							|  |  |  |       boost = 0; | 
					
						
							|  |  |  |       for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost | 
					
						
							|  |  |  |             && boost < cap[i]; j++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int flag; | 
					
						
							|  |  |  |          flag = j<offsets[i]; | 
					
						
							|  |  |  |          ec_enc_bit_logp(enc, flag, dynalloc_loop_logp); | 
					
						
							|  |  |  |          tell = ec_tell_frac(enc); | 
					
						
							|  |  |  |          if (!flag) | 
					
						
							|  |  |  |             break; | 
					
						
							|  |  |  |          boost += quanta; | 
					
						
							|  |  |  |          total_boost += quanta; | 
					
						
							|  |  |  |          dynalloc_loop_logp = 1; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       /* Making dynalloc more likely */ | 
					
						
							|  |  |  |       if (j) | 
					
						
							|  |  |  |          dynalloc_logp = IMAX(2, dynalloc_logp-1); | 
					
						
							|  |  |  |       offsets[i] = boost; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (C==2) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       static const opus_val16 intensity_thresholds[21]= | 
					
						
							|  |  |  |       /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19  20  off*/ | 
					
						
							|  |  |  |         {  1, 2, 3, 4, 5, 6, 7, 8,16,24,36,44,50,56,62,67,72,79,88,106,134}; | 
					
						
							|  |  |  |       static const opus_val16 intensity_histeresis[21]= | 
					
						
							|  |  |  |         {  1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5, 6,  8, 8}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       /* Always use MS for 2.5 ms frames until we can do a better analysis */ | 
					
						
							|  |  |  |       if (LM!=0) | 
					
						
							|  |  |  |          dual_stereo = stereo_analysis(mode, X, LM, N); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       st->intensity = hysteresis_decision((opus_val16)(equiv_rate/1000), | 
					
						
							|  |  |  |             intensity_thresholds, intensity_histeresis, 21, st->intensity); | 
					
						
							|  |  |  |       st->intensity = IMIN(st->end,IMAX(st->start, st->intensity)); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    alloc_trim = 5; | 
					
						
							|  |  |  |    if (tell+(6<<BITRES) <= total_bits - total_boost) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       if (st->lfe) | 
					
						
							|  |  |  |          alloc_trim = 5; | 
					
						
							|  |  |  |       else | 
					
						
							|  |  |  |          alloc_trim = alloc_trim_analysis(mode, X, bandLogE, | 
					
						
							|  |  |  |             st->end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, st->intensity, surround_trim); | 
					
						
							|  |  |  |       ec_enc_icdf(enc, alloc_trim, trim_icdf, 7); | 
					
						
							|  |  |  |       tell = ec_tell_frac(enc); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Variable bitrate */ | 
					
						
							|  |  |  |    if (vbr_rate>0) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |      opus_val16 alpha; | 
					
						
							|  |  |  |      opus_int32 delta; | 
					
						
							|  |  |  |      /* The target rate in 8th bits per frame */ | 
					
						
							|  |  |  |      opus_int32 target, base_target; | 
					
						
							|  |  |  |      opus_int32 min_allowed; | 
					
						
							|  |  |  |      int lm_diff = mode->maxLM - LM; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms.
 | 
					
						
							|  |  |  |         The CELT allocator will just not be able to use more than that anyway. */ | 
					
						
							|  |  |  |      nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM)); | 
					
						
							|  |  |  |      base_target = vbr_rate - ((40*C+20)<<BITRES); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      if (st->constrained_vbr) | 
					
						
							|  |  |  |         base_target += (st->vbr_offset>>lm_diff); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      target = compute_vbr(mode, &st->analysis, base_target, LM, equiv_rate, | 
					
						
							|  |  |  |            st->lastCodedBands, C, st->intensity, st->constrained_vbr, | 
					
						
							|  |  |  |            st->stereo_saving, tot_boost, tf_estimate, pitch_change, maxDepth, | 
					
						
							|  |  |  |            st->variable_duration, st->lfe, st->energy_mask!=NULL, surround_masking, | 
					
						
							|  |  |  |            temporal_vbr); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      /* The current offset is removed from the target and the space used
 | 
					
						
							|  |  |  |         so far is added*/ | 
					
						
							|  |  |  |      target=target+tell; | 
					
						
							|  |  |  |      /* In VBR mode the frame size must not be reduced so much that it would
 | 
					
						
							|  |  |  |          result in the encoder running out of bits. | 
					
						
							|  |  |  |         The margin of 2 bytes ensures that none of the bust-prevention logic | 
					
						
							|  |  |  |          in the decoder will have triggered so far. */ | 
					
						
							|  |  |  |      min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3); | 
					
						
							|  |  |  |      nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes); | 
					
						
							|  |  |  |      nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      /* By how much did we "miss" the target on that frame */ | 
					
						
							|  |  |  |      delta = target - vbr_rate; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      target=nbAvailableBytes<<(BITRES+3); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      /*If the frame is silent we don't adjust our drift, otherwise
 | 
					
						
							|  |  |  |        the encoder will shoot to very high rates after hitting a | 
					
						
							|  |  |  |        span of silence, but we do allow the bitres to refill. | 
					
						
							|  |  |  |        This means that we'll undershoot our target in CVBR/VBR modes | 
					
						
							|  |  |  |        on files with lots of silence. */ | 
					
						
							|  |  |  |      if(silence) | 
					
						
							|  |  |  |      { | 
					
						
							|  |  |  |        nbAvailableBytes = 2; | 
					
						
							|  |  |  |        target = 2*8<<BITRES; | 
					
						
							|  |  |  |        delta = 0; | 
					
						
							|  |  |  |      } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      if (st->vbr_count < 970) | 
					
						
							|  |  |  |      { | 
					
						
							|  |  |  |         st->vbr_count++; | 
					
						
							|  |  |  |         alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16)); | 
					
						
							|  |  |  |      } else | 
					
						
							|  |  |  |         alpha = QCONST16(.001f,15); | 
					
						
							|  |  |  |      /* How many bits have we used in excess of what we're allowed */ | 
					
						
							|  |  |  |      if (st->constrained_vbr) | 
					
						
							|  |  |  |         st->vbr_reservoir += target - vbr_rate; | 
					
						
							|  |  |  |      /*printf ("%d\n", st->vbr_reservoir);*/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      /* Compute the offset we need to apply in order to reach the target */ | 
					
						
							|  |  |  |      if (st->constrained_vbr) | 
					
						
							|  |  |  |      { | 
					
						
							|  |  |  |         st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift); | 
					
						
							|  |  |  |         st->vbr_offset = -st->vbr_drift; | 
					
						
							|  |  |  |      } | 
					
						
							|  |  |  |      /*printf ("%d\n", st->vbr_drift);*/ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |      if (st->constrained_vbr && st->vbr_reservoir < 0) | 
					
						
							|  |  |  |      { | 
					
						
							|  |  |  |         /* We're under the min value -- increase rate */ | 
					
						
							|  |  |  |         int adjust = (-st->vbr_reservoir)/(8<<BITRES); | 
					
						
							|  |  |  |         /* Unless we're just coding silence */ | 
					
						
							|  |  |  |         nbAvailableBytes += silence?0:adjust; | 
					
						
							|  |  |  |         st->vbr_reservoir = 0; | 
					
						
							|  |  |  |         /*printf ("+%d\n", adjust);*/ | 
					
						
							|  |  |  |      } | 
					
						
							|  |  |  |      nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes); | 
					
						
							|  |  |  |      /*printf("%d\n", nbCompressedBytes*50*8);*/ | 
					
						
							|  |  |  |      /* This moves the raw bits to take into account the new compressed size */ | 
					
						
							|  |  |  |      ec_enc_shrink(enc, nbCompressedBytes); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Bit allocation */ | 
					
						
							|  |  |  |    ALLOC(fine_quant, nbEBands, int); | 
					
						
							|  |  |  |    ALLOC(pulses, nbEBands, int); | 
					
						
							|  |  |  |    ALLOC(fine_priority, nbEBands, int); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* bits =           packet size                    - where we are - safety*/ | 
					
						
							|  |  |  |    bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1; | 
					
						
							|  |  |  |    anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0; | 
					
						
							|  |  |  |    bits -= anti_collapse_rsv; | 
					
						
							|  |  |  |    signalBandwidth = st->end-1; | 
					
						
							|  |  |  | #ifndef DISABLE_FLOAT_API
 | 
					
						
							|  |  |  |    if (st->analysis.valid) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       int min_bandwidth; | 
					
						
							|  |  |  |       if (equiv_rate < (opus_int32)32000*C) | 
					
						
							|  |  |  |          min_bandwidth = 13; | 
					
						
							|  |  |  |       else if (equiv_rate < (opus_int32)48000*C) | 
					
						
							|  |  |  |          min_bandwidth = 16; | 
					
						
							|  |  |  |       else if (equiv_rate < (opus_int32)60000*C) | 
					
						
							|  |  |  |          min_bandwidth = 18; | 
					
						
							|  |  |  |       else  if (equiv_rate < (opus_int32)80000*C) | 
					
						
							|  |  |  |          min_bandwidth = 19; | 
					
						
							|  |  |  |       else | 
					
						
							|  |  |  |          min_bandwidth = 20; | 
					
						
							|  |  |  |       signalBandwidth = IMAX(st->analysis.bandwidth, min_bandwidth); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    if (st->lfe) | 
					
						
							|  |  |  |       signalBandwidth = 1; | 
					
						
							|  |  |  |    codedBands = compute_allocation(mode, st->start, st->end, offsets, cap, | 
					
						
							|  |  |  |          alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses, | 
					
						
							|  |  |  |          fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands, signalBandwidth); | 
					
						
							|  |  |  |    if (st->lastCodedBands) | 
					
						
							|  |  |  |       st->lastCodedBands = IMIN(st->lastCodedBands+1,IMAX(st->lastCodedBands-1,codedBands)); | 
					
						
							|  |  |  |    else | 
					
						
							|  |  |  |       st->lastCodedBands = codedBands; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    quant_fine_energy(mode, st->start, st->end, oldBandE, error, fine_quant, enc, C); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* Residual quantisation */ | 
					
						
							|  |  |  |    ALLOC(collapse_masks, C*nbEBands, unsigned char); | 
					
						
							|  |  |  |    quant_all_bands(1, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks, | 
					
						
							|  |  |  |          bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res, | 
					
						
							|  |  |  |          nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (anti_collapse_rsv > 0) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       anti_collapse_on = st->consec_transient<2; | 
					
						
							|  |  |  | #ifdef FUZZING
 | 
					
						
							|  |  |  |       anti_collapse_on = rand()&0x1; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |       ec_enc_bits(enc, anti_collapse_on, 1); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    quant_energy_finalise(mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (silence) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       for (i=0;i<C*nbEBands;i++) | 
					
						
							|  |  |  |          oldBandE[i] = -QCONST16(28.f,DB_SHIFT); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef RESYNTH
 | 
					
						
							|  |  |  |    /* Re-synthesis of the coded audio if required */ | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       celt_sig *out_mem[2]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (anti_collapse_on) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          anti_collapse(mode, X, collapse_masks, LM, C, N, | 
					
						
							|  |  |  |                st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (silence) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          for (i=0;i<C*N;i++) | 
					
						
							|  |  |  |             freq[i] = 0; | 
					
						
							|  |  |  |       } else { | 
					
						
							|  |  |  |          /* Synthesis */ | 
					
						
							|  |  |  |          denormalise_bands(mode, X, freq, oldBandE, st->start, effEnd, C, M); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       c=0; do { | 
					
						
							|  |  |  |          OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap/2); | 
					
						
							|  |  |  |       } while (++c<CC); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (CC==2&&C==1) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          for (i=0;i<N;i++) | 
					
						
							|  |  |  |             freq[N+i] = freq[i]; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       c=0; do { | 
					
						
							|  |  |  |          out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N; | 
					
						
							|  |  |  |       } while (++c<CC); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       compute_inv_mdcts(mode, shortBlocks, freq, out_mem, CC, LM); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       c=0; do { | 
					
						
							|  |  |  |          st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); | 
					
						
							|  |  |  |          st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD); | 
					
						
							|  |  |  |          comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize, | 
					
						
							|  |  |  |                st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset, | 
					
						
							|  |  |  |                mode->window, st->overlap); | 
					
						
							|  |  |  |          if (LM!=0) | 
					
						
							|  |  |  |             comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize, | 
					
						
							|  |  |  |                   st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset, | 
					
						
							|  |  |  |                   mode->window, overlap); | 
					
						
							|  |  |  |       } while (++c<CC); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       /* We reuse freq[] as scratch space for the de-emphasis */ | 
					
						
							|  |  |  |       deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, freq); | 
					
						
							|  |  |  |       st->prefilter_period_old = st->prefilter_period; | 
					
						
							|  |  |  |       st->prefilter_gain_old = st->prefilter_gain; | 
					
						
							|  |  |  |       st->prefilter_tapset_old = st->prefilter_tapset; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    st->prefilter_period = pitch_index; | 
					
						
							|  |  |  |    st->prefilter_gain = gain1; | 
					
						
							|  |  |  |    st->prefilter_tapset = prefilter_tapset; | 
					
						
							|  |  |  | #ifdef RESYNTH
 | 
					
						
							|  |  |  |    if (LM!=0) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       st->prefilter_period_old = st->prefilter_period; | 
					
						
							|  |  |  |       st->prefilter_gain_old = st->prefilter_gain; | 
					
						
							|  |  |  |       st->prefilter_tapset_old = st->prefilter_tapset; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (CC==2&&C==1) { | 
					
						
							|  |  |  |       for (i=0;i<nbEBands;i++) | 
					
						
							|  |  |  |          oldBandE[nbEBands+i]=oldBandE[i]; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (!isTransient) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       for (i=0;i<CC*nbEBands;i++) | 
					
						
							|  |  |  |          oldLogE2[i] = oldLogE[i]; | 
					
						
							|  |  |  |       for (i=0;i<CC*nbEBands;i++) | 
					
						
							|  |  |  |          oldLogE[i] = oldBandE[i]; | 
					
						
							|  |  |  |    } else { | 
					
						
							|  |  |  |       for (i=0;i<CC*nbEBands;i++) | 
					
						
							|  |  |  |          oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    /* In case start or end were to change */ | 
					
						
							|  |  |  |    c=0; do | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       for (i=0;i<st->start;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          oldBandE[c*nbEBands+i]=0; | 
					
						
							|  |  |  |          oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       for (i=st->end;i<nbEBands;i++) | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          oldBandE[c*nbEBands+i]=0; | 
					
						
							|  |  |  |          oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |    } while (++c<CC); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (isTransient || transient_got_disabled) | 
					
						
							|  |  |  |       st->consec_transient++; | 
					
						
							|  |  |  |    else | 
					
						
							|  |  |  |       st->consec_transient=0; | 
					
						
							|  |  |  |    st->rng = enc->rng; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    /* If there's any room left (can only happen for very high rates),
 | 
					
						
							|  |  |  |       it's already filled with zeros */ | 
					
						
							|  |  |  |    ec_enc_done(enc); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef CUSTOM_MODES
 | 
					
						
							|  |  |  |    if (st->signalling) | 
					
						
							|  |  |  |       nbCompressedBytes++; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    RESTORE_STACK; | 
					
						
							|  |  |  |    if (ec_get_error(enc)) | 
					
						
							|  |  |  |       return OPUS_INTERNAL_ERROR; | 
					
						
							|  |  |  |    else | 
					
						
							|  |  |  |       return nbCompressedBytes; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef CUSTOM_MODES
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifdef OPUS_FIXED_POINT
 | 
					
						
							|  |  |  | int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef DISABLE_FLOAT_API
 | 
					
						
							|  |  |  | int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int j, ret, C, N; | 
					
						
							|  |  |  |    VARDECL(opus_int16, in); | 
					
						
							|  |  |  |    ALLOC_STACK; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (pcm==NULL) | 
					
						
							|  |  |  |       return OPUS_BAD_ARG; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    C = st->channels; | 
					
						
							|  |  |  |    N = frame_size; | 
					
						
							|  |  |  |    ALLOC(in, C*N, opus_int16); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    for (j=0;j<C*N;j++) | 
					
						
							|  |  |  |      in[j] = FLOAT2INT16(pcm[j]); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); | 
					
						
							|  |  |  | #ifdef RESYNTH
 | 
					
						
							|  |  |  |    for (j=0;j<C*N;j++) | 
					
						
							|  |  |  |       ((float*)pcm)[j]=in[j]*(1.f/32768.f); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    RESTORE_STACK; | 
					
						
							|  |  |  |    return ret; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | #endif /* DISABLE_FLOAT_API */
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    int j, ret, C, N; | 
					
						
							|  |  |  |    VARDECL(celt_sig, in); | 
					
						
							|  |  |  |    ALLOC_STACK; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    if (pcm==NULL) | 
					
						
							|  |  |  |       return OPUS_BAD_ARG; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    C=st->channels; | 
					
						
							|  |  |  |    N=frame_size; | 
					
						
							|  |  |  |    ALLOC(in, C*N, celt_sig); | 
					
						
							|  |  |  |    for (j=0;j<C*N;j++) { | 
					
						
							|  |  |  |      in[j] = SCALEOUT(pcm[j]); | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); | 
					
						
							|  |  |  | #ifdef RESYNTH
 | 
					
						
							|  |  |  |    for (j=0;j<C*N;j++) | 
					
						
							|  |  |  |       ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |    RESTORE_STACK; | 
					
						
							|  |  |  |    return ret; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif /* CUSTOM_MODES */
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    va_list ap; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |    va_start(ap, request); | 
					
						
							|  |  |  |    switch (request) | 
					
						
							|  |  |  |    { | 
					
						
							|  |  |  |       case OPUS_SET_COMPLEXITY_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          if (value<0 || value>10) | 
					
						
							|  |  |  |             goto bad_arg; | 
					
						
							|  |  |  |          st->complexity = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case CELT_SET_START_BAND_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          if (value<0 || value>=st->mode->nbEBands) | 
					
						
							|  |  |  |             goto bad_arg; | 
					
						
							|  |  |  |          st->start = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case CELT_SET_END_BAND_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          if (value<1 || value>st->mode->nbEBands) | 
					
						
							|  |  |  |             goto bad_arg; | 
					
						
							|  |  |  |          st->end = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case CELT_SET_PREDICTION_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          if (value<0 || value>2) | 
					
						
							|  |  |  |             goto bad_arg; | 
					
						
							|  |  |  |          st->disable_pf = value<=1; | 
					
						
							|  |  |  |          st->force_intra = value==0; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_SET_PACKET_LOSS_PERC_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          if (value<0 || value>100) | 
					
						
							|  |  |  |             goto bad_arg; | 
					
						
							|  |  |  |          st->loss_rate = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_SET_VBR_CONSTRAINT_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          st->constrained_vbr = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_SET_VBR_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          st->vbr = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_SET_BITRATE_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          if (value<=500 && value!=OPUS_BITRATE_MAX) | 
					
						
							|  |  |  |             goto bad_arg; | 
					
						
							|  |  |  |          value = IMIN(value, 260000*st->channels); | 
					
						
							|  |  |  |          st->bitrate = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case CELT_SET_CHANNELS_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          if (value<1 || value>2) | 
					
						
							|  |  |  |             goto bad_arg; | 
					
						
							|  |  |  |          st->stream_channels = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_SET_LSB_DEPTH_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |           opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |           if (value<8 || value>24) | 
					
						
							|  |  |  |              goto bad_arg; | 
					
						
							|  |  |  |           st->lsb_depth=value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_GET_LSB_DEPTH_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |           opus_int32 *value = va_arg(ap, opus_int32*); | 
					
						
							|  |  |  |           *value=st->lsb_depth; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_SET_EXPERT_FRAME_DURATION_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |           opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |           st->variable_duration = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_RESET_STATE: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          int i; | 
					
						
							|  |  |  |          opus_val16 *oldBandE, *oldLogE, *oldLogE2; | 
					
						
							|  |  |  |          oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD)); | 
					
						
							|  |  |  |          oldLogE = oldBandE + st->channels*st->mode->nbEBands; | 
					
						
							|  |  |  |          oldLogE2 = oldLogE + st->channels*st->mode->nbEBands; | 
					
						
							|  |  |  |          OPUS_CLEAR((char*)&st->ENCODER_RESET_START, | 
					
						
							|  |  |  |                opus_custom_encoder_get_size(st->mode, st->channels)- | 
					
						
							|  |  |  |                ((char*)&st->ENCODER_RESET_START - (char*)st)); | 
					
						
							|  |  |  |          for (i=0;i<st->channels*st->mode->nbEBands;i++) | 
					
						
							|  |  |  |             oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); | 
					
						
							|  |  |  |          st->vbr_offset = 0; | 
					
						
							|  |  |  |          st->delayedIntra = 1; | 
					
						
							|  |  |  |          st->spread_decision = SPREAD_NORMAL; | 
					
						
							|  |  |  |          st->tonal_average = 256; | 
					
						
							|  |  |  |          st->hf_average = 0; | 
					
						
							|  |  |  |          st->tapset_decision = 0; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  | #ifdef CUSTOM_MODES
 | 
					
						
							|  |  |  |       case CELT_SET_INPUT_CLIPPING_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          st->clip = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  |       case CELT_SET_SIGNALLING_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |          st->signalling = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case CELT_SET_ANALYSIS_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          AnalysisInfo *info = va_arg(ap, AnalysisInfo *); | 
					
						
							|  |  |  |          if (info) | 
					
						
							|  |  |  |             OPUS_COPY(&st->analysis, info, 1); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case CELT_GET_MODE_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          const CELTMode ** value = va_arg(ap, const CELTMode**); | 
					
						
							|  |  |  |          if (value==0) | 
					
						
							|  |  |  |             goto bad_arg; | 
					
						
							|  |  |  |          *value=st->mode; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_GET_FINAL_RANGE_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |          opus_uint32 * value = va_arg(ap, opus_uint32 *); | 
					
						
							|  |  |  |          if (value==0) | 
					
						
							|  |  |  |             goto bad_arg; | 
					
						
							|  |  |  |          *value=st->rng; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_SET_LFE_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |           opus_int32 value = va_arg(ap, opus_int32); | 
					
						
							|  |  |  |           st->lfe = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       case OPUS_SET_ENERGY_MASK_REQUEST: | 
					
						
							|  |  |  |       { | 
					
						
							|  |  |  |           opus_val16 *value = va_arg(ap, opus_val16*); | 
					
						
							|  |  |  |           st->energy_mask = value; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  |       break; | 
					
						
							|  |  |  |       default: | 
					
						
							|  |  |  |          goto bad_request; | 
					
						
							|  |  |  |    } | 
					
						
							|  |  |  |    va_end(ap); | 
					
						
							|  |  |  |    return OPUS_OK; | 
					
						
							|  |  |  | bad_arg: | 
					
						
							|  |  |  |    va_end(ap); | 
					
						
							|  |  |  |    return OPUS_BAD_ARG; | 
					
						
							|  |  |  | bad_request: | 
					
						
							|  |  |  |    va_end(ap); | 
					
						
							|  |  |  |    return OPUS_UNIMPLEMENTED; | 
					
						
							|  |  |  | } |