mirror of
https://github.com/godotengine/godot.git
synced 2025-10-19 16:03:29 +00:00
861 lines
30 KiB
C++
861 lines
30 KiB
C++
![]() |
// Copyright 2024 The Manifold Authors.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
//
|
||
|
// Derived from the public domain work of Antti Kuukka at
|
||
|
// https://github.com/akuukka/quickhull
|
||
|
|
||
|
#include "quickhull.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <limits>
|
||
|
|
||
|
#include "./impl.h"
|
||
|
|
||
|
namespace manifold {
|
||
|
|
||
|
double defaultEps() { return 0.0000001; }
|
||
|
|
||
|
inline double getSquaredDistanceBetweenPointAndRay(const vec3& p,
|
||
|
const Ray& r) {
|
||
|
const vec3 s = p - r.S;
|
||
|
double t = la::dot(s, r.V);
|
||
|
return la::dot(s, s) - t * t * r.VInvLengthSquared;
|
||
|
}
|
||
|
|
||
|
inline double getSquaredDistance(const vec3& p1, const vec3& p2) {
|
||
|
return la::dot(p1 - p2, p1 - p2);
|
||
|
}
|
||
|
// Note that the unit of distance returned is relative to plane's normal's
|
||
|
// length (divide by N.getNormalized() if needed to get the "real" distance).
|
||
|
inline double getSignedDistanceToPlane(const vec3& v, const Plane& p) {
|
||
|
return la::dot(p.N, v) + p.D;
|
||
|
}
|
||
|
|
||
|
inline vec3 getTriangleNormal(const vec3& a, const vec3& b, const vec3& c) {
|
||
|
// We want to get (a-c).crossProduct(b-c) without constructing temp vectors
|
||
|
double x = a.x - c.x;
|
||
|
double y = a.y - c.y;
|
||
|
double z = a.z - c.z;
|
||
|
double rhsx = b.x - c.x;
|
||
|
double rhsy = b.y - c.y;
|
||
|
double rhsz = b.z - c.z;
|
||
|
double px = y * rhsz - z * rhsy;
|
||
|
double py = z * rhsx - x * rhsz;
|
||
|
double pz = x * rhsy - y * rhsx;
|
||
|
return la::normalize(vec3(px, py, pz));
|
||
|
}
|
||
|
|
||
|
size_t MeshBuilder::addFace() {
|
||
|
if (disabledFaces.size()) {
|
||
|
size_t index = disabledFaces.back();
|
||
|
auto& f = faces[index];
|
||
|
DEBUG_ASSERT(f.isDisabled(), logicErr, "f should be disabled");
|
||
|
DEBUG_ASSERT(!f.pointsOnPositiveSide, logicErr,
|
||
|
"f should not be on the positive side");
|
||
|
f.mostDistantPointDist = 0;
|
||
|
disabledFaces.pop_back();
|
||
|
return index;
|
||
|
}
|
||
|
faces.emplace_back();
|
||
|
return faces.size() - 1;
|
||
|
}
|
||
|
|
||
|
size_t MeshBuilder::addHalfedge() {
|
||
|
if (disabledHalfedges.size()) {
|
||
|
const size_t index = disabledHalfedges.back();
|
||
|
disabledHalfedges.pop_back();
|
||
|
return index;
|
||
|
}
|
||
|
halfedges.push_back({});
|
||
|
halfedgeToFace.push_back(0);
|
||
|
halfedgeNext.push_back(0);
|
||
|
return halfedges.size() - 1;
|
||
|
}
|
||
|
|
||
|
void MeshBuilder::setup(int a, int b, int c, int d) {
|
||
|
faces.clear();
|
||
|
halfedges.clear();
|
||
|
halfedgeToFace.clear();
|
||
|
halfedgeNext.clear();
|
||
|
disabledFaces.clear();
|
||
|
disabledHalfedges.clear();
|
||
|
|
||
|
faces.reserve(4);
|
||
|
halfedges.reserve(12);
|
||
|
|
||
|
// Create halfedges
|
||
|
// AB
|
||
|
halfedges.push_back({0, b, 6});
|
||
|
halfedgeToFace.push_back(0);
|
||
|
halfedgeNext.push_back(1);
|
||
|
// BC
|
||
|
halfedges.push_back({0, c, 9});
|
||
|
halfedgeToFace.push_back(0);
|
||
|
halfedgeNext.push_back(2);
|
||
|
// CA
|
||
|
halfedges.push_back({0, a, 3});
|
||
|
halfedgeToFace.push_back(0);
|
||
|
halfedgeNext.push_back(0);
|
||
|
// AC
|
||
|
halfedges.push_back({0, c, 2});
|
||
|
halfedgeToFace.push_back(1);
|
||
|
halfedgeNext.push_back(4);
|
||
|
// CD
|
||
|
halfedges.push_back({0, d, 11});
|
||
|
halfedgeToFace.push_back(1);
|
||
|
halfedgeNext.push_back(5);
|
||
|
// DA
|
||
|
halfedges.push_back({0, a, 7});
|
||
|
halfedgeToFace.push_back(1);
|
||
|
halfedgeNext.push_back(3);
|
||
|
// BA
|
||
|
halfedges.push_back({0, a, 0});
|
||
|
halfedgeToFace.push_back(2);
|
||
|
halfedgeNext.push_back(7);
|
||
|
// AD
|
||
|
halfedges.push_back({0, d, 5});
|
||
|
halfedgeToFace.push_back(2);
|
||
|
halfedgeNext.push_back(8);
|
||
|
// DB
|
||
|
halfedges.push_back({0, b, 10});
|
||
|
halfedgeToFace.push_back(2);
|
||
|
halfedgeNext.push_back(6);
|
||
|
// CB
|
||
|
halfedges.push_back({0, b, 1});
|
||
|
halfedgeToFace.push_back(3);
|
||
|
halfedgeNext.push_back(10);
|
||
|
// BD
|
||
|
halfedges.push_back({0, d, 8});
|
||
|
halfedgeToFace.push_back(3);
|
||
|
halfedgeNext.push_back(11);
|
||
|
// DC
|
||
|
halfedges.push_back({0, c, 4});
|
||
|
halfedgeToFace.push_back(3);
|
||
|
halfedgeNext.push_back(9);
|
||
|
|
||
|
// Create faces
|
||
|
faces.emplace_back(0);
|
||
|
faces.emplace_back(3);
|
||
|
faces.emplace_back(6);
|
||
|
faces.emplace_back(9);
|
||
|
}
|
||
|
|
||
|
std::array<int, 3> MeshBuilder::getVertexIndicesOfFace(const Face& f) const {
|
||
|
std::array<int, 3> v;
|
||
|
size_t index = f.he;
|
||
|
auto* he = &halfedges[index];
|
||
|
v[0] = he->endVert;
|
||
|
|
||
|
index = halfedgeNext[index];
|
||
|
he = &halfedges[index];
|
||
|
v[1] = he->endVert;
|
||
|
|
||
|
index = halfedgeNext[index];
|
||
|
he = &halfedges[index];
|
||
|
v[2] = he->endVert;
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
HalfEdgeMesh::HalfEdgeMesh(const MeshBuilder& builderObject,
|
||
|
const VecView<vec3>& vertexData) {
|
||
|
std::unordered_map<size_t, size_t> faceMapping;
|
||
|
std::unordered_map<size_t, size_t> halfEdgeMapping;
|
||
|
std::unordered_map<size_t, size_t> vertexMapping;
|
||
|
|
||
|
size_t i = 0;
|
||
|
for (const auto& face : builderObject.faces) {
|
||
|
if (!face.isDisabled()) {
|
||
|
halfEdgeIndexFaces.emplace_back(static_cast<size_t>(face.he));
|
||
|
faceMapping[i] = halfEdgeIndexFaces.size() - 1;
|
||
|
|
||
|
const auto heIndices = builderObject.getHalfEdgeIndicesOfFace(face);
|
||
|
for (const auto heIndex : heIndices) {
|
||
|
const auto vertexIndex = builderObject.halfedges[heIndex].endVert;
|
||
|
if (vertexMapping.count(vertexIndex) == 0) {
|
||
|
vertices.push_back(vertexData[vertexIndex]);
|
||
|
vertexMapping[vertexIndex] = vertices.size() - 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
i = 0;
|
||
|
for (const auto& halfEdge : builderObject.halfedges) {
|
||
|
if (halfEdge.pairedHalfedge != -1) {
|
||
|
halfedges.push_back({halfEdge.endVert, halfEdge.pairedHalfedge,
|
||
|
builderObject.halfedgeToFace[i]});
|
||
|
halfedgeToFace.push_back(builderObject.halfedgeToFace[i]);
|
||
|
halfedgeNext.push_back(builderObject.halfedgeNext[i]);
|
||
|
halfEdgeMapping[i] = halfedges.size() - 1;
|
||
|
}
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
for (auto& halfEdgeIndexFace : halfEdgeIndexFaces) {
|
||
|
DEBUG_ASSERT(halfEdgeMapping.count(halfEdgeIndexFace) == 1, logicErr,
|
||
|
"invalid halfedge mapping");
|
||
|
halfEdgeIndexFace = halfEdgeMapping[halfEdgeIndexFace];
|
||
|
}
|
||
|
|
||
|
for (size_t i = 0; i < halfedges.size(); i++) {
|
||
|
auto& he = halfedges[i];
|
||
|
halfedgeToFace[i] = faceMapping[halfedgeToFace[i]];
|
||
|
he.pairedHalfedge = halfEdgeMapping[he.pairedHalfedge];
|
||
|
halfedgeNext[i] = halfEdgeMapping[halfedgeNext[i]];
|
||
|
he.endVert = vertexMapping[he.endVert];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Implementation of the algorithm
|
||
|
*/
|
||
|
std::pair<Vec<Halfedge>, Vec<vec3>> QuickHull::buildMesh(double epsilon) {
|
||
|
if (originalVertexData.size() == 0) {
|
||
|
return {Vec<Halfedge>(), Vec<vec3>()};
|
||
|
}
|
||
|
|
||
|
// Very first: find extreme values and use them to compute the scale of the
|
||
|
// point cloud.
|
||
|
extremeValues = getExtremeValues();
|
||
|
scale = getScale(extremeValues);
|
||
|
|
||
|
// Epsilon we use depends on the scale
|
||
|
m_epsilon = epsilon * scale;
|
||
|
epsilonSquared = m_epsilon * m_epsilon;
|
||
|
|
||
|
// The planar case happens when all the points appear to lie on a two
|
||
|
// dimensional subspace of R^3.
|
||
|
planar = false;
|
||
|
createConvexHalfedgeMesh();
|
||
|
if (planar) {
|
||
|
const int extraPointIndex = planarPointCloudTemp.size() - 1;
|
||
|
for (auto& he : mesh.halfedges) {
|
||
|
if (he.endVert == extraPointIndex) {
|
||
|
he.endVert = 0;
|
||
|
}
|
||
|
}
|
||
|
planarPointCloudTemp.clear();
|
||
|
}
|
||
|
|
||
|
// reorder halfedges
|
||
|
Vec<Halfedge> halfedges(mesh.halfedges.size());
|
||
|
Vec<int> halfedgeToFace(mesh.halfedges.size());
|
||
|
Vec<int> counts(mesh.halfedges.size(), 0);
|
||
|
Vec<int> mapping(mesh.halfedges.size());
|
||
|
Vec<int> faceMap(mesh.faces.size());
|
||
|
|
||
|
// Some faces are disabled and should not go into the halfedge vector, we can
|
||
|
// update the face indices of the halfedges at the end using index/3
|
||
|
int j = 0;
|
||
|
for_each(
|
||
|
autoPolicy(mesh.halfedges.size()), countAt(0_uz),
|
||
|
countAt(mesh.halfedges.size()), [&](size_t i) {
|
||
|
if (mesh.halfedges[i].pairedHalfedge < 0) return;
|
||
|
if (mesh.faces[mesh.halfedgeToFace[i]].isDisabled()) return;
|
||
|
if (AtomicAdd(counts[mesh.halfedgeToFace[i]], 1) > 0) return;
|
||
|
int currIndex = AtomicAdd(j, 3);
|
||
|
mapping[i] = currIndex;
|
||
|
halfedges[currIndex + 0] = mesh.halfedges[i];
|
||
|
halfedgeToFace[currIndex + 0] = mesh.halfedgeToFace[i];
|
||
|
|
||
|
size_t k = mesh.halfedgeNext[i];
|
||
|
mapping[k] = currIndex + 1;
|
||
|
halfedges[currIndex + 1] = mesh.halfedges[k];
|
||
|
halfedgeToFace[currIndex + 1] = mesh.halfedgeToFace[k];
|
||
|
|
||
|
k = mesh.halfedgeNext[k];
|
||
|
mapping[k] = currIndex + 2;
|
||
|
halfedges[currIndex + 2] = mesh.halfedges[k];
|
||
|
halfedgeToFace[currIndex + 2] = mesh.halfedgeToFace[k];
|
||
|
halfedges[currIndex + 0].startVert = halfedges[currIndex + 2].endVert;
|
||
|
halfedges[currIndex + 1].startVert = halfedges[currIndex + 0].endVert;
|
||
|
halfedges[currIndex + 2].startVert = halfedges[currIndex + 1].endVert;
|
||
|
});
|
||
|
halfedges.resize(j);
|
||
|
halfedgeToFace.resize(j);
|
||
|
// fix pairedHalfedge id
|
||
|
for_each(
|
||
|
autoPolicy(halfedges.size()), halfedges.begin(), halfedges.end(),
|
||
|
[&](Halfedge& he) { he.pairedHalfedge = mapping[he.pairedHalfedge]; });
|
||
|
counts.resize(originalVertexData.size() + 1);
|
||
|
fill(counts.begin(), counts.end(), 0);
|
||
|
|
||
|
// remove unused vertices
|
||
|
for_each(autoPolicy(halfedges.size() / 3), countAt(0_uz),
|
||
|
countAt(halfedges.size() / 3), [&](size_t i) {
|
||
|
AtomicAdd(counts[halfedges[3 * i].startVert], 1);
|
||
|
AtomicAdd(counts[halfedges[3 * i + 1].startVert], 1);
|
||
|
AtomicAdd(counts[halfedges[3 * i + 2].startVert], 1);
|
||
|
});
|
||
|
auto saturate = [](int c) { return c > 0 ? 1 : 0; };
|
||
|
exclusive_scan(TransformIterator(counts.begin(), saturate),
|
||
|
TransformIterator(counts.end(), saturate), counts.begin(), 0);
|
||
|
Vec<vec3> vertices(counts.back());
|
||
|
for_each(autoPolicy(originalVertexData.size()), countAt(0_uz),
|
||
|
countAt(originalVertexData.size()), [&](size_t i) {
|
||
|
if (counts[i + 1] - counts[i] > 0) {
|
||
|
vertices[counts[i]] = originalVertexData[i];
|
||
|
}
|
||
|
});
|
||
|
for_each(autoPolicy(halfedges.size()), halfedges.begin(), halfedges.end(),
|
||
|
[&](Halfedge& he) {
|
||
|
he.startVert = counts[he.startVert];
|
||
|
he.endVert = counts[he.endVert];
|
||
|
});
|
||
|
return {std::move(halfedges), std::move(vertices)};
|
||
|
}
|
||
|
|
||
|
void QuickHull::createConvexHalfedgeMesh() {
|
||
|
visibleFaces.clear();
|
||
|
horizonEdgesData.clear();
|
||
|
possiblyVisibleFaces.clear();
|
||
|
|
||
|
// Compute base tetrahedron
|
||
|
setupInitialTetrahedron();
|
||
|
DEBUG_ASSERT(mesh.faces.size() == 4, logicErr, "not a tetrahedron");
|
||
|
|
||
|
// Init face stack with those faces that have points assigned to them
|
||
|
faceList.clear();
|
||
|
for (size_t i = 0; i < 4; i++) {
|
||
|
auto& f = mesh.faces[i];
|
||
|
if (f.pointsOnPositiveSide && f.pointsOnPositiveSide->size() > 0) {
|
||
|
faceList.push_back(i);
|
||
|
f.inFaceStack = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Process faces until the face list is empty.
|
||
|
size_t iter = 0;
|
||
|
while (!faceList.empty()) {
|
||
|
iter++;
|
||
|
if (iter == std::numeric_limits<size_t>::max()) {
|
||
|
// Visible face traversal marks visited faces with iteration counter (to
|
||
|
// mark that the face has been visited on this iteration) and the max
|
||
|
// value represents unvisited faces. At this point we have to reset
|
||
|
// iteration counter. This shouldn't be an issue on 64 bit machines.
|
||
|
iter = 0;
|
||
|
}
|
||
|
|
||
|
const auto topFaceIndex = faceList.front();
|
||
|
faceList.pop_front();
|
||
|
|
||
|
auto& tf = mesh.faces[topFaceIndex];
|
||
|
tf.inFaceStack = 0;
|
||
|
|
||
|
DEBUG_ASSERT(
|
||
|
!tf.pointsOnPositiveSide || tf.pointsOnPositiveSide->size() > 0,
|
||
|
logicErr, "there should be points on the positive side");
|
||
|
if (!tf.pointsOnPositiveSide || tf.isDisabled()) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Pick the most distant point to this triangle plane as the point to which
|
||
|
// we extrude
|
||
|
const vec3& activePoint = originalVertexData[tf.mostDistantPoint];
|
||
|
const size_t activePointIndex = tf.mostDistantPoint;
|
||
|
|
||
|
// Find out the faces that have our active point on their positive side
|
||
|
// (these are the "visible faces"). The face on top of the stack of course
|
||
|
// is one of them. At the same time, we create a list of horizon edges.
|
||
|
horizonEdgesData.clear();
|
||
|
possiblyVisibleFaces.clear();
|
||
|
visibleFaces.clear();
|
||
|
possiblyVisibleFaces.push_back({topFaceIndex, -1});
|
||
|
while (possiblyVisibleFaces.size()) {
|
||
|
const auto faceData = possiblyVisibleFaces.back();
|
||
|
possiblyVisibleFaces.pop_back();
|
||
|
auto& pvf = mesh.faces[faceData.faceIndex];
|
||
|
DEBUG_ASSERT(!pvf.isDisabled(), logicErr, "pvf should not be disabled");
|
||
|
|
||
|
if (pvf.visibilityCheckedOnIteration == iter) {
|
||
|
if (pvf.isVisibleFaceOnCurrentIteration) {
|
||
|
continue;
|
||
|
}
|
||
|
} else {
|
||
|
const Plane& P = pvf.P;
|
||
|
pvf.visibilityCheckedOnIteration = iter;
|
||
|
const double d = la::dot(P.N, activePoint) + P.D;
|
||
|
if (d > 0) {
|
||
|
pvf.isVisibleFaceOnCurrentIteration = 1;
|
||
|
pvf.horizonEdgesOnCurrentIteration = 0;
|
||
|
visibleFaces.push_back(faceData.faceIndex);
|
||
|
for (auto heIndex : mesh.getHalfEdgeIndicesOfFace(pvf)) {
|
||
|
if (mesh.halfedges[heIndex].pairedHalfedge !=
|
||
|
faceData.enteredFromHalfedge) {
|
||
|
possiblyVisibleFaces.push_back(
|
||
|
{mesh.halfedgeToFace[mesh.halfedges[heIndex].pairedHalfedge],
|
||
|
heIndex});
|
||
|
}
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
DEBUG_ASSERT(faceData.faceIndex != topFaceIndex, logicErr,
|
||
|
"face index invalid");
|
||
|
}
|
||
|
|
||
|
// The face is not visible. Therefore, the halfedge we came from is part
|
||
|
// of the horizon edge.
|
||
|
pvf.isVisibleFaceOnCurrentIteration = 0;
|
||
|
horizonEdgesData.push_back(faceData.enteredFromHalfedge);
|
||
|
// Store which half edge is the horizon edge. The other half edges of the
|
||
|
// face will not be part of the final mesh so their data slots can by
|
||
|
// recycled.
|
||
|
const auto halfEdgesMesh = mesh.getHalfEdgeIndicesOfFace(
|
||
|
mesh.faces[mesh.halfedgeToFace[faceData.enteredFromHalfedge]]);
|
||
|
const std::int8_t ind =
|
||
|
(halfEdgesMesh[0] == faceData.enteredFromHalfedge)
|
||
|
? 0
|
||
|
: (halfEdgesMesh[1] == faceData.enteredFromHalfedge ? 1 : 2);
|
||
|
mesh.faces[mesh.halfedgeToFace[faceData.enteredFromHalfedge]]
|
||
|
.horizonEdgesOnCurrentIteration |= (1 << ind);
|
||
|
}
|
||
|
const size_t horizonEdgeCount = horizonEdgesData.size();
|
||
|
|
||
|
// Order horizon edges so that they form a loop. This may fail due to
|
||
|
// numerical instability in which case we give up trying to solve horizon
|
||
|
// edge for this point and accept a minor degeneration in the convex hull.
|
||
|
if (!reorderHorizonEdges(horizonEdgesData)) {
|
||
|
failedHorizonEdges++;
|
||
|
int change_flag = 0;
|
||
|
for (size_t index = 0; index < tf.pointsOnPositiveSide->size(); index++) {
|
||
|
if ((*tf.pointsOnPositiveSide)[index] == activePointIndex) {
|
||
|
change_flag = 1;
|
||
|
} else if (change_flag == 1) {
|
||
|
change_flag = 2;
|
||
|
(*tf.pointsOnPositiveSide)[index - 1] =
|
||
|
(*tf.pointsOnPositiveSide)[index];
|
||
|
}
|
||
|
}
|
||
|
if (change_flag == 1)
|
||
|
tf.pointsOnPositiveSide->resize(tf.pointsOnPositiveSide->size() - 1);
|
||
|
|
||
|
if (tf.pointsOnPositiveSide->size() == 0) {
|
||
|
reclaimToIndexVectorPool(tf.pointsOnPositiveSide);
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Except for the horizon edges, all half edges of the visible faces can be
|
||
|
// marked as disabled. Their data slots will be reused. The faces will be
|
||
|
// disabled as well, but we need to remember the points that were on the
|
||
|
// positive side of them - therefore we save pointers to them.
|
||
|
newFaceIndices.clear();
|
||
|
newHalfedgeIndices.clear();
|
||
|
disabledFacePointVectors.clear();
|
||
|
size_t disableCounter = 0;
|
||
|
for (auto faceIndex : visibleFaces) {
|
||
|
auto& disabledFace = mesh.faces[faceIndex];
|
||
|
auto halfEdgesMesh = mesh.getHalfEdgeIndicesOfFace(disabledFace);
|
||
|
for (size_t j = 0; j < 3; j++) {
|
||
|
if ((disabledFace.horizonEdgesOnCurrentIteration & (1 << j)) == 0) {
|
||
|
if (disableCounter < horizonEdgeCount * 2) {
|
||
|
// Use on this iteration
|
||
|
newHalfedgeIndices.push_back(halfEdgesMesh[j]);
|
||
|
disableCounter++;
|
||
|
} else {
|
||
|
// Mark for reusal on later iteration step
|
||
|
mesh.disableHalfedge(halfEdgesMesh[j]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// Disable the face, but retain pointer to the points that were on the
|
||
|
// positive side of it. We need to assign those points to the new faces we
|
||
|
// create shortly.
|
||
|
auto t = mesh.disableFace(faceIndex);
|
||
|
if (t) {
|
||
|
// Because we should not assign point vectors to faces unless needed...
|
||
|
DEBUG_ASSERT(t->size(), logicErr, "t should not be empty");
|
||
|
disabledFacePointVectors.push_back(std::move(t));
|
||
|
}
|
||
|
}
|
||
|
if (disableCounter < horizonEdgeCount * 2) {
|
||
|
const size_t newHalfEdgesNeeded = horizonEdgeCount * 2 - disableCounter;
|
||
|
for (size_t i = 0; i < newHalfEdgesNeeded; i++) {
|
||
|
newHalfedgeIndices.push_back(mesh.addHalfedge());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Create new faces using the edgeloop
|
||
|
for (size_t i = 0; i < horizonEdgeCount; i++) {
|
||
|
const size_t AB = horizonEdgesData[i];
|
||
|
|
||
|
auto horizonEdgeVertexIndices =
|
||
|
mesh.getVertexIndicesOfHalfEdge(mesh.halfedges[AB]);
|
||
|
size_t A, B, C;
|
||
|
A = horizonEdgeVertexIndices[0];
|
||
|
B = horizonEdgeVertexIndices[1];
|
||
|
C = activePointIndex;
|
||
|
|
||
|
const size_t newFaceIndex = mesh.addFace();
|
||
|
newFaceIndices.push_back(newFaceIndex);
|
||
|
|
||
|
const size_t CA = newHalfedgeIndices[2 * i + 0];
|
||
|
const size_t BC = newHalfedgeIndices[2 * i + 1];
|
||
|
|
||
|
mesh.halfedgeNext[AB] = BC;
|
||
|
mesh.halfedgeNext[BC] = CA;
|
||
|
mesh.halfedgeNext[CA] = AB;
|
||
|
|
||
|
mesh.halfedgeToFace[BC] = newFaceIndex;
|
||
|
mesh.halfedgeToFace[CA] = newFaceIndex;
|
||
|
mesh.halfedgeToFace[AB] = newFaceIndex;
|
||
|
|
||
|
mesh.halfedges[CA].endVert = A;
|
||
|
mesh.halfedges[BC].endVert = C;
|
||
|
|
||
|
auto& newFace = mesh.faces[newFaceIndex];
|
||
|
|
||
|
const vec3 planeNormal = getTriangleNormal(
|
||
|
originalVertexData[A], originalVertexData[B], activePoint);
|
||
|
newFace.P = Plane(planeNormal, activePoint);
|
||
|
newFace.he = AB;
|
||
|
|
||
|
mesh.halfedges[CA].pairedHalfedge =
|
||
|
newHalfedgeIndices[i > 0 ? i * 2 - 1 : 2 * horizonEdgeCount - 1];
|
||
|
mesh.halfedges[BC].pairedHalfedge =
|
||
|
newHalfedgeIndices[((i + 1) * 2) % (horizonEdgeCount * 2)];
|
||
|
}
|
||
|
|
||
|
// Assign points that were on the positive side of the disabled faces to the
|
||
|
// new faces.
|
||
|
for (auto& disabledPoints : disabledFacePointVectors) {
|
||
|
DEBUG_ASSERT(disabledPoints != nullptr, logicErr,
|
||
|
"disabledPoints should not be null");
|
||
|
for (const auto& point : *(disabledPoints)) {
|
||
|
if (point == activePointIndex) {
|
||
|
continue;
|
||
|
}
|
||
|
for (size_t j = 0; j < horizonEdgeCount; j++) {
|
||
|
if (addPointToFace(mesh.faces[newFaceIndices[j]], point)) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// The points are no longer needed: we can move them to the vector pool
|
||
|
// for reuse.
|
||
|
reclaimToIndexVectorPool(disabledPoints);
|
||
|
}
|
||
|
|
||
|
// Increase face stack size if needed
|
||
|
for (const auto newFaceIndex : newFaceIndices) {
|
||
|
auto& newFace = mesh.faces[newFaceIndex];
|
||
|
if (newFace.pointsOnPositiveSide) {
|
||
|
DEBUG_ASSERT(newFace.pointsOnPositiveSide->size() > 0, logicErr,
|
||
|
"there should be points on the positive side");
|
||
|
if (!newFace.inFaceStack) {
|
||
|
faceList.push_back(newFaceIndex);
|
||
|
newFace.inFaceStack = 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Cleanup
|
||
|
indexVectorPool.clear();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Private helper functions
|
||
|
*/
|
||
|
|
||
|
std::array<size_t, 6> QuickHull::getExtremeValues() {
|
||
|
std::array<size_t, 6> outIndices{0, 0, 0, 0, 0, 0};
|
||
|
double extremeVals[6] = {originalVertexData[0].x, originalVertexData[0].x,
|
||
|
originalVertexData[0].y, originalVertexData[0].y,
|
||
|
originalVertexData[0].z, originalVertexData[0].z};
|
||
|
const size_t vCount = originalVertexData.size();
|
||
|
for (size_t i = 1; i < vCount; i++) {
|
||
|
const vec3& pos = originalVertexData[i];
|
||
|
if (pos.x > extremeVals[0]) {
|
||
|
extremeVals[0] = pos.x;
|
||
|
outIndices[0] = i;
|
||
|
} else if (pos.x < extremeVals[1]) {
|
||
|
extremeVals[1] = pos.x;
|
||
|
outIndices[1] = i;
|
||
|
}
|
||
|
if (pos.y > extremeVals[2]) {
|
||
|
extremeVals[2] = pos.y;
|
||
|
outIndices[2] = i;
|
||
|
} else if (pos.y < extremeVals[3]) {
|
||
|
extremeVals[3] = pos.y;
|
||
|
outIndices[3] = i;
|
||
|
}
|
||
|
if (pos.z > extremeVals[4]) {
|
||
|
extremeVals[4] = pos.z;
|
||
|
outIndices[4] = i;
|
||
|
} else if (pos.z < extremeVals[5]) {
|
||
|
extremeVals[5] = pos.z;
|
||
|
outIndices[5] = i;
|
||
|
}
|
||
|
}
|
||
|
return outIndices;
|
||
|
}
|
||
|
|
||
|
bool QuickHull::reorderHorizonEdges(VecView<size_t>& horizonEdges) {
|
||
|
const size_t horizonEdgeCount = horizonEdges.size();
|
||
|
for (size_t i = 0; i + 1 < horizonEdgeCount; i++) {
|
||
|
const size_t endVertexCheck = mesh.halfedges[horizonEdges[i]].endVert;
|
||
|
bool foundNext = false;
|
||
|
for (size_t j = i + 1; j < horizonEdgeCount; j++) {
|
||
|
const size_t beginVertex =
|
||
|
mesh.halfedges[mesh.halfedges[horizonEdges[j]].pairedHalfedge]
|
||
|
.endVert;
|
||
|
if (beginVertex == endVertexCheck) {
|
||
|
std::swap(horizonEdges[i + 1], horizonEdges[j]);
|
||
|
foundNext = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!foundNext) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
DEBUG_ASSERT(
|
||
|
mesh.halfedges[horizonEdges[horizonEdges.size() - 1]].endVert ==
|
||
|
mesh.halfedges[mesh.halfedges[horizonEdges[0]].pairedHalfedge]
|
||
|
.endVert,
|
||
|
logicErr, "invalid halfedge");
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
double QuickHull::getScale(const std::array<size_t, 6>& extremeValuesInput) {
|
||
|
double s = 0;
|
||
|
for (size_t i = 0; i < 6; i++) {
|
||
|
const double* v =
|
||
|
(const double*)(&originalVertexData[extremeValuesInput[i]]);
|
||
|
v += i / 2;
|
||
|
auto a = std::abs(*v);
|
||
|
if (a > s) {
|
||
|
s = a;
|
||
|
}
|
||
|
}
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
void QuickHull::setupInitialTetrahedron() {
|
||
|
const size_t vertexCount = originalVertexData.size();
|
||
|
|
||
|
// If we have at most 4 points, just return a degenerate tetrahedron:
|
||
|
if (vertexCount <= 4) {
|
||
|
size_t v[4] = {0, std::min((size_t)1, vertexCount - 1),
|
||
|
std::min((size_t)2, vertexCount - 1),
|
||
|
std::min((size_t)3, vertexCount - 1)};
|
||
|
const vec3 N =
|
||
|
getTriangleNormal(originalVertexData[v[0]], originalVertexData[v[1]],
|
||
|
originalVertexData[v[2]]);
|
||
|
const Plane trianglePlane(N, originalVertexData[v[0]]);
|
||
|
if (trianglePlane.isPointOnPositiveSide(originalVertexData[v[3]])) {
|
||
|
std::swap(v[0], v[1]);
|
||
|
}
|
||
|
return mesh.setup(v[0], v[1], v[2], v[3]);
|
||
|
}
|
||
|
|
||
|
// Find two most distant extreme points.
|
||
|
double maxD = epsilonSquared;
|
||
|
std::pair<size_t, size_t> selectedPoints;
|
||
|
for (size_t i = 0; i < 6; i++) {
|
||
|
for (size_t j = i + 1; j < 6; j++) {
|
||
|
// I found a function for squaredDistance but i can't seem to include it
|
||
|
// like this for some reason
|
||
|
const double d = getSquaredDistance(originalVertexData[extremeValues[i]],
|
||
|
originalVertexData[extremeValues[j]]);
|
||
|
if (d > maxD) {
|
||
|
maxD = d;
|
||
|
selectedPoints = {extremeValues[i], extremeValues[j]};
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (maxD == epsilonSquared) {
|
||
|
// A degenerate case: the point cloud seems to consists of a single point
|
||
|
return mesh.setup(0, std::min((size_t)1, vertexCount - 1),
|
||
|
std::min((size_t)2, vertexCount - 1),
|
||
|
std::min((size_t)3, vertexCount - 1));
|
||
|
}
|
||
|
DEBUG_ASSERT(selectedPoints.first != selectedPoints.second, logicErr,
|
||
|
"degenerate selectedPoints");
|
||
|
|
||
|
// Find the most distant point to the line between the two chosen extreme
|
||
|
// points.
|
||
|
const Ray r(originalVertexData[selectedPoints.first],
|
||
|
(originalVertexData[selectedPoints.second] -
|
||
|
originalVertexData[selectedPoints.first]));
|
||
|
maxD = epsilonSquared;
|
||
|
size_t maxI = std::numeric_limits<size_t>::max();
|
||
|
const size_t vCount = originalVertexData.size();
|
||
|
for (size_t i = 0; i < vCount; i++) {
|
||
|
const double distToRay =
|
||
|
getSquaredDistanceBetweenPointAndRay(originalVertexData[i], r);
|
||
|
if (distToRay > maxD) {
|
||
|
maxD = distToRay;
|
||
|
maxI = i;
|
||
|
}
|
||
|
}
|
||
|
if (maxD == epsilonSquared) {
|
||
|
// It appears that the point cloud belongs to a 1 dimensional subspace of
|
||
|
// R^3: convex hull has no volume => return a thin triangle Pick any point
|
||
|
// other than selectedPoints.first and selectedPoints.second as the third
|
||
|
// point of the triangle
|
||
|
auto it =
|
||
|
std::find_if(originalVertexData.begin(), originalVertexData.end(),
|
||
|
[&](const vec3& ve) {
|
||
|
return ve != originalVertexData[selectedPoints.first] &&
|
||
|
ve != originalVertexData[selectedPoints.second];
|
||
|
});
|
||
|
const size_t thirdPoint =
|
||
|
(it == originalVertexData.end())
|
||
|
? selectedPoints.first
|
||
|
: std::distance(originalVertexData.begin(), it);
|
||
|
it =
|
||
|
std::find_if(originalVertexData.begin(), originalVertexData.end(),
|
||
|
[&](const vec3& ve) {
|
||
|
return ve != originalVertexData[selectedPoints.first] &&
|
||
|
ve != originalVertexData[selectedPoints.second] &&
|
||
|
ve != originalVertexData[thirdPoint];
|
||
|
});
|
||
|
const size_t fourthPoint =
|
||
|
(it == originalVertexData.end())
|
||
|
? selectedPoints.first
|
||
|
: std::distance(originalVertexData.begin(), it);
|
||
|
return mesh.setup(selectedPoints.first, selectedPoints.second, thirdPoint,
|
||
|
fourthPoint);
|
||
|
}
|
||
|
|
||
|
// These three points form the base triangle for our tetrahedron.
|
||
|
DEBUG_ASSERT(selectedPoints.first != maxI && selectedPoints.second != maxI,
|
||
|
logicErr, "degenerate selectedPoints");
|
||
|
std::array<size_t, 3> baseTriangle{selectedPoints.first,
|
||
|
selectedPoints.second, maxI};
|
||
|
const vec3 baseTriangleVertices[] = {originalVertexData[baseTriangle[0]],
|
||
|
originalVertexData[baseTriangle[1]],
|
||
|
originalVertexData[baseTriangle[2]]};
|
||
|
|
||
|
// Next step is to find the 4th vertex of the tetrahedron. We naturally choose
|
||
|
// the point farthest away from the triangle plane.
|
||
|
maxD = m_epsilon;
|
||
|
maxI = 0;
|
||
|
const vec3 N =
|
||
|
getTriangleNormal(baseTriangleVertices[0], baseTriangleVertices[1],
|
||
|
baseTriangleVertices[2]);
|
||
|
Plane trianglePlane(N, baseTriangleVertices[0]);
|
||
|
for (size_t i = 0; i < vCount; i++) {
|
||
|
const double d = std::abs(
|
||
|
getSignedDistanceToPlane(originalVertexData[i], trianglePlane));
|
||
|
if (d > maxD) {
|
||
|
maxD = d;
|
||
|
maxI = i;
|
||
|
}
|
||
|
}
|
||
|
if (maxD == m_epsilon) {
|
||
|
// All the points seem to lie on a 2D subspace of R^3. How to handle this?
|
||
|
// Well, let's add one extra point to the point cloud so that the convex
|
||
|
// hull will have volume.
|
||
|
planar = true;
|
||
|
const vec3 N1 =
|
||
|
getTriangleNormal(baseTriangleVertices[1], baseTriangleVertices[2],
|
||
|
baseTriangleVertices[0]);
|
||
|
planarPointCloudTemp = Vec<vec3>(originalVertexData);
|
||
|
const vec3 extraPoint = N1 + originalVertexData[0];
|
||
|
planarPointCloudTemp.push_back(extraPoint);
|
||
|
maxI = planarPointCloudTemp.size() - 1;
|
||
|
originalVertexData = planarPointCloudTemp;
|
||
|
}
|
||
|
|
||
|
// Enforce CCW orientation (if user prefers clockwise orientation, swap two
|
||
|
// vertices in each triangle when final mesh is created)
|
||
|
const Plane triPlane(N, baseTriangleVertices[0]);
|
||
|
if (triPlane.isPointOnPositiveSide(originalVertexData[maxI])) {
|
||
|
std::swap(baseTriangle[0], baseTriangle[1]);
|
||
|
}
|
||
|
|
||
|
// Create a tetrahedron half edge mesh and compute planes defined by each
|
||
|
// triangle
|
||
|
mesh.setup(baseTriangle[0], baseTriangle[1], baseTriangle[2], maxI);
|
||
|
for (auto& f : mesh.faces) {
|
||
|
auto v = mesh.getVertexIndicesOfFace(f);
|
||
|
const vec3 N1 =
|
||
|
getTriangleNormal(originalVertexData[v[0]], originalVertexData[v[1]],
|
||
|
originalVertexData[v[2]]);
|
||
|
const Plane plane(N1, originalVertexData[v[0]]);
|
||
|
f.P = plane;
|
||
|
}
|
||
|
|
||
|
// Finally we assign a face for each vertex outside the tetrahedron (vertices
|
||
|
// inside the tetrahedron have no role anymore)
|
||
|
for (size_t i = 0; i < vCount; i++) {
|
||
|
for (auto& face : mesh.faces) {
|
||
|
if (addPointToFace(face, i)) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<Vec<size_t>> QuickHull::getIndexVectorFromPool() {
|
||
|
auto r = indexVectorPool.get();
|
||
|
r->resize(0);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
void QuickHull::reclaimToIndexVectorPool(std::unique_ptr<Vec<size_t>>& ptr) {
|
||
|
const size_t oldSize = ptr->size();
|
||
|
if ((oldSize + 1) * 128 < ptr->capacity()) {
|
||
|
// Reduce memory usage! Huge vectors are needed at the beginning of
|
||
|
// iteration when faces have many points on their positive side. Later on,
|
||
|
// smaller vectors will suffice.
|
||
|
ptr.reset(nullptr);
|
||
|
return;
|
||
|
}
|
||
|
indexVectorPool.reclaim(ptr);
|
||
|
}
|
||
|
|
||
|
bool QuickHull::addPointToFace(typename MeshBuilder::Face& f,
|
||
|
size_t pointIndex) {
|
||
|
const double D =
|
||
|
getSignedDistanceToPlane(originalVertexData[pointIndex], f.P);
|
||
|
if (D > 0 && D * D > epsilonSquared * f.P.sqrNLength) {
|
||
|
if (!f.pointsOnPositiveSide) {
|
||
|
f.pointsOnPositiveSide = getIndexVectorFromPool();
|
||
|
}
|
||
|
f.pointsOnPositiveSide->push_back(pointIndex);
|
||
|
if (D > f.mostDistantPointDist) {
|
||
|
f.mostDistantPointDist = D;
|
||
|
f.mostDistantPoint = pointIndex;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Wrapper to call the QuickHull algorithm with the given vertex data to build
|
||
|
// the Impl
|
||
|
void Manifold::Impl::Hull(VecView<vec3> vertPos) {
|
||
|
size_t numVert = vertPos.size();
|
||
|
if (numVert < 4) {
|
||
|
status_ = Error::InvalidConstruction;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
QuickHull qh(vertPos);
|
||
|
std::tie(halfedge_, vertPos_) = qh.buildMesh();
|
||
|
CalculateBBox();
|
||
|
SetEpsilon();
|
||
|
CalculateNormals();
|
||
|
InitializeOriginal();
|
||
|
Finish();
|
||
|
CreateFaces();
|
||
|
}
|
||
|
|
||
|
} // namespace manifold
|