mirror of
https://github.com/godotengine/godot.git
synced 2025-12-08 06:09:55 +00:00
Merge pull request #110077 from clayjohn/mobile-glow
Overhaul and optimize Glow in the mobile renderer
This commit is contained in:
commit
3c1e479290
22 changed files with 1524 additions and 519 deletions
|
|
@ -43,18 +43,103 @@ layout(location = 0) in vec2 uv_interp;
|
|||
|
||||
layout(set = 0, binding = 0) uniform sampler2D source_color;
|
||||
|
||||
#ifdef GLOW_USE_AUTO_EXPOSURE
|
||||
layout(set = 1, binding = 0) uniform sampler2D source_auto_exposure;
|
||||
#ifdef MODE_GLOW_UPSAMPLE
|
||||
// When upsampling this is original downsampled texture, not the blended upsampled texture.
|
||||
layout(set = 1, binding = 0) uniform sampler2D blend_color;
|
||||
layout(constant_id = 0) const bool use_debanding = false;
|
||||
layout(constant_id = 1) const bool use_blend_color = false;
|
||||
|
||||
// From https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
|
||||
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
|
||||
// NOTE: `frag_coord` is in pixels (i.e. not normalized UV).
|
||||
// This dithering must be applied after encoding changes (linear/nonlinear) have been applied
|
||||
// as the final step before quantization from floating point to integer values.
|
||||
vec3 screen_space_dither(vec2 frag_coord, float bit_alignment_diviser) {
|
||||
// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR.
|
||||
// Removed the time component to avoid passing time into this shader.
|
||||
vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord));
|
||||
dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0));
|
||||
|
||||
// Subtract 0.5 to avoid slightly brightening the whole viewport.
|
||||
// Use a dither strength of 100% rather than the 37.5% suggested by the original source.
|
||||
return (dither.rgb - 0.5) / bit_alignment_diviser;
|
||||
}
|
||||
#endif
|
||||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
#ifdef MODE_GLOW_DOWNSAMPLE
|
||||
|
||||
// https://www.shadertoy.com/view/mdsyDf
|
||||
vec4 BloomDownKernel4(sampler2D Tex, vec2 uv0) {
|
||||
vec2 RcpSrcTexRes = blur.source_pixel_size;
|
||||
|
||||
vec2 tc = (uv0 * 2.0 + 1.0) * RcpSrcTexRes;
|
||||
|
||||
float la = 1.0 / 4.0;
|
||||
|
||||
vec2 o = (0.5 + la) * RcpSrcTexRes;
|
||||
|
||||
vec4 c = vec4(0.0);
|
||||
c += textureLod(Tex, tc + vec2(-1.0, -1.0) * o, 0.0) * 0.25;
|
||||
c += textureLod(Tex, tc + vec2(1.0, -1.0) * o, 0.0) * 0.25;
|
||||
c += textureLod(Tex, tc + vec2(-1.0, 1.0) * o, 0.0) * 0.25;
|
||||
c += textureLod(Tex, tc + vec2(1.0, 1.0) * o, 0.0) * 0.25;
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef MODE_GLOW_UPSAMPLE
|
||||
|
||||
// https://www.shadertoy.com/view/mdsyDf
|
||||
vec4 BloomUpKernel4(sampler2D Tex, vec2 uv0) {
|
||||
vec2 RcpSrcTexRes = blur.source_pixel_size;
|
||||
|
||||
vec2 uv = uv0 * 0.5 + 0.5;
|
||||
|
||||
vec2 uvI = floor(uv);
|
||||
vec2 uvF = uv - uvI;
|
||||
|
||||
vec2 tc = uvI * RcpSrcTexRes.xy;
|
||||
|
||||
// optimal stop-band
|
||||
float lw = 0.357386;
|
||||
float la = 25.0 / 32.0; // 0.78125 ~ 0.779627;
|
||||
float lb = 3.0 / 64.0; // 0.046875 ~ 0.0493871;
|
||||
|
||||
vec2 l = vec2(-1.5 + la, 0.5 + lb);
|
||||
|
||||
vec2 lx = uvF.x == 0.0 ? l.xy : -l.yx;
|
||||
vec2 ly = uvF.y == 0.0 ? l.xy : -l.yx;
|
||||
|
||||
lx *= RcpSrcTexRes.xx;
|
||||
ly *= RcpSrcTexRes.yy;
|
||||
|
||||
vec4 c00 = textureLod(Tex, tc + vec2(lx.x, ly.x), 0.0);
|
||||
vec4 c10 = textureLod(Tex, tc + vec2(lx.y, ly.x), 0.0);
|
||||
vec4 c01 = textureLod(Tex, tc + vec2(lx.x, ly.y), 0.0);
|
||||
vec4 c11 = textureLod(Tex, tc + vec2(lx.y, ly.y), 0.0);
|
||||
|
||||
vec2 w = abs(uvF * 2.0 - lw);
|
||||
|
||||
vec4 cx0 = c00 * (1.0 - w.x) + (c10 * w.x);
|
||||
vec4 cx1 = c01 * (1.0 - w.x) + (c11 * w.x);
|
||||
|
||||
vec4 cxy = cx0 * (1.0 - w.y) + (cx1 * w.y);
|
||||
|
||||
return cxy;
|
||||
}
|
||||
|
||||
#endif // MODE_GLOW_UPSAMPLE
|
||||
|
||||
void main() {
|
||||
// We do not apply our color scale for our mobile renderer here, we'll leave our colors at half brightness and apply scale in the tonemap raster.
|
||||
|
||||
#ifdef MODE_MIPMAP
|
||||
|
||||
vec2 pix_size = blur.pixel_size;
|
||||
vec2 pix_size = blur.dest_pixel_size;
|
||||
vec4 color = texture(source_color, uv_interp + vec2(-0.5, -0.5) * pix_size);
|
||||
color += texture(source_color, uv_interp + vec2(0.5, -0.5) * pix_size);
|
||||
color += texture(source_color, uv_interp + vec2(0.5, 0.5) * pix_size);
|
||||
|
|
@ -68,19 +153,19 @@ void main() {
|
|||
// For Gaussian Blur we use 13 taps in a single pass instead of 12 taps over 2 passes.
|
||||
// This minimizes the number of times we change framebuffers which is very important for mobile.
|
||||
// Source: http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
|
||||
vec4 A = texture(source_color, uv_interp + blur.pixel_size * vec2(-1.0, -1.0));
|
||||
vec4 B = texture(source_color, uv_interp + blur.pixel_size * vec2(0.0, -1.0));
|
||||
vec4 C = texture(source_color, uv_interp + blur.pixel_size * vec2(1.0, -1.0));
|
||||
vec4 D = texture(source_color, uv_interp + blur.pixel_size * vec2(-0.5, -0.5));
|
||||
vec4 E = texture(source_color, uv_interp + blur.pixel_size * vec2(0.5, -0.5));
|
||||
vec4 F = texture(source_color, uv_interp + blur.pixel_size * vec2(-1.0, 0.0));
|
||||
vec4 A = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(-1.0, -1.0));
|
||||
vec4 B = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(0.0, -1.0));
|
||||
vec4 C = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(1.0, -1.0));
|
||||
vec4 D = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(-0.5, -0.5));
|
||||
vec4 E = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(0.5, -0.5));
|
||||
vec4 F = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(-1.0, 0.0));
|
||||
vec4 G = texture(source_color, uv_interp);
|
||||
vec4 H = texture(source_color, uv_interp + blur.pixel_size * vec2(1.0, 0.0));
|
||||
vec4 I = texture(source_color, uv_interp + blur.pixel_size * vec2(-0.5, 0.5));
|
||||
vec4 J = texture(source_color, uv_interp + blur.pixel_size * vec2(0.5, 0.5));
|
||||
vec4 K = texture(source_color, uv_interp + blur.pixel_size * vec2(-1.0, 1.0));
|
||||
vec4 L = texture(source_color, uv_interp + blur.pixel_size * vec2(0.0, 1.0));
|
||||
vec4 M = texture(source_color, uv_interp + blur.pixel_size * vec2(1.0, 1.0));
|
||||
vec4 H = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(1.0, 0.0));
|
||||
vec4 I = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(-0.5, 0.5));
|
||||
vec4 J = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(0.5, 0.5));
|
||||
vec4 K = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(-1.0, 1.0));
|
||||
vec4 L = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(0.0, 1.0));
|
||||
vec4 M = texture(source_color, uv_interp + blur.dest_pixel_size * vec2(1.0, 1.0));
|
||||
|
||||
float base_weight = 0.5 / 4.0;
|
||||
float lesser_weight = 0.125 / 4.0;
|
||||
|
|
@ -92,67 +177,55 @@ void main() {
|
|||
frag_color += (G + H + M + L) * lesser_weight;
|
||||
#endif
|
||||
|
||||
#ifdef MODE_GAUSSIAN_GLOW
|
||||
#ifdef MODE_GLOW_GATHER
|
||||
// First step, go straight to quarter resolution.
|
||||
// Don't apply blur, but include thresholding.
|
||||
|
||||
//Glow uses larger sigma 1 for a more rounded blur effect
|
||||
vec2 block_pos = floor(gl_FragCoord.xy) * 4.0;
|
||||
vec2 end = max(1.0 / blur.source_pixel_size - vec2(4.0), vec2(0.0));
|
||||
block_pos = clamp(block_pos, vec2(0.0), end);
|
||||
|
||||
#define GLOW_ADD(m_ofs, m_mult) \
|
||||
{ \
|
||||
vec2 ofs = uv_interp + m_ofs * pix_size; \
|
||||
vec4 c = texture(source_color, ofs) * m_mult; \
|
||||
if (any(lessThan(ofs, vec2(0.0))) || any(greaterThan(ofs, vec2(1.0)))) { \
|
||||
c *= 0.0; \
|
||||
} \
|
||||
color += c; \
|
||||
// We skipped a level, so gather 16 closest samples now.
|
||||
|
||||
vec4 color = textureLod(source_color, (block_pos + vec2(1.0, 1.0)) * blur.source_pixel_size, 0.0);
|
||||
color += textureLod(source_color, (block_pos + vec2(1.0, 3.0)) * blur.source_pixel_size, 0.0);
|
||||
color += textureLod(source_color, (block_pos + vec2(3.0, 1.0)) * blur.source_pixel_size, 0.0);
|
||||
color += textureLod(source_color, (block_pos + vec2(3.0, 3.0)) * blur.source_pixel_size, 0.0);
|
||||
frag_color = color * 0.25;
|
||||
|
||||
// Apply strength a second time since it usually gets added at each level.
|
||||
frag_color *= blur.glow_strength;
|
||||
frag_color *= blur.glow_strength;
|
||||
|
||||
// In the first pass bring back to correct color range else we're applying the wrong threshold
|
||||
// in subsequent passes we can use it as is as we'd just be undoing it right after.
|
||||
frag_color *= blur.luminance_multiplier;
|
||||
frag_color *= blur.glow_exposure;
|
||||
|
||||
float luminance = max(frag_color.r, max(frag_color.g, frag_color.b));
|
||||
float feedback = max(smoothstep(blur.glow_hdr_threshold, blur.glow_hdr_threshold + blur.glow_hdr_scale, luminance), blur.glow_bloom);
|
||||
|
||||
frag_color = min(frag_color * feedback, vec4(blur.glow_luminance_cap)) / blur.luminance_multiplier;
|
||||
#endif // MODE_GLOW_GATHER_WIDE
|
||||
|
||||
#ifdef MODE_GLOW_DOWNSAMPLE
|
||||
// Regular downsample, apply a simple blur.
|
||||
frag_color = BloomDownKernel4(source_color, floor(gl_FragCoord.xy));
|
||||
frag_color *= blur.glow_strength;
|
||||
#endif // MODE_GLOW_DOWNSAMPLE
|
||||
|
||||
#ifdef MODE_GLOW_UPSAMPLE
|
||||
|
||||
frag_color = BloomUpKernel4(source_color, floor(gl_FragCoord.xy)) * blur.glow_strength; // "glow_strength" here is actually the glow level. It is always 1.0, except for the first upsample where we need to apply the level to two textures at once.
|
||||
if (use_blend_color) {
|
||||
vec2 uv = floor(gl_FragCoord.xy) + 0.5;
|
||||
frag_color += textureLod(blend_color, uv * blur.dest_pixel_size, 0.0) * blur.glow_level;
|
||||
}
|
||||
|
||||
if (bool(blur.flags & FLAG_HORIZONTAL)) {
|
||||
vec2 pix_size = blur.pixel_size;
|
||||
pix_size *= 0.5; //reading from larger buffer, so use more samples
|
||||
|
||||
vec4 color = texture(source_color, uv_interp + vec2(0.0, 0.0) * pix_size) * 0.174938;
|
||||
GLOW_ADD(vec2(1.0, 0.0), 0.165569);
|
||||
GLOW_ADD(vec2(2.0, 0.0), 0.140367);
|
||||
GLOW_ADD(vec2(3.0, 0.0), 0.106595);
|
||||
GLOW_ADD(vec2(-1.0, 0.0), 0.165569);
|
||||
GLOW_ADD(vec2(-2.0, 0.0), 0.140367);
|
||||
GLOW_ADD(vec2(-3.0, 0.0), 0.106595);
|
||||
|
||||
// only do this in the horizontal pass, if we also do this in the vertical pass we're doubling up.
|
||||
color *= blur.glow_strength;
|
||||
|
||||
frag_color = color;
|
||||
} else {
|
||||
vec2 pix_size = blur.pixel_size;
|
||||
vec4 color = texture(source_color, uv_interp + vec2(0.0, 0.0) * pix_size) * 0.288713;
|
||||
GLOW_ADD(vec2(0.0, 1.0), 0.233062);
|
||||
GLOW_ADD(vec2(0.0, 2.0), 0.122581);
|
||||
GLOW_ADD(vec2(0.0, -1.0), 0.233062);
|
||||
GLOW_ADD(vec2(0.0, -2.0), 0.122581);
|
||||
|
||||
frag_color = color;
|
||||
if (use_debanding) {
|
||||
frag_color.rgb += screen_space_dither(gl_FragCoord.xy, 1023.0);
|
||||
}
|
||||
|
||||
#undef GLOW_ADD
|
||||
|
||||
if (bool(blur.flags & FLAG_GLOW_FIRST_PASS)) {
|
||||
// In the first pass bring back to correct color range else we're applying the wrong threshold
|
||||
// in subsequent passes we can use it as is as we'd just be undoing it right after.
|
||||
frag_color *= blur.luminance_multiplier;
|
||||
|
||||
#ifdef GLOW_USE_AUTO_EXPOSURE
|
||||
|
||||
frag_color /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / blur.glow_auto_exposure_scale;
|
||||
#endif
|
||||
frag_color *= blur.glow_exposure;
|
||||
|
||||
float luminance = max(frag_color.r, max(frag_color.g, frag_color.b));
|
||||
float feedback = max(smoothstep(blur.glow_hdr_threshold, blur.glow_hdr_threshold + blur.glow_hdr_scale, luminance), blur.glow_bloom);
|
||||
|
||||
frag_color = min(frag_color * feedback, vec4(blur.glow_luminance_cap)) / blur.luminance_multiplier;
|
||||
}
|
||||
|
||||
#endif // MODE_GAUSSIAN_GLOW
|
||||
#endif // MODE_GLOW_UPSAMPLE
|
||||
|
||||
#ifdef MODE_COPY
|
||||
vec4 color = textureLod(source_color, uv_interp, 0.0);
|
||||
|
|
|
|||
|
|
@ -3,24 +3,22 @@
|
|||
#define FLAG_GLOW_FIRST_PASS (1 << 2)
|
||||
|
||||
layout(push_constant, std430) uniform Blur {
|
||||
vec2 pixel_size; // 08 - 08
|
||||
uint flags; // 04 - 12
|
||||
uint pad; // 04 - 16
|
||||
vec2 dest_pixel_size; // 08 - 08
|
||||
vec2 source_pixel_size; // 08 - 16
|
||||
|
||||
vec2 pad; // 08 - 24
|
||||
uint flags; // 04 - 28
|
||||
float glow_level; // 04 - 32
|
||||
|
||||
// Glow.
|
||||
float glow_strength; // 04 - 20
|
||||
float glow_bloom; // 04 - 24
|
||||
float glow_hdr_threshold; // 04 - 28
|
||||
float glow_hdr_scale; // 04 - 32
|
||||
float glow_strength; // 04 - 36
|
||||
float glow_bloom; // 04 - 40
|
||||
float glow_hdr_threshold; // 04 - 44
|
||||
float glow_hdr_scale; // 04 - 48
|
||||
|
||||
float glow_exposure; // 04 - 36
|
||||
float glow_white; // 04 - 40
|
||||
float glow_luminance_cap; // 04 - 44
|
||||
float glow_auto_exposure_scale; // 04 - 48
|
||||
|
||||
float luminance_multiplier; // 04 - 52
|
||||
float res1; // 04 - 56
|
||||
float res2; // 04 - 60
|
||||
float res3; // 04 - 64
|
||||
float glow_exposure; // 04 - 52
|
||||
float glow_white; // 04 - 56
|
||||
float glow_luminance_cap; // 04 - 60
|
||||
float luminance_multiplier; // 04 - 64
|
||||
}
|
||||
blur;
|
||||
|
|
|
|||
|
|
@ -67,7 +67,7 @@ layout(location = 0) out vec4 out_color;
|
|||
|
||||
layout(push_constant, std430) uniform Params {
|
||||
vec2 inv_size;
|
||||
uint flags;
|
||||
uint use_debanding;
|
||||
float pad;
|
||||
}
|
||||
params;
|
||||
|
|
@ -140,11 +140,8 @@ void main() {
|
|||
out_color.rgb = linear_to_srgb(out_color.rgb);
|
||||
out_color.a = texture(color_tex, tex_coord).a;
|
||||
}
|
||||
if (bool(params.flags & FLAG_USE_8_BIT_DEBANDING)) {
|
||||
if (bool(params.use_debanding)) {
|
||||
// Divide by 255 to align to 8-bit quantization.
|
||||
out_color.rgb += screen_space_dither(gl_FragCoord.xy, 255.0);
|
||||
} else if (bool(params.flags & FLAG_USE_10_BIT_DEBANDING)) {
|
||||
// Divide by 1023 to align to 10-bit quantization.
|
||||
out_color.rgb += screen_space_dither(gl_FragCoord.xy, 1023.0);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -38,21 +38,16 @@ void main() {
|
|||
|
||||
layout(location = 0) in vec2 uv_interp;
|
||||
|
||||
#ifdef SUBPASS
|
||||
layout(input_attachment_index = 0, set = 0, binding = 0) uniform subpassInput input_color;
|
||||
#elif defined(USE_MULTIVIEW)
|
||||
layout(set = 0, binding = 0) uniform sampler2DArray source_color;
|
||||
#ifdef USE_MULTIVIEW
|
||||
#define SAMPLER_FORMAT sampler2DArray
|
||||
#else
|
||||
layout(set = 0, binding = 0) uniform sampler2D source_color;
|
||||
#define SAMPLER_FORMAT sampler2D
|
||||
#endif
|
||||
|
||||
layout(set = 0, binding = 0) uniform SAMPLER_FORMAT source_color;
|
||||
layout(set = 1, binding = 0) uniform sampler2D source_auto_exposure;
|
||||
#ifdef USE_MULTIVIEW
|
||||
layout(set = 2, binding = 0) uniform sampler2DArray source_glow;
|
||||
#else
|
||||
layout(set = 2, binding = 0) uniform sampler2D source_glow;
|
||||
#endif
|
||||
layout(set = 2, binding = 1) uniform sampler2D glow_map;
|
||||
layout(set = 2, binding = 0) uniform SAMPLER_FORMAT source_glow;
|
||||
layout(set = 2, binding = 1) uniform sampler2D glow_map; // TODO needs multiview support
|
||||
|
||||
#ifdef USE_1D_LUT
|
||||
layout(set = 3, binding = 0) uniform sampler2D source_color_correction;
|
||||
|
|
@ -66,8 +61,7 @@ layout(set = 3, binding = 0) uniform sampler3D source_color_correction;
|
|||
#define FLAG_USE_COLOR_CORRECTION (1 << 3)
|
||||
#define FLAG_USE_FXAA (1 << 4)
|
||||
#define FLAG_USE_8_BIT_DEBANDING (1 << 5)
|
||||
#define FLAG_USE_10_BIT_DEBANDING (1 << 6)
|
||||
#define FLAG_CONVERT_TO_SRGB (1 << 7)
|
||||
#define FLAG_CONVERT_TO_SRGB (1 << 6)
|
||||
|
||||
layout(push_constant, std430) uniform Params {
|
||||
vec3 bcs;
|
||||
|
|
@ -93,111 +87,6 @@ params;
|
|||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
#ifdef USE_GLOW_FILTER_BICUBIC
|
||||
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
|
||||
float w0(float a) {
|
||||
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
|
||||
}
|
||||
|
||||
float w1(float a) {
|
||||
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
|
||||
}
|
||||
|
||||
float w2(float a) {
|
||||
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
|
||||
}
|
||||
|
||||
float w3(float a) {
|
||||
return (1.0f / 6.0f) * (a * a * a);
|
||||
}
|
||||
|
||||
// g0 and g1 are the two amplitude functions
|
||||
float g0(float a) {
|
||||
return w0(a) + w1(a);
|
||||
}
|
||||
|
||||
float g1(float a) {
|
||||
return w2(a) + w3(a);
|
||||
}
|
||||
|
||||
// h0 and h1 are the two offset functions
|
||||
float h0(float a) {
|
||||
return -1.0f + w1(a) / (w0(a) + w1(a));
|
||||
}
|
||||
|
||||
float h1(float a) {
|
||||
return 1.0f + w3(a) / (w2(a) + w3(a));
|
||||
}
|
||||
|
||||
#ifdef USE_MULTIVIEW
|
||||
vec4 texture2D_bicubic(sampler2DArray tex, vec2 uv, int p_lod) {
|
||||
float lod = float(p_lod);
|
||||
vec2 tex_size = vec2(params.glow_texture_size >> p_lod);
|
||||
vec2 pixel_size = vec2(1.0f) / tex_size;
|
||||
|
||||
uv = uv * tex_size + vec2(0.5f);
|
||||
|
||||
vec2 iuv = floor(uv);
|
||||
vec2 fuv = fract(uv);
|
||||
|
||||
float g0x = g0(fuv.x);
|
||||
float g1x = g1(fuv.x);
|
||||
float h0x = h0(fuv.x);
|
||||
float h1x = h1(fuv.x);
|
||||
float h0y = h0(fuv.y);
|
||||
float h1y = h1(fuv.y);
|
||||
|
||||
vec3 p0 = vec3((vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size, ViewIndex);
|
||||
vec3 p1 = vec3((vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size, ViewIndex);
|
||||
vec3 p2 = vec3((vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size, ViewIndex);
|
||||
vec3 p3 = vec3((vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size, ViewIndex);
|
||||
|
||||
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
|
||||
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
|
||||
}
|
||||
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
|
||||
#else // USE_MULTIVIEW
|
||||
|
||||
vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
|
||||
float lod = float(p_lod);
|
||||
vec2 tex_size = vec2(params.glow_texture_size >> p_lod);
|
||||
vec2 pixel_size = vec2(1.0f) / tex_size;
|
||||
|
||||
uv = uv * tex_size + vec2(0.5f);
|
||||
|
||||
vec2 iuv = floor(uv);
|
||||
vec2 fuv = fract(uv);
|
||||
|
||||
float g0x = g0(fuv.x);
|
||||
float g1x = g1(fuv.x);
|
||||
float h0x = h0(fuv.x);
|
||||
float h1x = h1(fuv.x);
|
||||
float h0y = h0(fuv.y);
|
||||
float h1y = h1(fuv.y);
|
||||
|
||||
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
|
||||
|
||||
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
|
||||
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
|
||||
}
|
||||
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
|
||||
#endif // !USE_MULTIVIEW
|
||||
|
||||
#else // USE_GLOW_FILTER_BICUBIC
|
||||
|
||||
#ifdef USE_MULTIVIEW
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, vec3(m_uv, ViewIndex), float(m_lod))
|
||||
#else // USE_MULTIVIEW
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
|
||||
#endif // !USE_MULTIVIEW
|
||||
|
||||
#endif // !USE_GLOW_FILTER_BICUBIC
|
||||
|
||||
// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
|
||||
vec3 tonemap_reinhard(vec3 color, float white) {
|
||||
float white_squared = white * white;
|
||||
|
|
@ -360,11 +249,113 @@ vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR
|
|||
}
|
||||
}
|
||||
|
||||
#ifdef USE_GLOW_FILTER_BICUBIC
|
||||
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
|
||||
float w0(float a) {
|
||||
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
|
||||
}
|
||||
|
||||
float w1(float a) {
|
||||
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
|
||||
}
|
||||
|
||||
float w2(float a) {
|
||||
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
|
||||
}
|
||||
|
||||
float w3(float a) {
|
||||
return (1.0f / 6.0f) * (a * a * a);
|
||||
}
|
||||
|
||||
// g0 and g1 are the two amplitude functions
|
||||
float g0(float a) {
|
||||
return w0(a) + w1(a);
|
||||
}
|
||||
|
||||
float g1(float a) {
|
||||
return w2(a) + w3(a);
|
||||
}
|
||||
|
||||
// h0 and h1 are the two offset functions
|
||||
float h0(float a) {
|
||||
return -1.0f + w1(a) / (w0(a) + w1(a));
|
||||
}
|
||||
|
||||
float h1(float a) {
|
||||
return 1.0f + w3(a) / (w2(a) + w3(a));
|
||||
}
|
||||
|
||||
#ifdef USE_MULTIVIEW
|
||||
vec3 gather_glow(sampler2DArray tex, vec2 uv) { // sample all selected glow levels, view is added to uv later
|
||||
#else
|
||||
vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels
|
||||
#endif // defined(USE_MULTIVIEW)
|
||||
vec4 texture2D_bicubic(sampler2DArray tex, vec2 uv, int p_lod) {
|
||||
float lod = float(p_lod);
|
||||
vec2 tex_size = vec2(params.glow_texture_size >> p_lod);
|
||||
vec2 pixel_size = vec2(1.0f) / tex_size;
|
||||
|
||||
uv = uv * tex_size + vec2(0.5f);
|
||||
|
||||
vec2 iuv = floor(uv);
|
||||
vec2 fuv = fract(uv);
|
||||
|
||||
float g0x = g0(fuv.x);
|
||||
float g1x = g1(fuv.x);
|
||||
float h0x = h0(fuv.x);
|
||||
float h1x = h1(fuv.x);
|
||||
float h0y = h0(fuv.y);
|
||||
float h1y = h1(fuv.y);
|
||||
|
||||
vec3 p0 = vec3((vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size, ViewIndex);
|
||||
vec3 p1 = vec3((vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size, ViewIndex);
|
||||
vec3 p2 = vec3((vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size, ViewIndex);
|
||||
vec3 p3 = vec3((vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size, ViewIndex);
|
||||
|
||||
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
|
||||
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
|
||||
}
|
||||
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
|
||||
#else // USE_MULTIVIEW
|
||||
|
||||
vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) {
|
||||
float lod = float(p_lod);
|
||||
vec2 tex_size = vec2(params.glow_texture_size >> p_lod);
|
||||
vec2 pixel_size = vec2(1.0f) / tex_size;
|
||||
|
||||
uv = uv * tex_size + vec2(0.5f);
|
||||
|
||||
vec2 iuv = floor(uv);
|
||||
vec2 fuv = fract(uv);
|
||||
|
||||
float g0x = g0(fuv.x);
|
||||
float g1x = g1(fuv.x);
|
||||
float h0x = h0(fuv.x);
|
||||
float h1x = h1(fuv.x);
|
||||
float h0y = h0(fuv.y);
|
||||
float h1y = h1(fuv.y);
|
||||
|
||||
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
|
||||
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * pixel_size;
|
||||
|
||||
return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) +
|
||||
(g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod)));
|
||||
}
|
||||
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod)
|
||||
#endif // !USE_MULTIVIEW
|
||||
|
||||
#else // USE_GLOW_FILTER_BICUBIC
|
||||
|
||||
#ifdef USE_MULTIVIEW
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, vec3(m_uv, ViewIndex), float(m_lod))
|
||||
#else // USE_MULTIVIEW
|
||||
#define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod))
|
||||
#endif // !USE_MULTIVIEW
|
||||
|
||||
#endif // !USE_GLOW_FILTER_BICUBIC
|
||||
|
||||
vec3 gather_glow(SAMPLER_FORMAT tex, vec2 uv) { // sample all selected glow levels
|
||||
|
||||
vec3 glow = vec3(0.0f);
|
||||
|
||||
if (params.glow_levels[0] > 0.0001) {
|
||||
|
|
@ -461,8 +452,6 @@ vec3 apply_color_correction(vec3 color) {
|
|||
}
|
||||
#endif
|
||||
|
||||
#ifndef SUBPASS
|
||||
|
||||
// FXAA 3.11 compact, Ported from https://github.com/kosua20/Rendu/blob/master/resources/common/shaders/screens/fxaa.frag
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
// MIT License
|
||||
|
|
@ -831,7 +820,6 @@ vec3 do_fxaa(vec3 color, float exposure, vec2 uv_interp) {
|
|||
|
||||
#endif
|
||||
}
|
||||
#endif // !SUBPASS
|
||||
|
||||
// From https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
|
||||
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
|
||||
|
|
@ -850,15 +838,7 @@ vec3 screen_space_dither(vec2 frag_coord, float bit_alignment_diviser) {
|
|||
}
|
||||
|
||||
void main() {
|
||||
#ifdef SUBPASS
|
||||
// SUBPASS and USE_MULTIVIEW can be combined but in that case we're already reading from the correct layer
|
||||
#ifdef USE_MULTIVIEW
|
||||
// In order to ensure the `SpvCapabilityMultiView` is included in the SPIR-V capabilities, gl_ViewIndex must
|
||||
// be read in the shader. Without this, transpilation to Metal fails to include the multi-view variant.
|
||||
uint vi = ViewIndex;
|
||||
#endif
|
||||
vec4 color = subpassLoad(input_color);
|
||||
#elif defined(USE_MULTIVIEW)
|
||||
vec4 color = textureLod(source_color, vec3(uv_interp, ViewIndex), 0.0f);
|
||||
#else
|
||||
vec4 color = textureLod(source_color, uv_interp, 0.0f);
|
||||
|
|
@ -869,17 +849,13 @@ void main() {
|
|||
|
||||
float exposure = params.exposure;
|
||||
|
||||
#ifndef SUBPASS
|
||||
if (bool(params.flags & FLAG_USE_AUTO_EXPOSURE)) {
|
||||
exposure *= 1.0 / (texelFetch(source_auto_exposure, ivec2(0, 0), 0).r * params.luminance_multiplier / params.auto_exposure_scale);
|
||||
}
|
||||
#endif
|
||||
|
||||
color.rgb *= exposure;
|
||||
|
||||
// Single-pass FXAA and pre-tonemap glow.
|
||||
|
||||
#ifndef SUBPASS
|
||||
if (bool(params.flags & FLAG_USE_FXAA)) {
|
||||
// FXAA must be performed before glow to preserve the "bleed" effect of glow.
|
||||
color.rgb = do_fxaa(color.rgb, exposure, uv_interp);
|
||||
|
|
@ -900,15 +876,13 @@ void main() {
|
|||
color.rgb = apply_glow(color.rgb, glow, params.white);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Tonemap to lower dynamic range.
|
||||
|
||||
color.rgb = apply_tonemapping(color.rgb, params.white);
|
||||
|
||||
// Additional effects.
|
||||
// Post-tonemap glow.
|
||||
|
||||
#ifndef SUBPASS
|
||||
if (bool(params.flags & FLAG_USE_GLOW) && params.glow_mode == GLOW_MODE_SOFTLIGHT) {
|
||||
// Apply soft light after tonemapping to mitigate the issue of discontinuity
|
||||
// at 1.0 and higher. This makes the issue only appear with HDR output that
|
||||
|
|
@ -921,7 +895,8 @@ void main() {
|
|||
glow = apply_tonemapping(glow, params.white);
|
||||
color.rgb = apply_glow(color.rgb, glow, params.white);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Additional effects.
|
||||
|
||||
if (bool(params.flags & FLAG_USE_BCS)) {
|
||||
// Apply brightness:
|
||||
|
|
@ -964,9 +939,6 @@ void main() {
|
|||
if (bool(params.flags & FLAG_USE_8_BIT_DEBANDING)) {
|
||||
// Divide by 255 to align to 8-bit quantization.
|
||||
color.rgb += screen_space_dither(gl_FragCoord.xy, 255.0);
|
||||
} else if (bool(params.flags & FLAG_USE_10_BIT_DEBANDING)) {
|
||||
// Divide by 1023 to align to 10-bit quantization.
|
||||
color.rgb += screen_space_dither(gl_FragCoord.xy, 1023.0);
|
||||
}
|
||||
|
||||
frag_color = color;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,818 @@
|
|||
#[vertex]
|
||||
|
||||
#version 450
|
||||
|
||||
#VERSION_DEFINES
|
||||
|
||||
layout(location = 0) out vec2 uv_interp;
|
||||
|
||||
void main() {
|
||||
// old code, ARM driver bug on Mali-GXXx GPUs and Vulkan API 1.3.xxx
|
||||
// https://github.com/godotengine/godot/pull/92817#issuecomment-2168625982
|
||||
//vec2 base_arr[3] = vec2[](vec2(-1.0, -1.0), vec2(-1.0, 3.0), vec2(3.0, -1.0));
|
||||
//gl_Position = vec4(base_arr[gl_VertexIndex], 0.0, 1.0);
|
||||
//uv_interp = clamp(gl_Position.xy, vec2(0.0, 0.0), vec2(1.0, 1.0)) * 2.0; // saturate(x) * 2.0
|
||||
|
||||
vec2 vertex_base;
|
||||
if (gl_VertexIndex == 0) {
|
||||
vertex_base = vec2(-1.0, -1.0);
|
||||
} else if (gl_VertexIndex == 1) {
|
||||
vertex_base = vec2(-1.0, 3.0);
|
||||
} else {
|
||||
vertex_base = vec2(3.0, -1.0);
|
||||
}
|
||||
gl_Position = vec4(vertex_base, 0.0, 1.0);
|
||||
uv_interp = clamp(vertex_base, vec2(0.0, 0.0), vec2(1.0, 1.0)) * 2.0; // saturate(x) * 2.0
|
||||
}
|
||||
|
||||
#[fragment]
|
||||
|
||||
#version 450
|
||||
|
||||
#VERSION_DEFINES
|
||||
|
||||
#ifdef USE_MULTIVIEW
|
||||
#extension GL_EXT_multiview : enable
|
||||
#define ViewIndex gl_ViewIndex
|
||||
#endif //USE_MULTIVIEW
|
||||
|
||||
layout(location = 0) in vec2 uv_interp;
|
||||
|
||||
#ifdef USE_MULTIVIEW
|
||||
#define SAMPLER_FORMAT sampler2DArray
|
||||
#else
|
||||
#define SAMPLER_FORMAT sampler2D
|
||||
#endif
|
||||
|
||||
#ifdef SUBPASS
|
||||
layout(input_attachment_index = 0, set = 0, binding = 0) uniform subpassInput input_color;
|
||||
#else
|
||||
layout(set = 0, binding = 0) uniform SAMPLER_FORMAT source_color;
|
||||
#endif
|
||||
|
||||
layout(set = 1, binding = 0) uniform SAMPLER_FORMAT source_glow;
|
||||
layout(set = 1, binding = 1) uniform sampler2D glow_map;
|
||||
|
||||
#ifdef USE_1D_LUT
|
||||
layout(set = 2, binding = 0) uniform sampler2D source_color_correction;
|
||||
#else
|
||||
layout(set = 2, binding = 0) uniform sampler3D source_color_correction;
|
||||
#endif
|
||||
|
||||
layout(constant_id = 0) const bool use_bcs = false;
|
||||
layout(constant_id = 1) const bool use_glow = false;
|
||||
layout(constant_id = 2) const bool use_glow_map = false;
|
||||
layout(constant_id = 3) const bool use_color_correction = false;
|
||||
layout(constant_id = 4) const bool use_fxaa = false;
|
||||
layout(constant_id = 5) const bool deband_8_bit = false;
|
||||
layout(constant_id = 6) const bool deband_10_bit = false;
|
||||
layout(constant_id = 7) const bool convert_to_srgb = false;
|
||||
layout(constant_id = 8) const bool tonemapper_linear = false;
|
||||
layout(constant_id = 9) const bool tonemapper_reinhard = false;
|
||||
layout(constant_id = 10) const bool tonemapper_filmic = false;
|
||||
layout(constant_id = 11) const bool tonemapper_aces = false;
|
||||
layout(constant_id = 12) const bool tonemapper_agx = false;
|
||||
layout(constant_id = 13) const bool glow_mode_add = false;
|
||||
layout(constant_id = 14) const bool glow_mode_screen = false;
|
||||
layout(constant_id = 15) const bool glow_mode_softlight = false;
|
||||
layout(constant_id = 16) const bool glow_mode_replace = false;
|
||||
layout(constant_id = 17) const bool glow_mode_mix = false;
|
||||
|
||||
layout(push_constant, std430) uniform Params {
|
||||
vec3 bcs;
|
||||
float luminance_multiplier;
|
||||
|
||||
vec2 src_pixel_size;
|
||||
vec2 dest_pixel_size;
|
||||
|
||||
float glow_intensity;
|
||||
float glow_map_strength;
|
||||
float exposure;
|
||||
float white;
|
||||
}
|
||||
params;
|
||||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
|
||||
vec3 tonemap_reinhard(vec3 color, float white) {
|
||||
float white_squared = white * white;
|
||||
vec3 white_squared_color = white_squared * color;
|
||||
// Equivalent to color * (1 + color / white_squared) / (1 + color)
|
||||
return (white_squared_color + color * color) / (white_squared_color + white_squared);
|
||||
}
|
||||
|
||||
vec3 tonemap_filmic(vec3 color, float white) {
|
||||
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
|
||||
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
|
||||
// has no effect on the curve's general shape or visual properties
|
||||
const float exposure_bias = 2.0f;
|
||||
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
|
||||
const float B = 0.30f * exposure_bias;
|
||||
const float C = 0.10f;
|
||||
const float D = 0.20f;
|
||||
const float E = 0.01f;
|
||||
const float F = 0.30f;
|
||||
|
||||
vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
|
||||
float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
|
||||
|
||||
return color_tonemapped / white_tonemapped;
|
||||
}
|
||||
|
||||
// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
|
||||
// (MIT License).
|
||||
vec3 tonemap_aces(vec3 color, float white) {
|
||||
const float exposure_bias = 1.8f;
|
||||
const float A = 0.0245786f;
|
||||
const float B = 0.000090537f;
|
||||
const float C = 0.983729f;
|
||||
const float D = 0.432951f;
|
||||
const float E = 0.238081f;
|
||||
|
||||
// Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias`
|
||||
const mat3 rgb_to_rrt = mat3(
|
||||
vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias),
|
||||
vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias),
|
||||
vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias));
|
||||
|
||||
const mat3 odt_to_rgb = mat3(
|
||||
vec3(1.60475f, -0.53108f, -0.07367f),
|
||||
vec3(-0.10208f, 1.10813f, -0.00605f),
|
||||
vec3(-0.00327f, -0.07276f, 1.07602f));
|
||||
|
||||
color *= rgb_to_rrt;
|
||||
vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
|
||||
color_tonemapped *= odt_to_rgb;
|
||||
|
||||
white *= exposure_bias;
|
||||
float white_tonemapped = (white * (white + A) - B) / (white * (C * white + D) + E);
|
||||
|
||||
return color_tonemapped / white_tonemapped;
|
||||
}
|
||||
|
||||
// Polynomial approximation of EaryChow's AgX sigmoid curve.
|
||||
// x must be within the range [0.0, 1.0]
|
||||
vec3 agx_contrast_approx(vec3 x) {
|
||||
// Generated with Excel trendline
|
||||
// Input data: Generated using python sigmoid with EaryChow's configuration and 57 steps
|
||||
// Additional padding values were added to give correct intersections at 0.0 and 1.0
|
||||
// 6th order, intercept of 0.0 to remove an operation and ensure intersection at 0.0
|
||||
vec3 x2 = x * x;
|
||||
vec3 x4 = x2 * x2;
|
||||
return 0.021 * x + 4.0111 * x2 - 25.682 * x2 * x + 70.359 * x4 - 74.778 * x4 * x + 27.069 * x4 * x2;
|
||||
}
|
||||
|
||||
// This is an approximation and simplification of EaryChow's AgX implementation that is used by Blender.
|
||||
// This code is based off of the script that generates the AgX_Base_sRGB.cube LUT that Blender uses.
|
||||
// Source: https://github.com/EaryChow/AgX_LUT_Gen/blob/main/AgXBasesRGB.py
|
||||
vec3 tonemap_agx(vec3 color) {
|
||||
// Combined linear sRGB to linear Rec 2020 and Blender AgX inset matrices:
|
||||
const mat3 srgb_to_rec2020_agx_inset_matrix = mat3(
|
||||
0.54490813676363087053, 0.14044005884001287035, 0.088827411851915368603,
|
||||
0.37377945959812267119, 0.75410959864013760045, 0.17887712465043811023,
|
||||
0.081384976686407536266, 0.10543358536857773485, 0.73224999956948382528);
|
||||
|
||||
// Combined inverse AgX outset matrix and linear Rec 2020 to linear sRGB matrices.
|
||||
const mat3 agx_outset_rec2020_to_srgb_matrix = mat3(
|
||||
1.9645509602733325934, -0.29932243390911083839, -0.16436833806080403409,
|
||||
-0.85585845117807513559, 1.3264510741502356555, -0.23822464068860595117,
|
||||
-0.10886710826831608324, -0.027084020983874825605, 1.402665347143271889);
|
||||
|
||||
// LOG2_MIN = -10.0
|
||||
// LOG2_MAX = +6.5
|
||||
// MIDDLE_GRAY = 0.18
|
||||
const float min_ev = -12.4739311883324; // log2(pow(2, LOG2_MIN) * MIDDLE_GRAY)
|
||||
const float max_ev = 4.02606881166759; // log2(pow(2, LOG2_MAX) * MIDDLE_GRAY)
|
||||
|
||||
// Large negative values in one channel and large positive values in other
|
||||
// channels can result in a colour that appears darker and more saturated than
|
||||
// desired after passing it through the inset matrix. For this reason, it is
|
||||
// best to prevent negative input values.
|
||||
// This is done before the Rec. 2020 transform to allow the Rec. 2020
|
||||
// transform to be combined with the AgX inset matrix. This results in a loss
|
||||
// of color information that could be correctly interpreted within the
|
||||
// Rec. 2020 color space as positive RGB values, but it is less common for Godot
|
||||
// to provide this function with negative sRGB values and therefore not worth
|
||||
// the performance cost of an additional matrix multiplication.
|
||||
// A value of 2e-10 intentionally introduces insignificant error to prevent
|
||||
// log2(0.0) after the inset matrix is applied; color will be >= 1e-10 after
|
||||
// the matrix transform.
|
||||
color = max(color, 2e-10);
|
||||
|
||||
// Do AGX in rec2020 to match Blender and then apply inset matrix.
|
||||
color = srgb_to_rec2020_agx_inset_matrix * color;
|
||||
|
||||
// Log2 space encoding.
|
||||
// Must be clamped because agx_contrast_approx may not work
|
||||
// well with values outside of the range [0.0, 1.0]
|
||||
color = clamp(log2(color), min_ev, max_ev);
|
||||
color = (color - min_ev) / (max_ev - min_ev);
|
||||
|
||||
// Apply sigmoid function approximation.
|
||||
color = agx_contrast_approx(color);
|
||||
|
||||
// Convert back to linear before applying outset matrix.
|
||||
color = pow(color, vec3(2.4));
|
||||
|
||||
// Apply outset to make the result more chroma-laden and then go back to linear sRGB.
|
||||
color = agx_outset_rec2020_to_srgb_matrix * color;
|
||||
|
||||
// Blender's lusRGB.compensate_low_side is too complex for this shader, so
|
||||
// simply return the color, even if it has negative components. These negative
|
||||
// components may be useful for subsequent color adjustments.
|
||||
return color;
|
||||
}
|
||||
|
||||
vec3 linear_to_srgb(vec3 color) {
|
||||
// Clamping is not strictly necessary for floating point nonlinear sRGB encoding,
|
||||
// but many cases that call this function need the result clamped.
|
||||
color = clamp(color, vec3(0.0), vec3(1.0));
|
||||
const vec3 a = vec3(0.055f);
|
||||
return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
|
||||
}
|
||||
|
||||
vec3 srgb_to_linear(vec3 color) {
|
||||
const vec3 a = vec3(0.055f);
|
||||
return mix(pow((color.rgb + a) * (1.0f / (vec3(1.0f) + a)), vec3(2.4f)), color.rgb * (1.0f / 12.92f), lessThan(color.rgb, vec3(0.04045f)));
|
||||
}
|
||||
|
||||
vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR
|
||||
// Ensure color values passed to tonemappers are positive.
|
||||
// They can be negative in the case of negative lights, which leads to undesired behavior.
|
||||
if (tonemapper_linear) {
|
||||
return color;
|
||||
} else if (tonemapper_reinhard) {
|
||||
return tonemap_reinhard(max(vec3(0.0f), color), white);
|
||||
} else if (tonemapper_filmic) {
|
||||
return tonemap_filmic(max(vec3(0.0f), color), white);
|
||||
} else if (tonemapper_aces) {
|
||||
return tonemap_aces(max(vec3(0.0f), color), white);
|
||||
} else { // FLAG_TONEMAPPER_AGX
|
||||
return tonemap_agx(color);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_MULTIVIEW
|
||||
vec3 gather_glow() {
|
||||
vec2 uv = gl_FragCoord.xy * params.dest_pixel_size;
|
||||
return textureLod(source_glow, vec3(uv, ViewIndex), 0.0).rgb;
|
||||
}
|
||||
#else
|
||||
vec3 gather_glow() {
|
||||
vec2 uv = gl_FragCoord.xy * params.dest_pixel_size;
|
||||
return textureLod(source_glow, uv, 0.0).rgb;
|
||||
}
|
||||
#endif // !USE_MULTIVIEW
|
||||
|
||||
// Applies glow using the selected blending mode. Does not handle the mix blend mode.
|
||||
vec3 apply_glow(vec3 color, vec3 glow, float white) {
|
||||
if (glow_mode_add) {
|
||||
return color + glow;
|
||||
} else if (glow_mode_screen) {
|
||||
// Glow cannot be above 1.0 after normalizing and should be non-negative
|
||||
// to produce expected results. It is possible that glow can be negative
|
||||
// if negative lights were used in the scene.
|
||||
// We clamp to white because glow will be normalized to this range.
|
||||
// Note: white cannot be smaller than the maximum output value.
|
||||
glow.rgb = clamp(glow.rgb, 0.0, white);
|
||||
|
||||
// Normalize to white range.
|
||||
//glow.rgb /= white;
|
||||
//color.rgb /= white;
|
||||
//color.rgb = (color.rgb + glow.rgb) - (color.rgb * glow.rgb);
|
||||
// Expand back to original range.
|
||||
//color.rgb *= white;
|
||||
|
||||
// The following is a mathematically simplified version of the above.
|
||||
color.rgb = color.rgb + glow.rgb - (color.rgb * glow.rgb / white);
|
||||
|
||||
return color;
|
||||
} else if (glow_mode_softlight) {
|
||||
// Glow cannot be above 1.0 should be non-negative to produce
|
||||
// expected results. It is possible that glow can be negative
|
||||
// if negative lights were used in the scene.
|
||||
// Note: This approach causes a discontinuity with scene values
|
||||
// at 1.0, but because this glow should have its strongest influence
|
||||
// anchored at 0.25 there is no way around this.
|
||||
glow.rgb = clamp(glow.rgb, 0.0, 1.0);
|
||||
|
||||
color.r = color.r > 1.0 ? color.r : color.r + glow.r * ((color.r <= 0.25f ? ((16.0f * color.r - 12.0f) * color.r + 4.0f) * color.r : sqrt(color.r)) - color.r);
|
||||
color.g = color.g > 1.0 ? color.g : color.g + glow.g * ((color.g <= 0.25f ? ((16.0f * color.g - 12.0f) * color.g + 4.0f) * color.g : sqrt(color.g)) - color.g);
|
||||
color.b = color.b > 1.0 ? color.b : color.b + glow.b * ((color.b <= 0.25f ? ((16.0f * color.b - 12.0f) * color.b + 4.0f) * color.b : sqrt(color.b)) - color.b);
|
||||
|
||||
return color;
|
||||
} else { //replace
|
||||
return glow;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_1D_LUT
|
||||
vec3 apply_color_correction(vec3 color) {
|
||||
color.r = texture(source_color_correction, vec2(color.r, 0.0f)).r;
|
||||
color.g = texture(source_color_correction, vec2(color.g, 0.0f)).g;
|
||||
color.b = texture(source_color_correction, vec2(color.b, 0.0f)).b;
|
||||
return color;
|
||||
}
|
||||
#else
|
||||
vec3 apply_color_correction(vec3 color) {
|
||||
return textureLod(source_color_correction, color, 0.0).rgb;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef SUBPASS
|
||||
|
||||
// FXAA 3.11 compact, Ported from https://github.com/kosua20/Rendu/blob/master/resources/common/shaders/screens/fxaa.frag
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
// MIT License
|
||||
//
|
||||
// Copyright (c) 2017 Simon Rodriguez
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Nvidia Original FXAA 3.11 License
|
||||
//----------------------------------------------------------------------------------
|
||||
// File: es3-kepler\FXAA/FXAA3_11.h
|
||||
// SDK Version: v3.00
|
||||
// Email: gameworks@nvidia.com
|
||||
// Site: http://developer.nvidia.com/
|
||||
//
|
||||
// Copyright (c) 2014-2015, NVIDIA CORPORATION. All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions
|
||||
// are met:
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in the
|
||||
// documentation and/or other materials provided with the distribution.
|
||||
// * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
// contributors may be used to endorse or promote products derived
|
||||
// from this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
//----------------------------------------------------------------------------------
|
||||
//
|
||||
// NVIDIA FXAA 3.11 by TIMOTHY LOTTES
|
||||
//
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
float QUALITY(float q) {
|
||||
return (q < 5 ? 1.0 : (q > 5 ? (q < 10 ? 2.0 : (q < 11 ? 4.0 : 8.0)) : 1.5));
|
||||
}
|
||||
|
||||
float rgb2luma(vec3 rgb) {
|
||||
return sqrt(dot(rgb, vec3(0.299, 0.587, 0.114)));
|
||||
}
|
||||
|
||||
vec3 do_fxaa(vec3 color, float exposure, vec2 uv_interp) {
|
||||
const float EDGE_THRESHOLD_MIN = 0.0312;
|
||||
const float EDGE_THRESHOLD_MAX = 0.125;
|
||||
const int ITERATIONS = 12;
|
||||
const float SUBPIXEL_QUALITY = 0.75;
|
||||
|
||||
#ifdef USE_MULTIVIEW
|
||||
float lumaUp = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(0, 1)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaDown = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(0, -1)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaLeft = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(-1, 0)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaRight = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(1, 0)).xyz * exposure * params.luminance_multiplier);
|
||||
|
||||
float lumaCenter = rgb2luma(color);
|
||||
|
||||
float lumaMin = min(lumaCenter, min(min(lumaUp, lumaDown), min(lumaLeft, lumaRight)));
|
||||
float lumaMax = max(lumaCenter, max(max(lumaUp, lumaDown), max(lumaLeft, lumaRight)));
|
||||
|
||||
float lumaRange = lumaMax - lumaMin;
|
||||
|
||||
if (lumaRange < max(EDGE_THRESHOLD_MIN, lumaMax * EDGE_THRESHOLD_MAX)) {
|
||||
return color;
|
||||
}
|
||||
|
||||
float lumaDownLeft = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(-1, -1)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaUpRight = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(1, 1)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaUpLeft = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(-1, 1)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaDownRight = rgb2luma(textureLodOffset(source_color, vec3(uv_interp, ViewIndex), 0.0, ivec2(1, -1)).xyz * exposure * params.luminance_multiplier);
|
||||
|
||||
float lumaDownUp = lumaDown + lumaUp;
|
||||
float lumaLeftRight = lumaLeft + lumaRight;
|
||||
|
||||
float lumaLeftCorners = lumaDownLeft + lumaUpLeft;
|
||||
float lumaDownCorners = lumaDownLeft + lumaDownRight;
|
||||
float lumaRightCorners = lumaDownRight + lumaUpRight;
|
||||
float lumaUpCorners = lumaUpRight + lumaUpLeft;
|
||||
|
||||
float edgeHorizontal = abs(-2.0 * lumaLeft + lumaLeftCorners) + abs(-2.0 * lumaCenter + lumaDownUp) * 2.0 + abs(-2.0 * lumaRight + lumaRightCorners);
|
||||
float edgeVertical = abs(-2.0 * lumaUp + lumaUpCorners) + abs(-2.0 * lumaCenter + lumaLeftRight) * 2.0 + abs(-2.0 * lumaDown + lumaDownCorners);
|
||||
|
||||
bool isHorizontal = (edgeHorizontal >= edgeVertical);
|
||||
|
||||
float stepLength = isHorizontal ? params.src_pixel_size.y : params.src_pixel_size.x;
|
||||
|
||||
float luma1 = isHorizontal ? lumaDown : lumaLeft;
|
||||
float luma2 = isHorizontal ? lumaUp : lumaRight;
|
||||
float gradient1 = luma1 - lumaCenter;
|
||||
float gradient2 = luma2 - lumaCenter;
|
||||
|
||||
bool is1Steepest = abs(gradient1) >= abs(gradient2);
|
||||
|
||||
float gradientScaled = 0.25 * max(abs(gradient1), abs(gradient2));
|
||||
|
||||
float lumaLocalAverage = 0.0;
|
||||
if (is1Steepest) {
|
||||
stepLength = -stepLength;
|
||||
lumaLocalAverage = 0.5 * (luma1 + lumaCenter);
|
||||
} else {
|
||||
lumaLocalAverage = 0.5 * (luma2 + lumaCenter);
|
||||
}
|
||||
|
||||
vec2 currentUv = uv_interp;
|
||||
if (isHorizontal) {
|
||||
currentUv.y += stepLength * 0.5;
|
||||
} else {
|
||||
currentUv.x += stepLength * 0.5;
|
||||
}
|
||||
|
||||
vec2 offset = isHorizontal ? vec2(params.src_pixel_size.x, 0.0) : vec2(0.0, params.src_pixel_size.y);
|
||||
vec3 uv1 = vec3(currentUv - offset * QUALITY(0), ViewIndex);
|
||||
vec3 uv2 = vec3(currentUv + offset * QUALITY(0), ViewIndex);
|
||||
|
||||
float lumaEnd1 = rgb2luma(textureLod(source_color, uv1, 0.0).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaEnd2 = rgb2luma(textureLod(source_color, uv2, 0.0).xyz * exposure * params.luminance_multiplier);
|
||||
lumaEnd1 -= lumaLocalAverage;
|
||||
lumaEnd2 -= lumaLocalAverage;
|
||||
|
||||
bool reached1 = abs(lumaEnd1) >= gradientScaled;
|
||||
bool reached2 = abs(lumaEnd2) >= gradientScaled;
|
||||
bool reachedBoth = reached1 && reached2;
|
||||
|
||||
if (!reached1) {
|
||||
uv1 -= vec3(offset * QUALITY(1), 0.0);
|
||||
}
|
||||
if (!reached2) {
|
||||
uv2 += vec3(offset * QUALITY(1), 0.0);
|
||||
}
|
||||
|
||||
if (!reachedBoth) {
|
||||
for (int i = 2; i < ITERATIONS; i++) {
|
||||
if (!reached1) {
|
||||
lumaEnd1 = rgb2luma(textureLod(source_color, uv1, 0.0).xyz * exposure * params.luminance_multiplier);
|
||||
lumaEnd1 = lumaEnd1 - lumaLocalAverage;
|
||||
}
|
||||
if (!reached2) {
|
||||
lumaEnd2 = rgb2luma(textureLod(source_color, uv2, 0.0).xyz * exposure * params.luminance_multiplier);
|
||||
lumaEnd2 = lumaEnd2 - lumaLocalAverage;
|
||||
}
|
||||
reached1 = abs(lumaEnd1) >= gradientScaled;
|
||||
reached2 = abs(lumaEnd2) >= gradientScaled;
|
||||
reachedBoth = reached1 && reached2;
|
||||
if (!reached1) {
|
||||
uv1 -= vec3(offset * QUALITY(i), 0.0);
|
||||
}
|
||||
if (!reached2) {
|
||||
uv2 += vec3(offset * QUALITY(i), 0.0);
|
||||
}
|
||||
if (reachedBoth) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float distance1 = isHorizontal ? (uv_interp.x - uv1.x) : (uv_interp.y - uv1.y);
|
||||
float distance2 = isHorizontal ? (uv2.x - uv_interp.x) : (uv2.y - uv_interp.y);
|
||||
|
||||
bool isDirection1 = distance1 < distance2;
|
||||
float distanceFinal = min(distance1, distance2);
|
||||
|
||||
float edgeThickness = (distance1 + distance2);
|
||||
|
||||
bool isLumaCenterSmaller = lumaCenter < lumaLocalAverage;
|
||||
|
||||
bool correctVariation1 = (lumaEnd1 < 0.0) != isLumaCenterSmaller;
|
||||
bool correctVariation2 = (lumaEnd2 < 0.0) != isLumaCenterSmaller;
|
||||
|
||||
bool correctVariation = isDirection1 ? correctVariation1 : correctVariation2;
|
||||
|
||||
float pixelOffset = -distanceFinal / edgeThickness + 0.5;
|
||||
|
||||
float finalOffset = correctVariation ? pixelOffset : 0.0;
|
||||
|
||||
float lumaAverage = (1.0 / 12.0) * (2.0 * (lumaDownUp + lumaLeftRight) + lumaLeftCorners + lumaRightCorners);
|
||||
|
||||
float subPixelOffset1 = clamp(abs(lumaAverage - lumaCenter) / lumaRange, 0.0, 1.0);
|
||||
float subPixelOffset2 = (-2.0 * subPixelOffset1 + 3.0) * subPixelOffset1 * subPixelOffset1;
|
||||
|
||||
float subPixelOffsetFinal = subPixelOffset2 * subPixelOffset2 * SUBPIXEL_QUALITY;
|
||||
|
||||
finalOffset = max(finalOffset, subPixelOffsetFinal);
|
||||
|
||||
vec3 finalUv = vec3(uv_interp, ViewIndex);
|
||||
if (isHorizontal) {
|
||||
finalUv.y += finalOffset * stepLength;
|
||||
} else {
|
||||
finalUv.x += finalOffset * stepLength;
|
||||
}
|
||||
|
||||
vec3 finalColor = textureLod(source_color, finalUv, 0.0).xyz * exposure * params.luminance_multiplier;
|
||||
return finalColor;
|
||||
|
||||
#else
|
||||
float lumaUp = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(0, 1)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaDown = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(0, -1)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaLeft = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(-1, 0)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaRight = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(1, 0)).xyz * exposure * params.luminance_multiplier);
|
||||
|
||||
float lumaCenter = rgb2luma(color);
|
||||
|
||||
float lumaMin = min(lumaCenter, min(min(lumaUp, lumaDown), min(lumaLeft, lumaRight)));
|
||||
float lumaMax = max(lumaCenter, max(max(lumaUp, lumaDown), max(lumaLeft, lumaRight)));
|
||||
|
||||
float lumaRange = lumaMax - lumaMin;
|
||||
|
||||
if (lumaRange < max(EDGE_THRESHOLD_MIN, lumaMax * EDGE_THRESHOLD_MAX)) {
|
||||
return color;
|
||||
}
|
||||
|
||||
float lumaDownLeft = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(-1, -1)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaUpRight = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(1, 1)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaUpLeft = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(-1, 1)).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaDownRight = rgb2luma(textureLodOffset(source_color, uv_interp, 0.0, ivec2(1, -1)).xyz * exposure * params.luminance_multiplier);
|
||||
|
||||
float lumaDownUp = lumaDown + lumaUp;
|
||||
float lumaLeftRight = lumaLeft + lumaRight;
|
||||
|
||||
float lumaLeftCorners = lumaDownLeft + lumaUpLeft;
|
||||
float lumaDownCorners = lumaDownLeft + lumaDownRight;
|
||||
float lumaRightCorners = lumaDownRight + lumaUpRight;
|
||||
float lumaUpCorners = lumaUpRight + lumaUpLeft;
|
||||
|
||||
float edgeHorizontal = abs(-2.0 * lumaLeft + lumaLeftCorners) + abs(-2.0 * lumaCenter + lumaDownUp) * 2.0 + abs(-2.0 * lumaRight + lumaRightCorners);
|
||||
float edgeVertical = abs(-2.0 * lumaUp + lumaUpCorners) + abs(-2.0 * lumaCenter + lumaLeftRight) * 2.0 + abs(-2.0 * lumaDown + lumaDownCorners);
|
||||
|
||||
bool isHorizontal = (edgeHorizontal >= edgeVertical);
|
||||
|
||||
float stepLength = isHorizontal ? params.src_pixel_size.y : params.src_pixel_size.x;
|
||||
|
||||
float luma1 = isHorizontal ? lumaDown : lumaLeft;
|
||||
float luma2 = isHorizontal ? lumaUp : lumaRight;
|
||||
float gradient1 = luma1 - lumaCenter;
|
||||
float gradient2 = luma2 - lumaCenter;
|
||||
|
||||
bool is1Steepest = abs(gradient1) >= abs(gradient2);
|
||||
|
||||
float gradientScaled = 0.25 * max(abs(gradient1), abs(gradient2));
|
||||
|
||||
float lumaLocalAverage = 0.0;
|
||||
if (is1Steepest) {
|
||||
stepLength = -stepLength;
|
||||
lumaLocalAverage = 0.5 * (luma1 + lumaCenter);
|
||||
} else {
|
||||
lumaLocalAverage = 0.5 * (luma2 + lumaCenter);
|
||||
}
|
||||
|
||||
vec2 currentUv = uv_interp;
|
||||
if (isHorizontal) {
|
||||
currentUv.y += stepLength * 0.5;
|
||||
} else {
|
||||
currentUv.x += stepLength * 0.5;
|
||||
}
|
||||
|
||||
vec2 offset = isHorizontal ? vec2(params.src_pixel_size.x, 0.0) : vec2(0.0, params.src_pixel_size.y);
|
||||
vec2 uv1 = currentUv - offset * QUALITY(0);
|
||||
vec2 uv2 = currentUv + offset * QUALITY(0);
|
||||
|
||||
float lumaEnd1 = rgb2luma(textureLod(source_color, uv1, 0.0).xyz * exposure * params.luminance_multiplier);
|
||||
float lumaEnd2 = rgb2luma(textureLod(source_color, uv2, 0.0).xyz * exposure * params.luminance_multiplier);
|
||||
lumaEnd1 -= lumaLocalAverage;
|
||||
lumaEnd2 -= lumaLocalAverage;
|
||||
|
||||
bool reached1 = abs(lumaEnd1) >= gradientScaled;
|
||||
bool reached2 = abs(lumaEnd2) >= gradientScaled;
|
||||
bool reachedBoth = reached1 && reached2;
|
||||
|
||||
if (!reached1) {
|
||||
uv1 -= offset * QUALITY(1);
|
||||
}
|
||||
if (!reached2) {
|
||||
uv2 += offset * QUALITY(1);
|
||||
}
|
||||
|
||||
if (!reachedBoth) {
|
||||
for (int i = 2; i < ITERATIONS; i++) {
|
||||
if (!reached1) {
|
||||
lumaEnd1 = rgb2luma(textureLod(source_color, uv1, 0.0).xyz * exposure * params.luminance_multiplier);
|
||||
lumaEnd1 = lumaEnd1 - lumaLocalAverage;
|
||||
}
|
||||
if (!reached2) {
|
||||
lumaEnd2 = rgb2luma(textureLod(source_color, uv2, 0.0).xyz * exposure * params.luminance_multiplier);
|
||||
lumaEnd2 = lumaEnd2 - lumaLocalAverage;
|
||||
}
|
||||
reached1 = abs(lumaEnd1) >= gradientScaled;
|
||||
reached2 = abs(lumaEnd2) >= gradientScaled;
|
||||
reachedBoth = reached1 && reached2;
|
||||
if (!reached1) {
|
||||
uv1 -= offset * QUALITY(i);
|
||||
}
|
||||
if (!reached2) {
|
||||
uv2 += offset * QUALITY(i);
|
||||
}
|
||||
if (reachedBoth) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float distance1 = isHorizontal ? (uv_interp.x - uv1.x) : (uv_interp.y - uv1.y);
|
||||
float distance2 = isHorizontal ? (uv2.x - uv_interp.x) : (uv2.y - uv_interp.y);
|
||||
|
||||
bool isDirection1 = distance1 < distance2;
|
||||
float distanceFinal = min(distance1, distance2);
|
||||
|
||||
float edgeThickness = (distance1 + distance2);
|
||||
|
||||
bool isLumaCenterSmaller = lumaCenter < lumaLocalAverage;
|
||||
|
||||
bool correctVariation1 = (lumaEnd1 < 0.0) != isLumaCenterSmaller;
|
||||
bool correctVariation2 = (lumaEnd2 < 0.0) != isLumaCenterSmaller;
|
||||
|
||||
bool correctVariation = isDirection1 ? correctVariation1 : correctVariation2;
|
||||
|
||||
float pixelOffset = -distanceFinal / edgeThickness + 0.5;
|
||||
|
||||
float finalOffset = correctVariation ? pixelOffset : 0.0;
|
||||
|
||||
float lumaAverage = (1.0 / 12.0) * (2.0 * (lumaDownUp + lumaLeftRight) + lumaLeftCorners + lumaRightCorners);
|
||||
|
||||
float subPixelOffset1 = clamp(abs(lumaAverage - lumaCenter) / lumaRange, 0.0, 1.0);
|
||||
float subPixelOffset2 = (-2.0 * subPixelOffset1 + 3.0) * subPixelOffset1 * subPixelOffset1;
|
||||
|
||||
float subPixelOffsetFinal = subPixelOffset2 * subPixelOffset2 * SUBPIXEL_QUALITY;
|
||||
|
||||
finalOffset = max(finalOffset, subPixelOffsetFinal);
|
||||
|
||||
vec2 finalUv = uv_interp;
|
||||
if (isHorizontal) {
|
||||
finalUv.y += finalOffset * stepLength;
|
||||
} else {
|
||||
finalUv.x += finalOffset * stepLength;
|
||||
}
|
||||
|
||||
vec3 finalColor = textureLod(source_color, finalUv, 0.0).xyz * exposure * params.luminance_multiplier;
|
||||
return finalColor;
|
||||
|
||||
#endif
|
||||
}
|
||||
#endif // !SUBPASS
|
||||
|
||||
// From https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
|
||||
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
|
||||
// NOTE: `frag_coord` is in pixels (i.e. not normalized UV).
|
||||
// This dithering must be applied after encoding changes (linear/nonlinear) have been applied
|
||||
// as the final step before quantization from floating point to integer values.
|
||||
vec3 screen_space_dither(vec2 frag_coord, float bit_alignment_diviser) {
|
||||
// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR.
|
||||
// Removed the time component to avoid passing time into this shader.
|
||||
vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord));
|
||||
dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0));
|
||||
|
||||
// Subtract 0.5 to avoid slightly brightening the whole viewport.
|
||||
// Use a dither strength of 100% rather than the 37.5% suggested by the original source.
|
||||
return (dither.rgb - 0.5) / bit_alignment_diviser;
|
||||
}
|
||||
|
||||
void main() {
|
||||
#ifdef SUBPASS
|
||||
// SUBPASS and USE_MULTIVIEW can be combined but in that case we're already reading from the correct layer
|
||||
#ifdef USE_MULTIVIEW
|
||||
// In order to ensure the `SpvCapabilityMultiView` is included in the SPIR-V capabilities, gl_ViewIndex must
|
||||
// be read in the shader. Without this, transpilation to Metal fails to include the multi-view variant.
|
||||
uint vi = ViewIndex;
|
||||
#endif
|
||||
vec4 color = subpassLoad(input_color);
|
||||
#elif defined(USE_MULTIVIEW)
|
||||
vec4 color = textureLod(source_color, vec3(uv_interp, ViewIndex), 0.0f);
|
||||
#else
|
||||
vec4 color = textureLod(source_color, uv_interp, 0.0f);
|
||||
#endif
|
||||
color.rgb *= params.luminance_multiplier;
|
||||
|
||||
// Exposure
|
||||
|
||||
color.rgb *= params.exposure;
|
||||
|
||||
// Early Tonemap & SRGB Conversion
|
||||
#ifndef SUBPASS
|
||||
if (use_fxaa) {
|
||||
// FXAA must be performed before glow to preserve the "bleed" effect of glow.
|
||||
color.rgb = do_fxaa(color.rgb, params.exposure, uv_interp);
|
||||
}
|
||||
|
||||
if (use_glow && !glow_mode_softlight) {
|
||||
vec3 glow = gather_glow() * params.luminance_multiplier * params.glow_intensity;
|
||||
if (use_glow_map) {
|
||||
glow = mix(glow, texture(glow_map, uv_interp).rgb * glow, params.glow_map_strength);
|
||||
}
|
||||
|
||||
if (glow_mode_mix) {
|
||||
color.rgb = color.rgb * (1.0 - params.glow_intensity) + glow;
|
||||
} else {
|
||||
color.rgb = apply_glow(color.rgb, glow, params.white);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
color.rgb = apply_tonemapping(color.rgb, params.white);
|
||||
|
||||
#ifndef SUBPASS
|
||||
// Glow
|
||||
if (use_glow && glow_mode_softlight) {
|
||||
// Apply soft light after tonemapping to mitigate the issue of discontinuity
|
||||
// at 1.0 and higher. This makes the issue only appear with HDR output that
|
||||
// can exceed a 1.0 output value.
|
||||
vec3 glow = gather_glow() * params.glow_intensity * params.luminance_multiplier;
|
||||
if (use_glow_map) {
|
||||
glow = mix(glow, texture(glow_map, uv_interp).rgb * glow, params.glow_map_strength);
|
||||
}
|
||||
|
||||
glow = apply_tonemapping(glow, params.white);
|
||||
color.rgb = apply_glow(color.rgb, glow, params.white);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Additional effects
|
||||
|
||||
if (use_bcs) {
|
||||
// Apply brightness:
|
||||
// Apply to relative luminance. This ensures that the hue and saturation of
|
||||
// colors is not affected by the adjustment, but requires the multiplication
|
||||
// to be performed on linear-encoded values.
|
||||
color.rgb = color.rgb * params.bcs.x;
|
||||
|
||||
color.rgb = linear_to_srgb(color.rgb);
|
||||
|
||||
// Apply contrast:
|
||||
// By applying contrast to RGB values that are perceptually uniform (nonlinear),
|
||||
// the darkest values are not hard-clipped as badly, which produces a
|
||||
// higher quality contrast adjustment and maintains compatibility with
|
||||
// existing projects.
|
||||
color.rgb = mix(vec3(0.5), color.rgb, params.bcs.y);
|
||||
|
||||
// Apply saturation:
|
||||
// By applying saturation adjustment to nonlinear sRGB-encoded values with
|
||||
// even weights the preceived brightness of blues are affected, but this
|
||||
// maintains compatibility with existing projects.
|
||||
color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * (1.0 / 3.0)), color.rgb, params.bcs.z);
|
||||
|
||||
if (use_color_correction) {
|
||||
color.rgb = clamp(color.rgb, vec3(0.0), vec3(1.0));
|
||||
color.rgb = apply_color_correction(color.rgb);
|
||||
// When using color correction and convert_to_srgb is false, there
|
||||
// is no need to convert back to linear because the color correction
|
||||
// texture sampling does this for us.
|
||||
} else if (!convert_to_srgb) {
|
||||
color.rgb = srgb_to_linear(color.rgb);
|
||||
}
|
||||
} else if (convert_to_srgb) {
|
||||
color.rgb = linear_to_srgb(color.rgb); // Regular linear -> SRGB conversion.
|
||||
}
|
||||
|
||||
// Debanding should be done at the end of tonemapping, but before writing to the LDR buffer.
|
||||
// Otherwise, we're adding noise to an already-quantized image.
|
||||
if (deband_8_bit) {
|
||||
// Divide by 255 to align to 8-bit quantization.
|
||||
color.rgb += screen_space_dither(gl_FragCoord.xy, 255.0);
|
||||
} else if (deband_10_bit) {
|
||||
// Divide by 1023 to align to 10-bit quantization.
|
||||
color.rgb += screen_space_dither(gl_FragCoord.xy, 1023.0);
|
||||
}
|
||||
|
||||
frag_color = color;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue