Add agx_white, agx_contrast and HDR support to the AgX tonemapper.

Also optimize all tonemappers to perform less calculations per-pixel.

Note: unlike `white`, `agx_white` is limited to a minimum of `2.0` and defaults to `16.29`. When using a RGB10A2 render buffer, `agx_white` will be ignored and a value of `2.0` will be used instead to ensure good behavior on the Mobile renderer.
This commit is contained in:
Allen Pestaluky 2025-05-29 12:19:00 -04:00
parent 7a228b4b91
commit 628df323e2
24 changed files with 546 additions and 241 deletions

View file

@ -147,6 +147,10 @@ void ToneMapper::tonemapper(RID p_source_color, RID p_dst_framebuffer, const Ton
}
tonemap.push_constant.tonemapper = p_settings.tonemap_mode;
tonemap.push_constant.tonemapper_params[0] = p_settings.tonemapper_params[0];
tonemap.push_constant.tonemapper_params[1] = p_settings.tonemapper_params[1];
tonemap.push_constant.tonemapper_params[2] = p_settings.tonemapper_params[2];
tonemap.push_constant.tonemapper_params[3] = p_settings.tonemapper_params[3];
tonemap.push_constant.flags |= p_settings.use_auto_exposure ? TONEMAP_FLAG_USE_AUTO_EXPOSURE : 0;
tonemap.push_constant.exposure = p_settings.exposure;
tonemap.push_constant.white = p_settings.white;
@ -237,6 +241,11 @@ void ToneMapper::tonemapper_mobile(RID p_source_color, RID p_dst_framebuffer, co
tonemap_mobile.push_constant.white = p_settings.white;
tonemap_mobile.push_constant.luminance_multiplier = p_settings.luminance_multiplier;
tonemap_mobile.push_constant.tonemapper_params[0] = p_settings.tonemapper_params[0];
tonemap_mobile.push_constant.tonemapper_params[1] = p_settings.tonemapper_params[1];
tonemap_mobile.push_constant.tonemapper_params[2] = p_settings.tonemapper_params[2];
tonemap_mobile.push_constant.tonemapper_params[3] = p_settings.tonemapper_params[3];
uint32_t spec_constant = 0;
spec_constant |= p_settings.use_bcs ? TONEMAP_MOBILE_FLAG_USE_BCS : 0;
spec_constant |= p_settings.use_glow ? TONEMAP_MOBILE_FLAG_USE_GLOW : 0;
@ -324,6 +333,11 @@ void ToneMapper::tonemapper_subpass(RD::DrawListID p_subpass_draw_list, RID p_so
tonemap_mobile.push_constant.white = p_settings.white;
tonemap_mobile.push_constant.luminance_multiplier = p_settings.luminance_multiplier;
tonemap_mobile.push_constant.tonemapper_params[0] = p_settings.tonemapper_params[0];
tonemap_mobile.push_constant.tonemapper_params[1] = p_settings.tonemapper_params[1];
tonemap_mobile.push_constant.tonemapper_params[2] = p_settings.tonemapper_params[2];
tonemap_mobile.push_constant.tonemapper_params[3] = p_settings.tonemapper_params[3];
uint32_t spec_constant = TONEMAP_MOBILE_ADRENO_BUG;
spec_constant |= p_settings.use_bcs ? TONEMAP_MOBILE_FLAG_USE_BCS : 0;
//spec_constant |= p_settings.use_glow ? TONEMAP_MOBILE_FLAG_USE_GLOW : 0;

View file

@ -122,6 +122,8 @@ private:
float white; // 4 - 88
float auto_exposure_scale; // 4 - 92
float luminance_multiplier; // 4 - 96
float tonemapper_params[4]; // 16 - 112
};
struct TonemapPushConstantMobile {
@ -135,6 +137,8 @@ private:
float glow_map_strength; // 4 - 40
float exposure; // 4 - 44
float white; // 4 - 48
float tonemapper_params[4]; // 16 - 64
};
/* tonemap actually writes to a framebuffer, which is
@ -171,6 +175,7 @@ public:
RID glow_map;
RS::EnvironmentToneMapper tonemap_mode = RS::ENV_TONE_MAPPER_LINEAR;
float tonemapper_params[4] = { 0.0, 0.0, 0.0, 0.0 };
float exposure = 1.0;
float white = 1.0;

View file

@ -722,8 +722,19 @@ void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const Rende
tonemap.texture_size = Vector2i(color_size.x, color_size.y);
if (p_render_data->environment.is_valid()) {
// When we are using RGB10A2 render buffer format, our scene
// is limited to a maximum of 2.0. In this case we should limit
// the max white of tonemappers, specifically AgX which defaults
// to a high white value.
bool limit_agx_white = rb->get_base_data_format() == RD::DATA_FORMAT_A2B10G10R10_UNORM_PACK32;
tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
tonemap.white = environment_get_white(p_render_data->environment);
RendererEnvironmentStorage::TonemapParameters params = environment_get_tonemap_parameters(p_render_data->environment, limit_agx_white);
tonemap.tonemapper_params[0] = params.tonemapper_params[0];
tonemap.tonemapper_params[1] = params.tonemapper_params[1];
tonemap.tonemapper_params[2] = params.tonemapper_params[2];
tonemap.tonemapper_params[3] = params.tonemapper_params[3];
tonemap.white = environment_get_white(p_render_data->environment, limit_agx_white);
tonemap.exposure = environment_get_exposure(p_render_data->environment);
}
@ -882,9 +893,20 @@ void RendererSceneRenderRD::_post_process_subpass(RID p_source_texture, RID p_fr
RendererRD::ToneMapper::TonemapSettings tonemap;
if (p_render_data->environment.is_valid()) {
// When we are using RGB10A2 render buffer format, our scene
// is limited to a maximum of 2.0. In this case we should limit
// the max white of tonemappers, specifically AgX which defaults
// to a high white value.
bool limit_agx_white = rb->get_base_data_format() == RD::DATA_FORMAT_A2B10G10R10_UNORM_PACK32;
tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
RendererEnvironmentStorage::TonemapParameters params = environment_get_tonemap_parameters(p_render_data->environment, limit_agx_white);
tonemap.tonemapper_params[0] = params.tonemapper_params[0];
tonemap.tonemapper_params[1] = params.tonemapper_params[1];
tonemap.tonemapper_params[2] = params.tonemapper_params[2];
tonemap.tonemapper_params[3] = params.tonemapper_params[3];
tonemap.exposure = environment_get_exposure(p_render_data->environment);
tonemap.white = environment_get_white(p_render_data->environment);
tonemap.white = environment_get_white(p_render_data->environment, limit_agx_white);
}
// We don't support glow or auto exposure here, if they are needed, don't use subpasses!

View file

@ -82,23 +82,26 @@ layout(push_constant, std430) uniform Params {
float white;
float auto_exposure_scale;
float luminance_multiplier;
vec4 tonemapper_params;
}
params;
layout(location = 0) out vec4 frag_color;
// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
vec3 tonemap_reinhard(vec3 color, float white) {
float white_squared = white * white;
vec3 tonemap_reinhard(vec3 color) {
float white_squared = params.tonemapper_params.x;
vec3 white_squared_color = white_squared * color;
// Equivalent to color * (1 + color / white_squared) / (1 + color)
return (white_squared_color + color * color) / (white_squared_color + white_squared);
}
vec3 tonemap_filmic(vec3 color, float white) {
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
// has no effect on the curve's general shape or visual properties
vec3 tonemap_filmic(vec3 color) {
// These constants must match the those in the C++ code that calculates the parameters.
// exposure_bias: Input scale (color *= bias, env->white *= bias) to make the brightness consistent with other tonemappers.
// Also useful to scale the input to the range that the tonemapper is designed for (some require very high input values).
// Has no effect on the curve's general shape or visual properties.
const float exposure_bias = 2.0f;
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
const float B = 0.30f * exposure_bias;
@ -108,14 +111,14 @@ vec3 tonemap_filmic(vec3 color, float white) {
const float F = 0.30f;
vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
return color_tonemapped / white_tonemapped;
return color_tonemapped / params.tonemapper_params.x;
}
// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
// (MIT License).
vec3 tonemap_aces(vec3 color, float white) {
vec3 tonemap_aces(vec3 color) {
// These constants must match the those in the C++ code that calculates the parameters.
const float exposure_bias = 1.8f;
const float A = 0.0245786f;
const float B = 0.000090537f;
@ -138,46 +141,46 @@ vec3 tonemap_aces(vec3 color, float white) {
vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
color_tonemapped *= odt_to_rgb;
white *= exposure_bias;
float white_tonemapped = (white * (white + A) - B) / (white * (C * white + D) + E);
return color_tonemapped / white_tonemapped;
return color_tonemapped / params.tonemapper_params.x;
}
// Polynomial approximation of EaryChow's AgX sigmoid curve.
// x must be within the range [0.0, 1.0]
vec3 agx_contrast_approx(vec3 x) {
// Generated with Excel trendline
// Input data: Generated using python sigmoid with EaryChow's configuration and 57 steps
// Additional padding values were added to give correct intersections at 0.0 and 1.0
// 6th order, intercept of 0.0 to remove an operation and ensure intersection at 0.0
vec3 x2 = x * x;
vec3 x4 = x2 * x2;
return 0.021 * x + 4.0111 * x2 - 25.682 * x2 * x + 70.359 * x4 - 74.778 * x4 * x + 27.069 * x4 * x2;
// allenwp tonemapping curve; developed for use in the Godot game engine.
// Source and details: https://allenwp.com/blog/2025/05/29/allenwp-tonemapping-curve/
// Input must be a non-negative linear scene value.
vec3 allenwp_curve(vec3 x) {
const float output_max_value = 1.0; // SDR always has an output_max_value of 1.0
// These constants must match the those in the C++ code that calculates the parameters.
// 18% "middle gray" is perceptually 50% of the brightness of reference white.
const float awp_crossover_point = 0.18;
// When output_max_value and/or awp_crossover_point are no longer constant,
// awp_shoulder_max can be calculated on the CPU and passed in as params.tonemap_e.
const float awp_shoulder_max = output_max_value - awp_crossover_point;
float awp_contrast = params.tonemapper_params.x;
float awp_toe_a = params.tonemapper_params.y;
float awp_slope = params.tonemapper_params.z;
float awp_w = params.tonemapper_params.w;
// Reinhard-like shoulder:
vec3 s = x - awp_crossover_point;
vec3 slope_s = awp_slope * s;
s = slope_s * (1.0 + s / awp_w) / (1.0 + (slope_s / awp_shoulder_max));
s += awp_crossover_point;
// Sigmoid power function toe:
vec3 t = pow(x, vec3(awp_contrast));
t = t / (t + awp_toe_a);
return mix(s, t, lessThan(x, vec3(awp_crossover_point)));
}
// This is an approximation and simplification of EaryChow's AgX implementation that is used by Blender.
// This code is based off of the script that generates the AgX_Base_sRGB.cube LUT that Blender uses.
// Source: https://github.com/EaryChow/AgX_LUT_Gen/blob/main/AgXBasesRGB.py
// Colorspace transformation source: https://www.colour-science.org:8010/apps/rgb_colourspace_transformation_matrix
vec3 tonemap_agx(vec3 color) {
// Combined linear sRGB to linear Rec 2020 and Blender AgX inset matrices:
const mat3 srgb_to_rec2020_agx_inset_matrix = mat3(
0.54490813676363087053, 0.14044005884001287035, 0.088827411851915368603,
0.37377945959812267119, 0.75410959864013760045, 0.17887712465043811023,
0.081384976686407536266, 0.10543358536857773485, 0.73224999956948382528);
// Combined inverse AgX outset matrix and linear Rec 2020 to linear sRGB matrices.
const mat3 agx_outset_rec2020_to_srgb_matrix = mat3(
1.9645509602733325934, -0.29932243390911083839, -0.16436833806080403409,
-0.85585845117807513559, 1.3264510741502356555, -0.23822464068860595117,
-0.10886710826831608324, -0.027084020983874825605, 1.402665347143271889);
// LOG2_MIN = -10.0
// LOG2_MAX = +6.5
// MIDDLE_GRAY = 0.18
const float min_ev = -12.4739311883324; // log2(pow(2, LOG2_MIN) * MIDDLE_GRAY)
const float max_ev = 4.02606881166759; // log2(pow(2, LOG2_MAX) * MIDDLE_GRAY)
// Input color should be non-negative!
// Large negative values in one channel and large positive values in other
// channels can result in a colour that appears darker and more saturated than
// desired after passing it through the inset matrix. For this reason, it is
@ -185,31 +188,43 @@ vec3 tonemap_agx(vec3 color) {
// This is done before the Rec. 2020 transform to allow the Rec. 2020
// transform to be combined with the AgX inset matrix. This results in a loss
// of color information that could be correctly interpreted within the
// Rec. 2020 color space as positive RGB values, but it is less common for Godot
// to provide this function with negative sRGB values and therefore not worth
// Rec. 2020 color space as positive RGB values, but is often not worth
// the performance cost of an additional matrix multiplication.
// A value of 2e-10 intentionally introduces insignificant error to prevent
// log2(0.0) after the inset matrix is applied; color will be >= 1e-10 after
// the matrix transform.
color = max(color, 2e-10);
//
// Additionally, this AgX configuration was created subjectively based on
// output appearance in the Rec. 709 color gamut, so it is possible that these
// matrices will not perform well with non-Rec. 709 output (more testing with
// future wide-gamut displays is be needed).
// See this comment from the author on the decisions made to create the matrices:
// https://github.com/godotengine/godot-proposals/issues/12317#issuecomment-2835824250
// Do AGX in rec2020 to match Blender and then apply inset matrix.
color = srgb_to_rec2020_agx_inset_matrix * color;
// Combined Rec. 709 to Rec. 2020 and Blender AgX inset matrices:
const mat3 rec709_to_rec2020_agx_inset_matrix = mat3(
0.544814746488245, 0.140416948464053, 0.0888104196149096,
0.373787398372697, 0.754137554567394, 0.178871756420858,
0.0813978551390581, 0.105445496968552, 0.732317823964232);
// Log2 space encoding.
// Must be clamped because agx_contrast_approx may not work
// well with values outside of the range [0.0, 1.0]
color = clamp(log2(color), min_ev, max_ev);
color = (color - min_ev) / (max_ev - min_ev);
// Combined inverse AgX outset matrix and Rec. 2020 to Rec. 709 matrices.
const mat3 agx_outset_rec2020_to_rec709_matrix = mat3(
1.96488741169489, -0.299313364904742, -0.164352742528393,
-0.855988495690215, 1.32639796461980, -0.238183969428088,
-0.108898916004672, -0.0270845997150571, 1.40253671195648);
// Apply sigmoid function approximation.
color = agx_contrast_approx(color);
const float output_max_value = 1.0; // SDR always has an output_max_value of 1.0
// Convert back to linear before applying outset matrix.
color = pow(color, vec3(2.4));
// Apply inset matrix.
color = rec709_to_rec2020_agx_inset_matrix * color;
// Apply outset to make the result more chroma-laden and then go back to linear sRGB.
color = agx_outset_rec2020_to_srgb_matrix * color;
// Use the allenwp tonemapping curve to match the Blender AgX curve while
// providing stability across all variable dyanimc range (SDR, HDR, EDR).
color = allenwp_curve(color);
// Clipping to output_max_value is required to address a cyan colour that occurs
// with very bright inputs.
color = min(vec3(output_max_value), color);
// Apply outset to make the result more chroma-laden and then go back to Rec. 709.
color = agx_outset_rec2020_to_rec709_matrix * color;
// Blender's lusRGB.compensate_low_side is too complex for this shader, so
// simply return the color, even if it has negative components. These negative
@ -233,17 +248,21 @@ vec3 srgb_to_linear(vec3 color) {
#define TONEMAPPER_ACES 3
#define TONEMAPPER_AGX 4
vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR
// Ensure color values passed to tonemappers are positive.
// They can be negative in the case of negative lights, which leads to undesired behavior.
vec3 apply_tonemapping(vec3 color) { // inputs are LINEAR
if (params.tonemapper == TONEMAPPER_LINEAR) {
return color;
} else if (params.tonemapper == TONEMAPPER_REINHARD) {
return tonemap_reinhard(max(vec3(0.0f), color), white);
}
// Ensure color values passed to tonemappers are positive.
// They can be negative in the case of negative lights, which leads to undesired behavior.
color = max(vec3(0.0), color);
if (params.tonemapper == TONEMAPPER_REINHARD) {
return tonemap_reinhard(color);
} else if (params.tonemapper == TONEMAPPER_FILMIC) {
return tonemap_filmic(max(vec3(0.0f), color), white);
return tonemap_filmic(color);
} else if (params.tonemapper == TONEMAPPER_ACES) {
return tonemap_aces(max(vec3(0.0f), color), white);
return tonemap_aces(color);
} else { // TONEMAPPER_AGX
return tonemap_agx(color);
}
@ -876,7 +895,7 @@ void main() {
// Tonemap to lower dynamic range.
color.rgb = apply_tonemapping(color.rgb, params.white);
color.rgb = apply_tonemapping(color.rgb);
// Post-tonemap glow.
@ -888,7 +907,7 @@ void main() {
if (params.glow_map_strength > 0.001) {
glow = mix(glow, texture(glow_map, uv_interp).rgb * glow, params.glow_map_strength);
}
glow = apply_tonemapping(glow, params.white);
glow = apply_tonemapping(glow);
color.rgb = apply_glow(color.rgb, glow, params.white);
}

View file

@ -89,23 +89,26 @@ layout(push_constant, std430) uniform Params {
float glow_map_strength;
float exposure;
float white;
vec4 tonemapper_params;
}
params;
layout(location = 0) out vec4 frag_color;
// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
vec3 tonemap_reinhard(vec3 color, float white) {
float white_squared = white * white;
vec3 tonemap_reinhard(vec3 color) {
float white_squared = params.tonemapper_params.x;
vec3 white_squared_color = white_squared * color;
// Equivalent to color * (1 + color / white_squared) / (1 + color)
return (white_squared_color + color * color) / (white_squared_color + white_squared);
}
vec3 tonemap_filmic(vec3 color, float white) {
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
// has no effect on the curve's general shape or visual properties
vec3 tonemap_filmic(vec3 color) {
// These constants must match the those in the C++ code that calculates the parameters.
// exposure_bias: Input scale (color *= bias, env->white *= bias) to make the brightness consistent with other tonemappers.
// Also useful to scale the input to the range that the tonemapper is designed for (some require very high input values).
// Has no effect on the curve's general shape or visual properties.
const float exposure_bias = 2.0f;
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
const float B = 0.30f * exposure_bias;
@ -115,14 +118,14 @@ vec3 tonemap_filmic(vec3 color, float white) {
const float F = 0.30f;
vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
return color_tonemapped / white_tonemapped;
return color_tonemapped / params.tonemapper_params.x;
}
// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
// (MIT License).
vec3 tonemap_aces(vec3 color, float white) {
vec3 tonemap_aces(vec3 color) {
// These constants must match the those in the C++ code that calculates the parameters.
const float exposure_bias = 1.8f;
const float A = 0.0245786f;
const float B = 0.000090537f;
@ -145,46 +148,46 @@ vec3 tonemap_aces(vec3 color, float white) {
vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
color_tonemapped *= odt_to_rgb;
white *= exposure_bias;
float white_tonemapped = (white * (white + A) - B) / (white * (C * white + D) + E);
return color_tonemapped / white_tonemapped;
return color_tonemapped / params.tonemapper_params.x;
}
// Polynomial approximation of EaryChow's AgX sigmoid curve.
// x must be within the range [0.0, 1.0]
vec3 agx_contrast_approx(vec3 x) {
// Generated with Excel trendline
// Input data: Generated using python sigmoid with EaryChow's configuration and 57 steps
// Additional padding values were added to give correct intersections at 0.0 and 1.0
// 6th order, intercept of 0.0 to remove an operation and ensure intersection at 0.0
vec3 x2 = x * x;
vec3 x4 = x2 * x2;
return 0.021 * x + 4.0111 * x2 - 25.682 * x2 * x + 70.359 * x4 - 74.778 * x4 * x + 27.069 * x4 * x2;
// allenwp tonemapping curve; developed for use in the Godot game engine.
// Source and details: https://allenwp.com/blog/2025/05/29/allenwp-tonemapping-curve/
// Input must be a non-negative linear scene value.
vec3 allenwp_curve(vec3 x) {
const float output_max_value = 1.0; // SDR always has an output_max_value of 1.0
// These constants must match the those in the C++ code that calculates the parameters.
// 18% "middle gray" is perceptually 50% of the brightness of reference white.
const float awp_crossover_point = 0.18;
// When output_max_value and/or awp_crossover_point are no longer constant,
// awp_shoulder_max can be calculated on the CPU and passed in as params.tonemap_e.
const float awp_shoulder_max = output_max_value - awp_crossover_point;
float awp_contrast = params.tonemapper_params.x;
float awp_toe_a = params.tonemapper_params.y;
float awp_slope = params.tonemapper_params.z;
float awp_w = params.tonemapper_params.w;
// Reinhard-like shoulder:
vec3 s = x - awp_crossover_point;
vec3 slope_s = awp_slope * s;
s = slope_s * (1.0 + s / awp_w) / (1.0 + (slope_s / awp_shoulder_max));
s += awp_crossover_point;
// Sigmoid power function toe:
vec3 t = pow(x, vec3(awp_contrast));
t = t / (t + awp_toe_a);
return mix(s, t, lessThan(x, vec3(awp_crossover_point)));
}
// This is an approximation and simplification of EaryChow's AgX implementation that is used by Blender.
// This code is based off of the script that generates the AgX_Base_sRGB.cube LUT that Blender uses.
// Source: https://github.com/EaryChow/AgX_LUT_Gen/blob/main/AgXBasesRGB.py
// Colorspace transformation source: https://www.colour-science.org:8010/apps/rgb_colourspace_transformation_matrix
vec3 tonemap_agx(vec3 color) {
// Combined linear sRGB to linear Rec 2020 and Blender AgX inset matrices:
const mat3 srgb_to_rec2020_agx_inset_matrix = mat3(
0.54490813676363087053, 0.14044005884001287035, 0.088827411851915368603,
0.37377945959812267119, 0.75410959864013760045, 0.17887712465043811023,
0.081384976686407536266, 0.10543358536857773485, 0.73224999956948382528);
// Combined inverse AgX outset matrix and linear Rec 2020 to linear sRGB matrices.
const mat3 agx_outset_rec2020_to_srgb_matrix = mat3(
1.9645509602733325934, -0.29932243390911083839, -0.16436833806080403409,
-0.85585845117807513559, 1.3264510741502356555, -0.23822464068860595117,
-0.10886710826831608324, -0.027084020983874825605, 1.402665347143271889);
// LOG2_MIN = -10.0
// LOG2_MAX = +6.5
// MIDDLE_GRAY = 0.18
const float min_ev = -12.4739311883324; // log2(pow(2, LOG2_MIN) * MIDDLE_GRAY)
const float max_ev = 4.02606881166759; // log2(pow(2, LOG2_MAX) * MIDDLE_GRAY)
// Input color should be non-negative!
// Large negative values in one channel and large positive values in other
// channels can result in a colour that appears darker and more saturated than
// desired after passing it through the inset matrix. For this reason, it is
@ -192,31 +195,43 @@ vec3 tonemap_agx(vec3 color) {
// This is done before the Rec. 2020 transform to allow the Rec. 2020
// transform to be combined with the AgX inset matrix. This results in a loss
// of color information that could be correctly interpreted within the
// Rec. 2020 color space as positive RGB values, but it is less common for Godot
// to provide this function with negative sRGB values and therefore not worth
// Rec. 2020 color space as positive RGB values, but is often not worth
// the performance cost of an additional matrix multiplication.
// A value of 2e-10 intentionally introduces insignificant error to prevent
// log2(0.0) after the inset matrix is applied; color will be >= 1e-10 after
// the matrix transform.
color = max(color, 2e-10);
//
// Additionally, this AgX configuration was created subjectively based on
// output appearance in the Rec. 709 color gamut, so it is possible that these
// matrices will not perform well with non-Rec. 709 output (more testing with
// future wide-gamut displays is be needed).
// See this comment from the author on the decisions made to create the matrices:
// https://github.com/godotengine/godot-proposals/issues/12317#issuecomment-2835824250
// Do AGX in rec2020 to match Blender and then apply inset matrix.
color = srgb_to_rec2020_agx_inset_matrix * color;
// Combined Rec. 709 to Rec. 2020 and Blender AgX inset matrices:
const mat3 rec709_to_rec2020_agx_inset_matrix = mat3(
0.544814746488245, 0.140416948464053, 0.0888104196149096,
0.373787398372697, 0.754137554567394, 0.178871756420858,
0.0813978551390581, 0.105445496968552, 0.732317823964232);
// Log2 space encoding.
// Must be clamped because agx_contrast_approx may not work
// well with values outside of the range [0.0, 1.0]
color = clamp(log2(color), min_ev, max_ev);
color = (color - min_ev) / (max_ev - min_ev);
// Combined inverse AgX outset matrix and Rec. 2020 to Rec. 709 matrices.
const mat3 agx_outset_rec2020_to_rec709_matrix = mat3(
1.96488741169489, -0.299313364904742, -0.164352742528393,
-0.855988495690215, 1.32639796461980, -0.238183969428088,
-0.108898916004672, -0.0270845997150571, 1.40253671195648);
// Apply sigmoid function approximation.
color = agx_contrast_approx(color);
const float output_max_value = 1.0; // SDR always has an output_max_value of 1.0
// Convert back to linear before applying outset matrix.
color = pow(color, vec3(2.4));
// Apply inset matrix.
color = rec709_to_rec2020_agx_inset_matrix * color;
// Apply outset to make the result more chroma-laden and then go back to linear sRGB.
color = agx_outset_rec2020_to_srgb_matrix * color;
// Use the allenwp tonemapping curve to match the Blender AgX curve while
// providing stability across all variable dyanimc range (SDR, HDR, EDR).
color = allenwp_curve(color);
// Clipping to output_max_value is required to address a cyan colour that occurs
// with very bright inputs.
color = min(vec3(output_max_value), color);
// Apply outset to make the result more chroma-laden and then go back to Rec. 709.
color = agx_outset_rec2020_to_rec709_matrix * color;
// Blender's lusRGB.compensate_low_side is too complex for this shader, so
// simply return the color, even if it has negative components. These negative
@ -234,17 +249,21 @@ vec3 srgb_to_linear(vec3 color) {
return mix(pow((color.rgb + a) * (1.0f / (vec3(1.0f) + a)), vec3(2.4f)), color.rgb * (1.0f / 12.92f), lessThan(color.rgb, vec3(0.04045f)));
}
vec3 apply_tonemapping(vec3 color, float white) { // inputs are LINEAR
// Ensure color values passed to tonemappers are positive.
// They can be negative in the case of negative lights, which leads to undesired behavior.
vec3 apply_tonemapping(vec3 color) { // inputs are LINEAR
if (tonemapper_linear) {
return color;
} else if (tonemapper_reinhard) {
return tonemap_reinhard(max(vec3(0.0f), color), white);
}
// Ensure color values passed to tonemappers are positive.
// They can be negative in the case of negative lights, which leads to undesired behavior.
color = max(vec3(0.0), color);
if (tonemapper_reinhard) {
return tonemap_reinhard(color);
} else if (tonemapper_filmic) {
return tonemap_filmic(max(vec3(0.0f), color), white);
return tonemap_filmic(color);
} else if (tonemapper_aces) {
return tonemap_aces(max(vec3(0.0f), color), white);
return tonemap_aces(color);
} else { // tonemapper_agx
return tonemap_agx(color);
}
@ -748,7 +767,7 @@ void main() {
// Tonemap to lower dynamic range.
color.rgb = apply_tonemapping(color.rgb, params.white);
color.rgb = apply_tonemapping(color.rgb);
#ifndef SUBPASS
// Post-tonemap glow.
@ -761,7 +780,7 @@ void main() {
if (use_glow_map) {
glow = mix(glow, texture(glow_map, uv_interp).rgb * glow, params.glow_map_strength);
}
glow = apply_tonemapping(glow, params.white);
glow = apply_tonemapping(glow);
color.rgb = apply_glow(color.rgb, glow, params.white);
}
#endif

View file

@ -1240,9 +1240,10 @@ public:
// Tonemap
PASS4(environment_set_tonemap, RID, RS::EnvironmentToneMapper, float, float)
PASS2(environment_set_tonemap_agx_contrast, RID, float)
PASS1RC(RS::EnvironmentToneMapper, environment_get_tone_mapper, RID)
PASS1RC(float, environment_get_exposure, RID)
PASS1RC(float, environment_get_white, RID)
PASS2RC(float, environment_get_white, RID, bool)
// Fog
PASS11(environment_set_fog, RID, bool, const Color &, float, float, float, float, float, float, float, RS::EnvironmentFogMode)

View file

@ -373,8 +373,20 @@ float RendererSceneRender::environment_get_exposure(RID p_env) const {
return environment_storage.environment_get_exposure(p_env);
}
float RendererSceneRender::environment_get_white(RID p_env) const {
return environment_storage.environment_get_white(p_env);
float RendererSceneRender::environment_get_white(RID p_env, bool p_limit_agx_white) const {
return environment_storage.environment_get_white(p_env, p_limit_agx_white);
}
void RendererSceneRender::environment_set_tonemap_agx_contrast(RID p_env, float p_agx_contrast) {
environment_storage.environment_set_tonemap_agx_contrast(p_env, p_agx_contrast);
}
float RendererSceneRender::environment_get_tonemap_agx_contrast(RID p_env) const {
return environment_storage.environment_get_tonemap_agx_contrast(p_env);
}
RendererEnvironmentStorage::TonemapParameters RendererSceneRender::environment_get_tonemap_parameters(RID p_env, bool p_limit_agx_white) const {
return environment_storage.environment_get_tonemap_parameters(p_env, p_limit_agx_white);
}
// Fog

View file

@ -137,7 +137,10 @@ public:
void environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white);
RS::EnvironmentToneMapper environment_get_tone_mapper(RID p_env) const;
float environment_get_exposure(RID p_env) const;
float environment_get_white(RID p_env) const;
float environment_get_white(RID p_env, bool p_limit_agx_white) const;
void environment_set_tonemap_agx_contrast(RID p_env, float p_agx_contrast);
float environment_get_tonemap_agx_contrast(RID p_env) const;
RendererEnvironmentStorage::TonemapParameters environment_get_tonemap_parameters(RID p_env, bool p_limit_agx_white) const;
// Fog
void environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_aerial_perspective, float p_sky_affect, RS::EnvironmentFogMode p_mode);

View file

@ -185,10 +185,11 @@ public:
// Tonemap
virtual void environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white) = 0;
virtual void environment_set_tonemap_agx_contrast(RID p_env, float p_agx_contrast) = 0;
virtual RS::EnvironmentToneMapper environment_get_tone_mapper(RID p_env) const = 0;
virtual float environment_get_exposure(RID p_env) const = 0;
virtual float environment_get_white(RID p_env) const = 0;
virtual float environment_get_white(RID p_env, bool p_limit_agx_white) const = 0;
// Fog
virtual void environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_aerial_perspective, float p_sky_affect, RS::EnvironmentFogMode p_mode = RS::EnvironmentFogMode::ENV_FOG_MODE_EXPONENTIAL) = 0;

View file

@ -3102,6 +3102,7 @@ void RenderingServer::_bind_methods() {
ClassDB::bind_method(D_METHOD("environment_set_ambient_light", "env", "color", "ambient", "energy", "sky_contribution", "reflection_source"), &RenderingServer::environment_set_ambient_light, DEFVAL(RS::ENV_AMBIENT_SOURCE_BG), DEFVAL(1.0), DEFVAL(0.0), DEFVAL(RS::ENV_REFLECTION_SOURCE_BG));
ClassDB::bind_method(D_METHOD("environment_set_glow", "env", "enable", "levels", "intensity", "strength", "mix", "bloom_threshold", "blend_mode", "hdr_bleed_threshold", "hdr_bleed_scale", "hdr_luminance_cap", "glow_map_strength", "glow_map"), &RenderingServer::environment_set_glow);
ClassDB::bind_method(D_METHOD("environment_set_tonemap", "env", "tone_mapper", "exposure", "white"), &RenderingServer::environment_set_tonemap);
ClassDB::bind_method(D_METHOD("environment_set_tonemap_agx_contrast", "env", "agx_contrast"), &RenderingServer::environment_set_tonemap_agx_contrast);
ClassDB::bind_method(D_METHOD("environment_set_adjustment", "env", "enable", "brightness", "contrast", "saturation", "use_1d_color_correction", "color_correction"), &RenderingServer::environment_set_adjustment);
ClassDB::bind_method(D_METHOD("environment_set_ssr", "env", "enable", "max_steps", "fade_in", "fade_out", "depth_tolerance"), &RenderingServer::environment_set_ssr);
ClassDB::bind_method(D_METHOD("environment_set_ssao", "env", "enable", "radius", "intensity", "power", "detail", "horizon", "sharpness", "light_affect", "ao_channel_affect"), &RenderingServer::environment_set_ssao);

View file

@ -1284,6 +1284,7 @@ public:
};
virtual void environment_set_tonemap(RID p_env, EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white) = 0;
virtual void environment_set_tonemap_agx_contrast(RID p_env, float p_agx_contrast) = 0;
virtual void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, bool p_use_1d_color_correction, RID p_color_correction) = 0;
virtual void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance) = 0;

View file

@ -831,6 +831,7 @@ public:
FUNC1(environment_glow_set_use_bicubic_upscale, bool)
FUNC4(environment_set_tonemap, RID, EnvironmentToneMapper, float, float)
FUNC2(environment_set_tonemap_agx_contrast, RID, float)
FUNC7(environment_set_adjustment, RID, bool, float, float, float, bool, RID)

View file

@ -208,13 +208,7 @@ void RendererEnvironmentStorage::environment_set_tonemap(RID p_env, RS::Environm
ERR_FAIL_NULL(env);
env->exposure = p_exposure;
env->tone_mapper = p_tone_mapper;
if (p_tone_mapper == RS::ENV_TONE_MAPPER_LINEAR) {
env->white = 1.0; // With HDR output, this should be the output max value instead.
} else if (p_tone_mapper == RS::ENV_TONE_MAPPER_AGX) {
env->white = 16.29;
} else {
env->white = MAX(1.0, p_white); // Glow with screen blend mode does not work when white < 1.0.
}
env->white = p_white;
}
RS::EnvironmentToneMapper RendererEnvironmentStorage::environment_get_tone_mapper(RID p_env) const {
@ -229,10 +223,124 @@ float RendererEnvironmentStorage::environment_get_exposure(RID p_env) const {
return env->exposure;
}
float RendererEnvironmentStorage::environment_get_white(RID p_env) const {
float RendererEnvironmentStorage::environment_get_white(RID p_env, bool p_limit_agx_white) const {
Environment *env = environment_owner.get_or_null(p_env);
ERR_FAIL_NULL_V(env, 1.0);
return env->white;
const float output_max_value = 1.0; // SDR always has an output_max_value of 1.0.
// Glow with screen blend mode does not work when white < 1.0, so make sure
// it is at least 1.0 for all tonemappers:
if (env->tone_mapper == RS::ENV_TONE_MAPPER_LINEAR) {
return output_max_value;
} else if (env->tone_mapper == RS::ENV_TONE_MAPPER_FILMIC || env->tone_mapper == RS::ENV_TONE_MAPPER_ACES) {
// Filmic and ACES only support SDR; their white is stable regardless
// of output_max_value.
return MAX(1.0, env->white);
} else if (env->tone_mapper == RS::ENV_TONE_MAPPER_AGX) {
// AgX works best with a high white. 2.0 is the minimum required for
// good behavior with Mobile rendering method.
if (p_limit_agx_white) {
return 2.0;
} else {
float agx_white = MAX(2.0, env->white);
// Instead of constraining by matching the output_max_value, constrain
// by multiplying to ensure the desired non-uniform scaling behavior
// is maintained in the shoulder.
return agx_white * output_max_value;
}
} else { // Reinhard
// The Reinhard tonemapper is not designed to have a white parameter
// that is less than the output max value. This is especially important
// in the variable Extended Dynamic Range (EDR) paradigm where the
// output max value may change to be greater or less than the white
// parameter, depending on the available dynamic range.
return MAX(output_max_value, env->white);
}
}
void RendererEnvironmentStorage::environment_set_tonemap_agx_contrast(RID p_env, float p_agx_contrast) {
Environment *env = environment_owner.get_or_null(p_env);
ERR_FAIL_NULL(env);
env->tonemap_agx_contrast = p_agx_contrast;
}
float RendererEnvironmentStorage::environment_get_tonemap_agx_contrast(RID p_env) const {
Environment *env = environment_owner.get_or_null(p_env);
ERR_FAIL_NULL_V(env, 1.0);
return env->tonemap_agx_contrast;
}
RendererEnvironmentStorage::TonemapParameters RendererEnvironmentStorage::environment_get_tonemap_parameters(RID p_env, bool p_limit_agx_white) const {
Environment *env = environment_owner.get_or_null(p_env);
ERR_FAIL_NULL_V(env, TonemapParameters());
const float output_max_value = 1.0; // SDR always has an output_max_value of 1.0.
float white = environment_get_white(p_env, p_limit_agx_white);
TonemapParameters tonemap_parameters = TonemapParameters();
if (env->tone_mapper == RS::ENV_TONE_MAPPER_LINEAR) {
// Linear has no tonemapping parameters
} else if (env->tone_mapper == RS::ENV_TONE_MAPPER_REINHARD) {
tonemap_parameters.white_squared = white * white;
} else if (env->tone_mapper == RS::ENV_TONE_MAPPER_FILMIC) {
// These constants must match those in the shader code.
// exposure_bias: Input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values).
// Has no effect on the curve's general shape or visual properties.
const float exposure_bias = 2.0f;
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
const float B = 0.30f * exposure_bias;
const float C = 0.10f;
const float D = 0.20f;
const float E = 0.01f;
const float F = 0.30f;
tonemap_parameters.white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F;
} else if (env->tone_mapper == RS::ENV_TONE_MAPPER_ACES) {
// These constants must match those in the shader code.
const float exposure_bias = 1.8f;
const float A = 0.0245786f;
const float B = 0.000090537f;
const float C = 0.983729f;
const float D = 0.432951f;
const float E = 0.238081f;
white *= exposure_bias;
float white_tonemapped = (white * (white + A) - B) / (white * (C * white + D) + E);
tonemap_parameters.white_tonemapped = white_tonemapped;
} else if (env->tone_mapper == RS::ENV_TONE_MAPPER_AGX) {
// Calculate allenwp tonemapping curve parameters on the CPU to improve shader performance.
// Source and details: https://allenwp.com/blog/2025/05/29/allenwp-tonemapping-curve/
// These constants must match the those in the shader code.
// 18% "middle gray" is perceptually 50% of the brightness of reference white.
const float awp_crossover_point = 0.18;
// When output_max_value and/or awp_crossover_point are no longer constant, awp_shoulder_max can
// be calculated on the CPU and passed in as tonemap_parameters.tonemap_e.
const float awp_shoulder_max = output_max_value - awp_crossover_point;
float awp_high_clip = white;
// awp_toe_a is a solution generated by Mathematica that ensures intersection at awp_crossover_point.
float awp_toe_a = ((1.0 / awp_crossover_point) - 1.0) * pow(awp_crossover_point, env->tonemap_agx_contrast);
// Slope formula is simply the derivative of the toe function with an input of awp_crossover_point.
float awp_slope_denom = pow(awp_crossover_point, env->tonemap_agx_contrast) + awp_toe_a;
float awp_slope = (env->tonemap_agx_contrast * pow(awp_crossover_point, env->tonemap_agx_contrast - 1.0) * awp_toe_a) / (awp_slope_denom * awp_slope_denom);
float awp_w = awp_high_clip - awp_crossover_point;
awp_w = awp_w * awp_w;
awp_w = awp_w / awp_shoulder_max;
awp_w = awp_w * awp_slope;
tonemap_parameters.awp_contrast = env->tonemap_agx_contrast;
tonemap_parameters.awp_toe_a = awp_toe_a;
tonemap_parameters.awp_slope = awp_slope;
tonemap_parameters.awp_w = awp_w;
}
return tonemap_parameters;
}
// Fog

View file

@ -34,6 +34,30 @@
#include "servers/rendering/rendering_server.h"
class RendererEnvironmentStorage {
public:
union TonemapParameters {
// Shader vec4:
float tonemapper_params[4];
// Reinhard:
struct {
float white_squared;
};
// Filmic and ACES:
struct {
float white_tonemapped;
};
// AgX:
struct {
float awp_contrast;
float awp_toe_a;
float awp_slope;
float awp_w;
};
};
private:
static RendererEnvironmentStorage *singleton;
@ -62,6 +86,7 @@ private:
RS::EnvironmentToneMapper tone_mapper;
float exposure = 1.0;
float white = 1.0;
float tonemap_agx_contrast = 1.25; // Default to approximately Blender's AgX contrast
// Fog
bool fog_enabled = false;
@ -202,7 +227,10 @@ public:
void environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white);
RS::EnvironmentToneMapper environment_get_tone_mapper(RID p_env) const;
float environment_get_exposure(RID p_env) const;
float environment_get_white(RID p_env) const;
float environment_get_white(RID p_env, bool p_limit_agx_white) const;
void environment_set_tonemap_agx_contrast(RID p_env, float p_agx_contrast);
float environment_get_tonemap_agx_contrast(RID p_env) const;
TonemapParameters environment_get_tonemap_parameters(RID p_env, bool p_limit_agx_white) const;
// Fog
void environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_aerial_perspective, float p_sky_affect, RS::EnvironmentFogMode p_mode);