Implement motion vectors in compatibility renderer

This commit is contained in:
devloglogan 2024-12-11 16:50:29 -06:00
parent 3bf0f771ee
commit 8fef9a689e
14 changed files with 871 additions and 341 deletions

View file

@ -37,6 +37,7 @@ ADDITIVE_SPOT = false
RENDER_MATERIAL = false
SECOND_REFLECTION_PROBE = false
LIGHTMAP_BICUBIC_FILTER = false
RENDER_MOTION_VECTORS = false
#[vertex]
@ -155,13 +156,24 @@ layout(location = 14) in highp vec4 instance_xform2;
layout(location = 15) in highp uvec4 instance_color_custom_data; // Color packed into xy, Custom data into zw.
#endif
#if defined(RENDER_MOTION_VECTORS)
layout(location = 16) in highp vec4 prev_vertex_attrib;
layout(location = 17) in highp vec4 prev_normal_attrib;
#ifdef USE_INSTANCING
layout(location = 18) in highp vec4 prev_instance_xform0;
layout(location = 19) in highp vec4 prev_instance_xform1;
layout(location = 20) in highp vec4 prev_instance_xform2;
layout(location = 21) in highp uvec4 prev_instance_color_custom_data;
#endif // USE_INSTANCING
#endif // RENDER_MOTION_VECTORS
#define FLAGS_NON_UNIFORM_SCALE (1 << 4)
layout(std140) uniform GlobalShaderUniformData { //ubo:1
vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS];
};
layout(std140) uniform SceneData { // ubo:2
struct SceneData {
highp mat4 projection_matrix;
highp mat4 inv_projection_matrix;
highp mat4 inv_view_matrix;
@ -209,9 +221,15 @@ layout(std140) uniform SceneData { // ubo:2
float luminance_multiplier;
uint camera_visible_layers;
bool pancake_shadows;
}
scene_data;
};
layout(std140) uniform SceneDataBlock { // ubo:2
SceneData data;
SceneData prev_data;
}
scene_data_block;
#ifndef RENDER_MOTION_VECTORS
#ifdef USE_ADDITIVE_LIGHTING
#if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)
@ -426,14 +444,20 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, float
#endif // !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) && defined(USE_VERTEX_LIGHTING)
#endif // USE_VERTEX_LIGHTING
#endif // RENDER_MOTION_VECTORS
#ifdef USE_MULTIVIEW
layout(std140) uniform MultiviewData { // ubo:8
struct MultiviewData {
highp mat4 projection_matrix_view[MAX_VIEWS];
highp mat4 inv_projection_matrix_view[MAX_VIEWS];
highp vec4 eye_offset[MAX_VIEWS];
};
layout(std140) uniform MultiviewDataBlock { // ubo:8
MultiviewData data;
MultiviewData prev_data;
}
multiview_data;
multiview_data_block;
#endif
uniform highp mat4 world_transform;
@ -442,6 +466,10 @@ uniform highp vec3 compressed_aabb_size;
uniform highp vec4 uv_scale;
uniform highp uint instance_offset;
#if defined(RENDER_MOTION_VECTORS)
uniform highp mat4 prev_world_transform;
#endif
uniform highp uint model_flags;
#ifdef RENDER_MATERIAL
@ -472,6 +500,7 @@ out vec3 tangent_interp;
out vec3 binormal_interp;
#endif
#ifndef RENDER_MOTION_VECTORS
#ifdef USE_ADDITIVE_LIGHTING
out highp vec4 shadow_coord;
@ -482,8 +511,9 @@ out highp vec4 shadow_coord2;
#ifdef LIGHT_USE_PSSM4
out highp vec4 shadow_coord3;
out highp vec4 shadow_coord4;
#endif //LIGHT_USE_PSSM4
#endif
#endif // LIGHT_USE_PSSM4
#endif // USE_ADDITIVE_LIGHTING
#endif // RENDER_MOTION_VECTORS
#ifdef MATERIAL_UNIFORMS_USED
@ -499,27 +529,60 @@ layout(std140) uniform MaterialUniforms { // ubo:3
/* clang-format off */
#if defined(RENDER_MOTION_VECTORS)
out highp vec4 clip_position;
out highp vec4 prev_clip_position;
#endif
#GLOBALS
/* clang-format on */
invariant gl_Position;
void main() {
highp vec3 vertex = vertex_angle_attrib.xyz * compressed_aabb_size + compressed_aabb_position;
highp mat4 model_matrix = world_transform;
void vertex_shader(vec4 vertex_angle_attrib_input,
vec3 compressed_aabb_size_input,
vec3 compressed_aabb_position_input,
mat4 world_transform_input,
uint model_flags_input,
SceneData scene_data_input,
#ifdef USE_INSTANCING
highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0));
vec4 instance_xform0_input, vec4 instance_xform1_input, vec4 instance_xform2_input,
uvec4 instance_color_custom_data_input,
#endif
#ifdef NORMAL_USED
vec4 axis_tangent_attrib_input,
#endif
#if defined(COLOR_USED)
vec4 color_attrib_input,
#endif
#if defined(UV_USED)
vec2 uv_attrib_input,
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
vec2 uv2_attrib_input,
#endif
#ifdef USE_MULTIVIEW
mat4 projection_matrix,
mat4 inv_projection_matrix,
vec3 eye_offset,
#endif
vec4 uv_scale_input,
out vec4 clip_position_output) {
highp vec3 vertex = vertex_angle_attrib_input.xyz * compressed_aabb_size_input + compressed_aabb_position_input;
highp mat4 model_matrix = world_transform_input;
#ifdef USE_INSTANCING
highp mat4 m = mat4(instance_xform0_input, instance_xform1_input, instance_xform2_input, vec4(0.0, 0.0, 0.0, 1.0));
model_matrix = model_matrix * transpose(m);
#endif
#ifdef NORMAL_USED
vec3 normal = oct_to_vec3(axis_tangent_attrib.xy * 2.0 - 1.0);
vec3 normal = oct_to_vec3(axis_tangent_attrib_input.xy * 2.0 - 1.0);
#endif
highp mat3 model_normal_matrix;
if (bool(model_flags & uint(FLAGS_NON_UNIFORM_SCALE))) {
if (bool(model_flags_input & uint(FLAGS_NON_UNIFORM_SCALE))) {
model_normal_matrix = transpose(inverse(mat3(model_matrix)));
} else {
model_normal_matrix = mat3(model_matrix);
@ -538,7 +601,7 @@ void main() {
binormal = normalize(cross(normal, tangent) * binormal_sign);
} else {
// Compressed format.
float angle = vertex_angle_attrib.w;
float angle = vertex_angle_attrib_input.w;
binormal_sign = angle > 0.5 ? 1.0 : -1.0; // 0.5 does not exist in UNORM16, so values are either greater or smaller.
angle = abs(angle * 2.0 - 1.0) * M_PI; // 0.5 is basically zero, allowing to encode both signs reliably.
vec3 axis = normal;
@ -548,29 +611,29 @@ void main() {
#endif
#if defined(COLOR_USED)
color_interp = color_attrib;
color_interp = color_attrib_input;
#ifdef USE_INSTANCING
vec4 instance_color;
instance_color.xy = unpackHalf2x16(instance_color_custom_data.x);
instance_color.zw = unpackHalf2x16(instance_color_custom_data.y);
instance_color.xy = unpackHalf2x16(instance_color_custom_data_input.x);
instance_color.zw = unpackHalf2x16(instance_color_custom_data_input.y);
color_interp *= instance_color;
#endif
#endif
#if defined(UV_USED)
uv_interp = uv_attrib;
uv_interp = uv_attrib_input;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
uv2_interp = uv2_attrib_input;
#endif
if (uv_scale != vec4(0.0)) { // Compression enabled
if (uv_scale_input != vec4(0.0)) { // Compression enabled
#ifdef UV_USED
uv_interp = (uv_interp - 0.5) * uv_scale.xy;
uv_interp = (uv_interp - 0.5) * uv_scale_input.xy;
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_interp = (uv2_interp - 0.5) * uv_scale.zw;
uv2_interp = (uv2_interp - 0.5) * uv_scale_input.zw;
#endif
}
@ -578,20 +641,15 @@ void main() {
highp vec4 position;
#endif
#ifdef USE_MULTIVIEW
mat4 projection_matrix = multiview_data.projection_matrix_view[ViewIndex];
mat4 inv_projection_matrix = multiview_data.inv_projection_matrix_view[ViewIndex];
vec3 eye_offset = multiview_data.eye_offset[ViewIndex].xyz;
#else
mat4 projection_matrix = scene_data.projection_matrix;
mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
vec3 eye_offset = vec3(0.0, 0.0, 0.0);
#endif //USE_MULTIVIEW
#ifndef USE_MULTIVIEW
mat4 projection_matrix = scene_data_input.projection_matrix;
mat4 inv_projection_matrix = scene_data_input.inv_projection_matrix;
#endif //!USE_MULTIVIEW
#ifdef USE_INSTANCING
vec4 instance_custom;
instance_custom.xy = unpackHalf2x16(instance_color_custom_data.z);
instance_custom.zw = unpackHalf2x16(instance_color_custom_data.w);
instance_custom.xy = unpackHalf2x16(instance_color_custom_data_input.z);
instance_custom.zw = unpackHalf2x16(instance_color_custom_data_input.w);
#else
vec4 instance_custom = vec4(0.0);
#endif
@ -619,8 +677,8 @@ void main() {
float roughness = 1.0;
highp mat4 modelview = scene_data.view_matrix * model_matrix;
highp mat3 modelview_normal = mat3(scene_data.view_matrix) * model_normal_matrix;
highp mat4 modelview = scene_data_input.view_matrix * model_matrix;
highp mat3 modelview_normal = mat3(scene_data_input.view_matrix) * model_normal_matrix;
float point_size = 1.0;
@ -648,14 +706,14 @@ void main() {
// Using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = (scene_data.view_matrix * vec4(vertex, 1.0)).xyz;
vertex = (scene_data_input.view_matrix * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
normal = (scene_data.view_matrix * vec4(normal, 0.0)).xyz;
normal = (scene_data_input.view_matrix * vec4(normal, 0.0)).xyz;
#endif
#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
binormal = (scene_data.view_matrix * vec4(binormal, 0.0)).xyz;
tangent = (scene_data.view_matrix * vec4(tangent, 0.0)).xyz;
binormal = (scene_data_input.view_matrix * vec4(binormal, 0.0)).xyz;
tangent = (scene_data_input.view_matrix * vec4(tangent, 0.0)).xyz;
#endif
#endif
@ -672,6 +730,7 @@ void main() {
binormal_interp = normalize(binormal);
#endif
#ifndef RENDER_MOTION_VECTORS
// Calculate shadows.
#ifdef USE_ADDITIVE_LIGHTING
#if defined(ADDITIVE_OMNI) || defined(ADDITIVE_SPOT)
@ -711,15 +770,16 @@ void main() {
#endif // USE_ADDITIVE_LIGHTING
#if defined(RENDER_SHADOWS) && !defined(RENDER_SHADOWS_LINEAR)
// This is an optimized version of normalize(vertex_interp) * scene_data.shadow_bias / length(vertex_interp).
// This is an optimized version of normalize(vertex_interp) * scene_data_input.shadow_bias / length(vertex_interp).
float light_length_sq = dot(vertex_interp, vertex_interp);
vertex_interp += vertex_interp * scene_data.shadow_bias / light_length_sq;
vertex_interp += vertex_interp * scene_data_input.shadow_bias / light_length_sq;
#endif
#endif // RENDER_MOTION_VECTORS
#if defined(OVERRIDE_POSITION)
gl_Position = position;
clip_position_output = position;
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
clip_position_output = projection_matrix * vec4(vertex_interp, 1.0);
#endif
#if !defined(RENDER_SHADOWS) && !defined(RENDER_SHADOWS_LINEAR)
@ -730,17 +790,18 @@ void main() {
#ifdef RENDER_MATERIAL
vec2 uv_dest_attrib;
if (uv_scale != vec4(0.0)) {
uv_dest_attrib = (uv2_attrib.xy - 0.5) * uv_scale.zw;
if (uv_scale_input != vec4(0.0)) {
uv_dest_attrib = (uv2_attrib_input.xy - 0.5) * uv_scale_input.zw;
} else {
uv_dest_attrib = uv2_attrib.xy;
uv_dest_attrib = uv2_attrib_input.xy;
}
gl_Position.xy = (uv_dest_attrib + uv_offset) * 2.0 - 1.0;
gl_Position.z = 0.00001;
gl_Position.w = 1.0;
clip_position_output.xy = (uv_dest_attrib + uv_offset) * 2.0 - 1.0;
clip_position_output.z = 0.00001;
clip_position_output.w = 1.0;
#endif
#ifndef RENDER_MOTION_VECTORS
#ifdef USE_VERTEX_LIGHTING
#if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifdef USE_MULTIVIEW
@ -752,7 +813,7 @@ void main() {
specular_light_interp = vec3(0.0);
#ifdef BASE_PASS
#ifndef DISABLE_LIGHT_DIRECTIONAL
for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
for (uint i = uint(0); i < scene_data_input.directional_light_count; i++) {
#if defined(USE_LIGHTMAP) && !defined(DISABLE_LIGHTMAP)
if (directional_lights[i].bake_mode == LIGHT_BAKE_STATIC) {
continue;
@ -803,7 +864,97 @@ void main() {
#endif // USE_ADDITIVE_LIGHTING
#endif // !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#endif // USE_VERTEX_LIGHTING
#endif // RENDER_MOTION_VECTORS
}
void main() {
#if defined(RENDER_MOTION_VECTORS)
#ifdef USE_INSTANCING
// Check for inactive particle instances.
highp vec4 input_instance_xform0;
highp vec4 input_instance_xform1;
highp vec4 input_instance_xform2;
highp uvec4 input_instance_color_custom_data;
if (prev_instance_xform0.xyz == vec3(0.0, 0.0, 0.0)) {
input_instance_xform0 = instance_xform0;
input_instance_xform1 = instance_xform1;
input_instance_xform2 = instance_xform2;
input_instance_color_custom_data = instance_color_custom_data;
} else {
input_instance_xform0 = prev_instance_xform0;
input_instance_xform1 = prev_instance_xform1;
input_instance_xform2 = prev_instance_xform2;
input_instance_color_custom_data = prev_instance_color_custom_data;
}
#endif
vertex_shader(prev_vertex_attrib,
compressed_aabb_size,
compressed_aabb_position,
prev_world_transform,
model_flags,
scene_data_block.prev_data,
#ifdef USE_INSTANCING
input_instance_xform0, input_instance_xform1, input_instance_xform2,
input_instance_color_custom_data,
#endif
#ifdef NORMAL_USED
prev_normal_attrib,
#endif
#if defined(COLOR_USED)
color_attrib,
#endif
#if defined(UV_USED)
uv_attrib,
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_attrib,
#endif
#ifdef USE_MULTIVIEW
multiview_data_block.prev_data.projection_matrix_view[ViewIndex],
multiview_data_block.prev_data.inv_projection_matrix_view[ViewIndex],
multiview_data_block.prev_data.eye_offset[ViewIndex].xyz,
#endif
uv_scale,
prev_clip_position);
#else
vec4 clip_position;
#endif // defined(RENDER_MOTION_VECTORS)
vertex_shader(vertex_angle_attrib,
compressed_aabb_size,
compressed_aabb_position,
world_transform,
model_flags,
scene_data_block.data,
#ifdef USE_INSTANCING
instance_xform0, instance_xform1, instance_xform2,
instance_color_custom_data,
#endif
#ifdef NORMAL_USED
axis_tangent_attrib,
#endif
#if defined(COLOR_USED)
color_attrib,
#endif
#if defined(UV_USED)
uv_attrib,
#endif
#if defined(UV2_USED) || defined(USE_LIGHTMAP)
uv2_attrib,
#endif
#ifdef USE_MULTIVIEW
multiview_data_block.data.projection_matrix_view[ViewIndex],
multiview_data_block.data.inv_projection_matrix_view[ViewIndex],
multiview_data_block.data.eye_offset[ViewIndex].xyz,
#endif
uv_scale,
clip_position);
gl_Position = clip_position;
}
/* clang-format off */
#[fragment]
@ -859,6 +1010,12 @@ void main() {
/* Varyings */
#if defined(RENDER_MOTION_VECTORS)
in highp vec4 clip_position;
in highp vec4 prev_clip_position;
#endif
#ifndef RENDER_MOTION_VECTORS
#if defined(COLOR_USED)
in vec4 color_interp;
#endif
@ -958,7 +1115,7 @@ layout(std140) uniform MaterialUniforms { // ubo:3
#endif
layout(std140) uniform SceneData { // ubo:2
struct SceneData {
highp mat4 projection_matrix;
highp mat4 inv_projection_matrix;
highp mat4 inv_view_matrix;
@ -1006,16 +1163,26 @@ layout(std140) uniform SceneData { // ubo:2
float luminance_multiplier;
uint camera_visible_layers;
bool pancake_shadows;
};
layout(std140) uniform SceneDataBlock { // ubo:2
SceneData data;
SceneData prev_data;
}
scene_data;
scene_data_block;
#ifdef USE_MULTIVIEW
layout(std140) uniform MultiviewData { // ubo:8
struct MultiviewData {
highp mat4 projection_matrix_view[MAX_VIEWS];
highp mat4 inv_projection_matrix_view[MAX_VIEWS];
highp vec4 eye_offset[MAX_VIEWS];
};
layout(std140) uniform MultiviewDataBlock { // ubo:8
MultiviewData data;
MultiviewData prev_data;
}
multiview_data;
multiview_data_block;
#endif
uniform highp mat4 world_transform;
@ -1249,6 +1416,7 @@ ivec2 multiview_uv(ivec2 uv) {
#endif
uniform mediump float opaque_prepass_threshold;
#endif // !RENDER_MOTION_VECTORS
#if defined(RENDER_MATERIAL)
layout(location = 0) out vec4 albedo_output_buffer;
@ -1257,8 +1425,13 @@ layout(location = 2) out vec4 orm_output_buffer;
layout(location = 3) out vec4 emission_output_buffer;
#else // !RENDER_MATERIAL
#ifndef RENDER_MOTION_VECTORS
// Normal color rendering.
layout(location = 0) out vec4 frag_color;
#else
layout(location = 0) out vec4 motion_vectors;
#endif // !RENDER_MOTION_VECTORS
#endif // !RENDER_MATERIAL
@ -1268,6 +1441,7 @@ layout(location = 0) out vec4 frag_color;
/* clang-format on */
#ifndef RENDER_MOTION_VECTORS
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
@ -1330,8 +1504,8 @@ void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, bool is_di
// light is written by the light shader
highp mat4 model_matrix = world_transform;
mat4 projection_matrix = scene_data.projection_matrix;
mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
mat4 projection_matrix = scene_data_block.data.projection_matrix;
mat4 inv_projection_matrix = scene_data_block.data.inv_projection_matrix;
vec3 normal = N;
vec3 light = L;
@ -1579,32 +1753,32 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f
#endif // !USE_VERTEX_LIGHTING
vec4 fog_process(vec3 vertex) {
vec3 fog_color = scene_data.fog_light_color;
vec3 fog_color = scene_data_block.data.fog_light_color;
#ifdef USE_RADIANCE_MAP
/*
if (scene_data.fog_aerial_perspective > 0.0) {
if (scene_data_block.data.fog_aerial_perspective > 0.0) {
vec3 sky_fog_color = vec3(0.0);
vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
vec3 cube_view = scene_data_block.data.radiance_inverse_xform * vertex;
// mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));
float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data_block.data.z_near) / (scene_data_block.data.z_far - scene_data_block.data.z_near));
sky_fog_color = textureLod(radiance_map, cube_view, mip_level * RADIANCE_MAX_LOD).rgb;
fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
fog_color = mix(fog_color, sky_fog_color, scene_data_block.data.fog_aerial_perspective);
}
*/
#endif
#ifndef DISABLE_LIGHT_DIRECTIONAL
if (scene_data.fog_sun_scatter > 0.001) {
if (scene_data_block.data.fog_sun_scatter > 0.001) {
vec4 sun_scatter = vec4(0.0);
float sun_total = 0.0;
vec3 view = normalize(vertex);
for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
for (uint i = uint(0); i < scene_data_block.data.directional_light_count; i++) {
vec3 light_color = directional_lights[i].color * directional_lights[i].energy;
float light_amount = pow(max(dot(view, directional_lights[i].direction), 0.0), 8.0);
fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
fog_color += light_color * light_amount * scene_data_block.data.fog_sun_scatter;
}
}
#endif // !DISABLE_LIGHT_DIRECTIONAL
@ -1612,18 +1786,18 @@ vec4 fog_process(vec3 vertex) {
float fog_amount = 0.0;
#ifdef USE_DEPTH_FOG
float fog_z = smoothstep(scene_data.fog_depth_begin, scene_data.fog_depth_end, length(vertex));
fog_amount = pow(fog_z, scene_data.fog_depth_curve) * scene_data.fog_density;
float fog_z = smoothstep(scene_data_block.data.fog_depth_begin, scene_data_block.data.fog_depth_end, length(vertex));
fog_amount = pow(fog_z, scene_data_block.data.fog_depth_curve) * scene_data_block.data.fog_density;
#else
fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data.fog_density));
fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data_block.data.fog_density));
#endif // USE_DEPTH_FOG
if (abs(scene_data.fog_height_density) >= 0.0001) {
float y = (scene_data.inv_view_matrix * vec4(vertex, 1.0)).y;
if (abs(scene_data_block.data.fog_height_density) >= 0.0001) {
float y = (scene_data_block.data.inv_view_matrix * vec4(vertex, 1.0)).y;
float y_dist = y - scene_data.fog_height;
float y_dist = y - scene_data_block.data.fog_height;
float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data.fog_height_density));
float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data_block.data.fog_height_density));
fog_amount = max(vfog_amount, fog_amount);
}
@ -1781,20 +1955,22 @@ vec4 textureArray_bicubic(sampler2DArray tex, vec3 uv, vec2 texture_size) {
(g1(fuv.y) * (g0x * texture(tex, vec3(p2, uv.z)) + g1x * texture(tex, vec3(p3, uv.z))));
}
#endif //LIGHTMAP_BICUBIC_FILTER
#endif // RENDER_MOTION_VECTORS
void main() {
#ifndef RENDER_MOTION_VECTORS
//lay out everything, whatever is unused is optimized away anyway
vec3 vertex = vertex_interp;
#ifdef USE_MULTIVIEW
vec3 eye_offset = multiview_data.eye_offset[ViewIndex].xyz;
vec3 eye_offset = multiview_data_block.data.eye_offset[ViewIndex].xyz;
vec3 view = -normalize(vertex_interp - eye_offset);
mat4 projection_matrix = multiview_data.projection_matrix_view[ViewIndex];
mat4 inv_projection_matrix = multiview_data.inv_projection_matrix_view[ViewIndex];
mat4 projection_matrix = multiview_data_block.data.projection_matrix_view[ViewIndex];
mat4 inv_projection_matrix = multiview_data_block.data.inv_projection_matrix_view[ViewIndex];
#else
vec3 eye_offset = vec3(0.0, 0.0, 0.0);
vec3 view = -normalize(vertex_interp);
mat4 projection_matrix = scene_data.projection_matrix;
mat4 inv_projection_matrix = scene_data.inv_projection_matrix;
mat4 projection_matrix = scene_data_block.data.projection_matrix;
mat4 inv_projection_matrix = scene_data_block.data.inv_projection_matrix;
#endif
highp mat4 model_matrix = world_transform;
vec3 albedo = vec3(1.0);
@ -1870,7 +2046,7 @@ void main() {
float normal_map_depth = 1.0;
vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size;
vec2 screen_uv = gl_FragCoord.xy * scene_data_block.data.screen_pixel_size;
float sss_strength = 0.0;
@ -1976,7 +2152,7 @@ void main() {
// fog must be processed as early as possible and then packed.
// to maximize VGPR usage
if (scene_data.fog_enabled) {
if (scene_data_block.data.fog_enabled) {
fog = fog_process(vertex);
}
#endif // !DISABLE_FOG
@ -2005,7 +2181,7 @@ void main() {
vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
#ifdef USE_RADIANCE_MAP
if (scene_data.use_reflection_cubemap) {
if (scene_data_block.data.use_reflection_cubemap) {
#ifdef LIGHT_ANISOTROPY_USED
// https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
@ -2018,11 +2194,11 @@ void main() {
#endif
ref_vec = mix(ref_vec, normal, roughness * roughness);
float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
ref_vec = scene_data.radiance_inverse_xform * ref_vec;
ref_vec = scene_data_block.data.radiance_inverse_xform * ref_vec;
specular_light = textureLod(radiance_map, ref_vec, sqrt(roughness) * RADIANCE_MAX_LOD).rgb;
specular_light = srgb_to_linear(specular_light);
specular_light *= horizon * horizon;
specular_light *= scene_data.ambient_light_color_energy.a;
specular_light *= scene_data_block.data.ambient_light_color_energy.a;
}
#endif // USE_RADIANCE_MAP
@ -2058,21 +2234,21 @@ void main() {
#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
//lightmap overrides everything
if (scene_data.use_ambient_light) {
ambient_light = scene_data.ambient_light_color_energy.rgb;
if (scene_data_block.data.use_ambient_light) {
ambient_light = scene_data_block.data.ambient_light_color_energy.rgb;
#ifdef USE_RADIANCE_MAP
if (scene_data.use_ambient_cubemap) {
vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
if (scene_data_block.data.use_ambient_cubemap) {
vec3 ambient_dir = scene_data_block.data.radiance_inverse_xform * normal;
vec3 cubemap_ambient = textureLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).rgb;
cubemap_ambient = srgb_to_linear(cubemap_ambient);
ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
ambient_light = mix(ambient_light, cubemap_ambient * scene_data_block.data.ambient_light_color_energy.a, scene_data_block.data.ambient_color_sky_mix);
}
#endif // USE_RADIANCE_MAP
#ifndef DISABLE_REFLECTION_PROBE
if (ambient_accum.a > 0.0) {
ambient_light = mix(ambient_light, (ambient_accum.rgb / ambient_accum.a) * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
ambient_light = mix(ambient_light, (ambient_accum.rgb / ambient_accum.a) * scene_data_block.data.ambient_light_color_energy.a, scene_data_block.data.ambient_color_sky_mix);
}
#endif // DISABLE_REFLECTION_PROBE
}
@ -2086,7 +2262,7 @@ void main() {
#ifdef USE_LIGHTMAP_CAPTURE
{
// The world normal.
vec3 wnormal = mat3(scene_data.inv_view_matrix) * normal;
vec3 wnormal = mat3(scene_data_block.data.inv_view_matrix) * normal;
// The SH coefficients used for evaluating diffuse data from SH probes.
const float c0 = 0.886227; // l0 sqrt(1.0/(4.0*PI)) * PI
@ -2104,7 +2280,7 @@ void main() {
c3 * lightmap_captures[6].rgb * (3.0 * wnormal.z * wnormal.z - 1.0) +
c2 * lightmap_captures[7].rgb * wnormal.x * wnormal.z +
c4 * lightmap_captures[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y)) *
scene_data.IBL_exposure_normalization;
scene_data_block.data.IBL_exposure_normalization;
}
#else
#ifdef USE_LIGHTMAP
@ -2192,7 +2368,7 @@ void main() {
#else
#ifndef DISABLE_LIGHT_DIRECTIONAL
for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
for (uint i = uint(0); i < scene_data_block.data.directional_light_count; i++) {
#if defined(USE_LIGHTMAP) && !defined(DISABLE_LIGHTMAP)
if (directional_lights[i].bake_mode == LIGHT_BAKE_STATIC) {
continue;
@ -2299,7 +2475,7 @@ void main() {
#ifdef MODE_RENDER_DEPTH
#ifdef RENDER_SHADOWS_LINEAR
// Linearize the depth buffer if rendering cubemap shadows.
gl_FragDepth = (scene_data.z_far - (length(vertex) + scene_data.shadow_bias)) / scene_data.z_far;
gl_FragDepth = (scene_data_block.data.z_far - (length(vertex) + scene_data_block.data.shadow_bias)) / scene_data_block.data.z_far;
#endif
// Nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
@ -2618,7 +2794,7 @@ void main() {
frag_color.rgb += additive_light_color;
#endif // USE_ADDITIVE_LIGHTING
frag_color.rgb *= scene_data.luminance_multiplier;
frag_color.rgb *= scene_data_block.data.luminance_multiplier;
#endif // !RENDER_MATERIAL
#endif // !MODE_RENDER_DEPTH
@ -2626,4 +2802,14 @@ void main() {
#ifdef PREMUL_ALPHA_USED
frag_color.rgb *= premul_alpha;
#endif // PREMUL_ALPHA_USED
#endif // !RENDER_MOTION_VECTORS
#if defined(RENDER_MOTION_VECTORS)
// These motion vectors are in NDC space (as opposed to screen space) to fit the OpenXR XR_FB_space_warp specification.
// https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#XR_FB_space_warp
vec3 ndc = clip_position.xyz / clip_position.w;
vec3 prev_ndc = prev_clip_position.xyz / prev_clip_position.w;
motion_vectors = vec4(ndc - prev_ndc, 0.0);
#endif // RENDER_MOTION_VECTORS
}