Bring that Whole New World to the Old Continent too

Applies the clang-format style to the 2.1 branch as done for master in
5dbf1809c6.
This commit is contained in:
Rémi Verschelde 2017-03-19 00:36:26 +01:00
parent 1d418afe86
commit f8db8a3faa
1308 changed files with 147754 additions and 174357 deletions

View file

@ -27,41 +27,38 @@
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "image.h"
#include <stdio.h>
#include "print_string.h"
#include <stdio.h>
#ifdef TOOLS_ENABLED
#include "os/os.h"
#include "set.h"
#include "sort.h"
#include "os/os.h"
//#define QUANTIZE_SPEED_OVER_QUALITY
Image::MCBlock::MCBlock() {
}
Image::MCBlock::MCBlock(BColorPos *p_colors,int p_color_count) {
Image::MCBlock::MCBlock(BColorPos *p_colors, int p_color_count) {
colors=p_colors;
color_count=p_color_count;
min_color.color=BColor(255,255,255,255);
max_color.color=BColor(0,0,0,0);
colors = p_colors;
color_count = p_color_count;
min_color.color = BColor(255, 255, 255, 255);
max_color.color = BColor(0, 0, 0, 0);
shrink();
}
int Image::MCBlock::get_longest_axis_index() const {
int max_dist=-1;
int max_index=0;
int max_dist = -1;
int max_index = 0;
for(int i=0;i<4;i++) {
for (int i = 0; i < 4; i++) {
int d = max_color.color.col[i]-min_color.color.col[i];
if (d>max_dist) {
max_index=i;
max_dist=d;
int d = max_color.color.col[i] - min_color.color.col[i];
if (d > max_dist) {
max_index = i;
max_dist = d;
}
}
@ -69,88 +66,80 @@ int Image::MCBlock::get_longest_axis_index() const {
}
int Image::MCBlock::get_longest_axis_length() const {
int max_dist=-1;
int max_dist = -1;
for(int i=0;i<4;i++) {
for (int i = 0; i < 4; i++) {
int d = max_color.color.col[i]-min_color.color.col[i];
if (d>max_dist) {
max_dist=d;
int d = max_color.color.col[i] - min_color.color.col[i];
if (d > max_dist) {
max_dist = d;
}
}
return max_dist;
}
bool Image::MCBlock::operator<(const MCBlock& p_block) const {
bool Image::MCBlock::operator<(const MCBlock &p_block) const {
int alen = get_longest_axis_length();
int blen = p_block.get_longest_axis_length();
if (alen==blen) {
if (alen == blen) {
return colors < p_block.colors;
} else
return alen < blen;
}
void Image::MCBlock::shrink() {
min_color=colors[0];
max_color=colors[0];
min_color = colors[0];
max_color = colors[0];
for(int i=1;i<color_count;i++) {
for (int i = 1; i < color_count; i++) {
for(int j=0;j<4;j++) {
for (int j = 0; j < 4; j++) {
min_color.color.col[j]=MIN(min_color.color.col[j],colors[i].color.col[j]);
max_color.color.col[j]=MAX(max_color.color.col[j],colors[i].color.col[j]);
min_color.color.col[j] = MIN(min_color.color.col[j], colors[i].color.col[j]);
max_color.color.col[j] = MAX(max_color.color.col[j], colors[i].color.col[j]);
}
}
}
void Image::quantize() {
bool has_alpha = detect_alpha()!=ALPHA_NONE;
bool has_alpha = detect_alpha() != ALPHA_NONE;
bool quantize_fast=OS::get_singleton()->has_environment("QUANTIZE_FAST");
bool quantize_fast = OS::get_singleton()->has_environment("QUANTIZE_FAST");
convert(FORMAT_RGBA);
ERR_FAIL_COND( format!=FORMAT_RGBA );
ERR_FAIL_COND(format != FORMAT_RGBA);
DVector<uint8_t> indexed_data;
{
int color_count = data.size()/4;
int color_count = data.size() / 4;
ERR_FAIL_COND(color_count==0);
ERR_FAIL_COND(color_count == 0);
Set<MCBlock> block_queue;
DVector<BColorPos> data_colors;
data_colors.resize(color_count);
DVector<BColorPos>::Write dcw=data_colors.write();
DVector<BColorPos>::Write dcw = data_colors.write();
DVector<uint8_t>::Read dr = data.read();
const BColor * drptr=(const BColor*)&dr[0];
BColorPos *bcptr=&dcw[0];
const BColor *drptr = (const BColor *)&dr[0];
BColorPos *bcptr = &dcw[0];
{
for(int i=0;i<color_count;i++) {
for (int i = 0; i < color_count; i++) {
//uint32_t data_ofs=i<<2;
bcptr[i].color=drptr[i];//BColor(drptr[data_ofs+0],drptr[data_ofs+1],drptr[data_ofs+2],drptr[data_ofs+3]);
bcptr[i].index=i;
bcptr[i].color = drptr[i]; //BColor(drptr[data_ofs+0],drptr[data_ofs+1],drptr[data_ofs+2],drptr[data_ofs+3]);
bcptr[i].index = i;
}
}
//printf("color count: %i\n",color_count);
@ -161,11 +150,11 @@ void Image::quantize() {
printf("%i - %i,%i,%i,%i\n",i,bc.r,bc.g,bc.b,bc.a);
}*/
MCBlock initial_block((BColorPos*)&dcw[0],color_count);
MCBlock initial_block((BColorPos *)&dcw[0], color_count);
block_queue.insert(initial_block);
while( block_queue.size() < 256 && block_queue.back()->get().color_count > 1 ) {
while (block_queue.size() < 256 && block_queue.back()->get().color_count > 1) {
MCBlock longest = block_queue.back()->get();
//printf("longest: %i (%i)\n",longest.get_longest_axis_index(),longest.get_longest_axis_length());
@ -173,7 +162,7 @@ void Image::quantize() {
block_queue.erase(block_queue.back());
BColorPos *first = longest.colors;
BColorPos *median = longest.colors + (longest.color_count+1)/2;
BColorPos *median = longest.colors + (longest.color_count + 1) / 2;
BColorPos *end = longest.colors + longest.color_count;
#if 0
@ -234,111 +223,122 @@ void Image::quantize() {
block_queue.insert(right);
#else
switch(longest.get_longest_axis_index()) {
case 0: { SortArray<BColorPos,BColorPos::SortR> sort; sort.nth_element(0,end-first,median-first,first); } break;
case 1: { SortArray<BColorPos,BColorPos::SortG> sort; sort.nth_element(0,end-first,median-first,first); } break;
case 2: { SortArray<BColorPos,BColorPos::SortB> sort; sort.nth_element(0,end-first,median-first,first); } break;
case 3: { SortArray<BColorPos,BColorPos::SortA> sort; sort.nth_element(0,end-first,median-first,first); } break;
switch (longest.get_longest_axis_index()) {
case 0: {
SortArray<BColorPos, BColorPos::SortR> sort;
sort.nth_element(0, end - first, median - first, first);
} break;
case 1: {
SortArray<BColorPos, BColorPos::SortG> sort;
sort.nth_element(0, end - first, median - first, first);
} break;
case 2: {
SortArray<BColorPos, BColorPos::SortB> sort;
sort.nth_element(0, end - first, median - first, first);
} break;
case 3: {
SortArray<BColorPos, BColorPos::SortA> sort;
sort.nth_element(0, end - first, median - first, first);
} break;
}
MCBlock left(first,median-first);
MCBlock right(median,end-median);
MCBlock left(first, median - first);
MCBlock right(median, end - median);
block_queue.insert(left);
block_queue.insert(right);
#endif
}
while(block_queue.size() > 256) {
while (block_queue.size() > 256) {
block_queue.erase(block_queue.front());// erase least significant
block_queue.erase(block_queue.front()); // erase least significant
}
int res_colors=0;
int res_colors = 0;
int comp_size = (has_alpha?4:3);
indexed_data.resize(color_count + 256*comp_size);
int comp_size = (has_alpha ? 4 : 3);
indexed_data.resize(color_count + 256 * comp_size);
DVector<uint8_t>::Write iw = indexed_data.write();
uint8_t *iwptr=&iw[0];
uint8_t *iwptr = &iw[0];
BColor pallete[256];
// print_line("applying quantization - res colors "+itos(block_queue.size()));
// print_line("applying quantization - res colors "+itos(block_queue.size()));
while(block_queue.size()) {
while (block_queue.size()) {
const MCBlock &b = block_queue.back()->get();
uint64_t sum[4]={0,0,0,0};
uint64_t sum[4] = { 0, 0, 0, 0 };
for(int i=0;i<b.color_count;i++) {
for (int i = 0; i < b.color_count; i++) {
sum[0]+=b.colors[i].color.col[0];
sum[1]+=b.colors[i].color.col[1];
sum[2]+=b.colors[i].color.col[2];
sum[3]+=b.colors[i].color.col[3];
sum[0] += b.colors[i].color.col[0];
sum[1] += b.colors[i].color.col[1];
sum[2] += b.colors[i].color.col[2];
sum[3] += b.colors[i].color.col[3];
}
BColor c( sum[0]/b.color_count, sum[1]/b.color_count, sum[2]/b.color_count, sum[3]/b.color_count );
BColor c(sum[0] / b.color_count, sum[1] / b.color_count, sum[2] / b.color_count, sum[3] / b.color_count);
//printf(" %i: %i,%i,%i,%i out of %i\n",res_colors,c.r,c.g,c.b,c.a,b.color_count);
for(int i=0;i<comp_size;i++) {
iwptr[ color_count + res_colors * comp_size + i ] = c.col[i];
for (int i = 0; i < comp_size; i++) {
iwptr[color_count + res_colors * comp_size + i] = c.col[i];
}
if (quantize_fast) {
for(int i=0;i<b.color_count;i++) {
iwptr[b.colors[i].index]=res_colors;
for (int i = 0; i < b.color_count; i++) {
iwptr[b.colors[i].index] = res_colors;
}
} else {
pallete[res_colors]=c;
pallete[res_colors] = c;
}
res_colors++;
block_queue.erase(block_queue.back());
}
if (!quantize_fast) {
for(int i=0;i<color_count;i++) {
for (int i = 0; i < color_count; i++) {
const BColor &c=drptr[i];
uint8_t best_dist_idx=0;
uint32_t dist=0xFFFFFFFF;
const BColor &c = drptr[i];
uint8_t best_dist_idx = 0;
uint32_t dist = 0xFFFFFFFF;
for(int j=0;j<res_colors;j++) {
for (int j = 0; j < res_colors; j++) {
const BColor &pc=pallete[j];
const BColor &pc = pallete[j];
uint32_t d = 0;
{ int16_t v = (int16_t)c.r-(int16_t)pc.r; d+=v*v; }
{ int16_t v = (int16_t)c.g-(int16_t)pc.g; d+=v*v; }
{ int16_t v = (int16_t)c.b-(int16_t)pc.b; d+=v*v; }
{ int16_t v = (int16_t)c.a-(int16_t)pc.a; d+=v*v; }
{
int16_t v = (int16_t)c.r - (int16_t)pc.r;
d += v * v;
}
{
int16_t v = (int16_t)c.g - (int16_t)pc.g;
d += v * v;
}
{
int16_t v = (int16_t)c.b - (int16_t)pc.b;
d += v * v;
}
{
int16_t v = (int16_t)c.a - (int16_t)pc.a;
d += v * v;
}
if (d<=dist) {
best_dist_idx=j;
dist=d;
if (d <= dist) {
best_dist_idx = j;
dist = d;
}
}
iwptr[ i ] = best_dist_idx;
iwptr[i] = best_dist_idx;
}
}
@ -348,18 +348,13 @@ void Image::quantize() {
}
print_line(itos(indexed_data.size()));
data=indexed_data;
format=has_alpha?FORMAT_INDEXED_ALPHA:FORMAT_INDEXED;
data = indexed_data;
format = has_alpha ? FORMAT_INDEXED_ALPHA : FORMAT_INDEXED;
} //do none
#else
void Image::quantize() {} //do none
#endif